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Abstract. Electron self-injection and acceleration until dephasing in the blowout
regime is studied for a set of initial conditions typical of recent experiments with
100-terawatt-class lasers. Two different approaches to computationally efficient, fully
explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code vorpal

(Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J.
Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely
describes the laser pulse and bubble dynamics, taking advantage of coarser resolution
in the propagation direction, with a proportionally larger time step. Using third-order
splines for macroparticles helps suppress the sampling noise while keeping the usage
of computational resources modest. The second way to reduce the simulation load is
using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ

(Lifschitz, A. F. et al. 2009 Particle-in-cell modelling of laser-plasma interaction using
Fourier decomposition. J. Comput. Phys. 228(5), 1803–1814) uses decomposition of
fields and currents into a set of poloidal modes, while the macroparticles move in the
Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two
modes, reducing the computational load to roughly that of a planar Cartesian
simulation while preserving the 3D nature of the interaction. This significant
economy of resources allows using fine resolution in the direction of propagation
and a small time step, making numerical dispersion vanishingly small, together with
a large number of particles per cell, enabling good particle statistics. Quantitative
agreement of two simulations indicates that these are free of numerical artefacts.
Both approaches thus retrieve the physically correct evolution of the plasma bubble,
recovering the intrinsic connection of electron self-injection to the nonlinear optical
evolution of the driver.

1. Introduction
Relativistic Langmuir waves driven by short, intense
laser pulses in rarefied plasmas maintain accelerating
gradients several orders of magnitude higher than those
accessible in conventional metallic structures (Tajima
and Dawson 1979; Gorbunov and Kirsanov 1987; Es-
arey et al. 2009). The technical simplicity and com-
pactness of these laser-plasma accelerators (LPAs) is
attractive for a broad range of applications, such as nuc-
lear activation and on-site isotope production (Leemans
et al. 2001; Reed et al. 2007), long-distance probing
of defects in shielded structures (Ramanathan et al.
2010), and testing radiation resistivity of electronic com-
ponents (Hidding et al. 2011). Realization of compact,
inexpensive, bright x- and gamma-ray sources using
electron beams from LPAs (Rousse et al. 2004; Ta

Phuoc et al. 2005; Rousse et al. 2007; Kneip et al.
2010; Cipiccia et al. 2011) holds the promise to enable
a much wider user community than can be served by
existing large-scale facilities. These applications are not
especially demanding as regards electron beam quality,
and in fact sometimes draw benefits from poor beam
collimation and a broad energy spectrum (Hidding et al.
2011). However, there are also important applications
with much tighter beam requirements. Such applications
include generating coherent x-rays using an external
magnetic undulator (Grüner et al. 2007; Schlenvoigt
et al. 2008a,b; Fuchs et al. 2009), producing x-rays for
phase contrast imaging (Fourmaux et al. 2011; Kneip
et al. 2011), and high-brightness, quasi-monochromatic
gamma-ray Compton sources (Leemans et al. 2005;
Hartemann et al. 2007); these require electron beams
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with a multi-kA current, low-phase space volume, and
energy in the few gigaelectronvolt (GeV) range.

Achieving this high level of accelerator performance
is a major near-term goal of the LPA community.
Modern laser systems capable of concentrating up to
10 Joules of energy in a sub-50 femtosecond pulse
(Yanovsky et al. 2008; Froula et al. 2009; Kneip et al.
2009; Fourmaux et al. 2011) make it possible to achieve
the so-called blowout (or ‘bubble’) regime, which is
desirable due to its technical simplicity and scalability
(Gordienko and Pukhov 2005; Lu et al. 2007). In this
regime, motion of electrons in the focus of the laser
pulse is highly relativistic. The laser ponderomotive
force expels plasma electrons from the region of the
pulse, while the fully stripped ions remain essentially
immobile, creating a column of positive charge in the
laser wake. The charge separation force attracts bulk
plasma electrons to the axis, creating a closed bubble
devoid of electrons. This co-propagating electron density
bubble (Rosenzweig et al. 1991; Mora and Antonsen
1996; Pukhov and Meyer-ter-Vehn 2002; Gordienko and
Pukhov 2005; Lu et al. 2006) guides the laser pulse over
many Rayleigh lengths (Mora and Antonsen 1996; Lu
et al. 2007). The bubble readily traps initially quiescent
background electrons, accelerating them to hundreds of
megaelectronvolts (MeV) over a few millimeters, creat-
ing a collimated electron bunch (Pukhov and Meyer-
ter-Vehn 2002; Kalmykov et al. 2011a). It is in this
regime that the first quasi-monoenergetic electrons were
produced from laser plasma interactions in the labor-
atory (Faure et al. 2004; Geddes et al. 2004; Mangles
et al. 2004), and the GeV energy range was approached
(Leemans et al. 2006; Karsch et al. 2007; Hafz et al.
2008; Froula et al. 2009; Kneip et al. 2009; Clayton et al.
2010; Liu et al. 2011; Lu et al. 2011; Pollock et al. 2011).

Multi-dimensional particle-in-cell (PIC) simulations
have played a key role in understanding the physics
of the fully kinetic, strongly relativistic blowout regime.
The PIC method (Hockney and Eastwood 1981; Birdsall
and Langdon 1985) self-consistently models both elec-
tromagnetic fields and charged particles, representing
field quantities on a grid and particles in a continuous
phase space. Given sufficient computing power, electro-
magnetic PIC codes can simulate the plasma electrons
(and ions, if necessary), the laser pulse driving the
plasma wake, and the dynamics of electrons injected
into the accelerating potential. In particular, two- and
three-dimensional PIC simulations have been essential
in understanding the dynamical nature of the electron
self-injection process (Xu et al. 2005; Oguchi et al.
2008; Kalmykov et al. 2009, 2010, 2011a, b; Wu et al.
2009; Zhidkov et al. 2010). However, to capture pre-
cisely the correlation between driver dynamics, electron
self-injection, and GeV-scale acceleration in the bubble
regime, a simulation must meet a number of challenging
requirements.

Optimization of GeV-scale LPA performance, even
with the use of massively parallel computation, is a

challenging task, especially because of the necessary cm-
scale laser-plasma interaction length. The laser energy
is used most effectively if electrons are accelerated until
they outrun the bubble and exit the accelerating phase,
at which point they will have gained the maximum
possible energy in an LPA stage,

Ed ≈ 2.7γ4/3
g P

1/3
TW MeV. (1.1)

Acceleration to this dephasing limit occurs over the
distance (Lu et al. 2007)

Ld ≈ 0.6λ0γ
8/3
g P

1/6
TW . (1.2)

Here, PTW is the laser power in terawatts (TW) (1TW =
1012 W), γg = ω0/ωpe�1 is the Lorentz factor asso-
ciated with the linear group velocity of the pulse in
plasma, ω0 is the laser frequency, λ0 = 2πc/ω0 is the
laser wavelength, ωpe = (n0e

2/meε0)
1/2 is the electron

Langmuir frequency, me is the electron rest mass, n0

is the background electron density, e is the electron
charge, and ε0 is the permittivity of free space. The
scalings (1.1) and (1.2) imply that the pulse remains self-
guided, namely, it remains longer than cω−1

pe (Sprangle
et al. 1990; Gorbunov et al. 2005), and its power exceeds
the critical power for relativistic self-focusing, Pcr =
16.2γ2

g GW (Sun et al. 1987). Increasing the electron
energy therefore requires reduction of electron plasma
density, increasing both the bubble velocity and size,

Lacc ≈ 0.9λ0γ
2/3
g P

1/6
TW , (1.3)

where Lacc is the length of the accelerating phase of
the wakefield (roughly equal to the bubble radius).

Electron dephasing scales as Ld ∼ n
−4/3
0 and thus the

final energy gain scales as Ed ∼ n
−2/3
0 . For instance,

with a 200 -TW pulse and a wavelength λ0 = 0.8µm,
reaching 1-GeV energy needs a 0.47 -cm length plasma
with density n0 = 3.5 × 1018 cm−3. Doubling that energy
would require nearly four times the plasma length and
three times lower density, also increasing the bubble
size by ∼40%. Simulations of LPA commonly use a
moving window, where the simulation box propagates
with the speed of light colinearly with the laser pulse.
This optimization notwithstanding, even the experiments
with currently operating 100 -TW systems bring forth
the task of modelling the pulse propagation in cm-
length plasmas, with the size of the 3D simulation box
of the order of hundred(s) of microns longitudinally and
transversely.

The greatest challenge arises from the great disparity
of physical scales between the laser wavelength and
plasma length, which is the hallmark of high-energy
laser-plasma acceleration. The need to resolve the laser
wavelength, λ0 ∼ 1µm, fixes the grid resolution, and
because of stability conditions (Courant et al. 1967) also
limits the time step to a small fraction of ω−1

0 . Fur-
thermore, the strong localization of the injection process
imposes an even stricter limit on grid resolution; the
vast majority of injection candidates are concentrated
in the inner lining of the bubble (the sheath), and
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penetrate into the bubble near its rear, where the sheath
is longitudinally compressed to a few tens of nanometres
(Wu et al. 2009; Kalmykov et al. 2011a). Resolving
this structure, together with ensuring sufficient particle
statistics in the sheath, is necessary to avoid excessive
sampling noise and eliminate unphysical effects. In this
situation, extending the plasma length to centimeters
and increasing the size of the simulation window to
hundreds of microns, while at the same time maintaining
sufficient macroparticle statistics, would require solving
Maxwell’s equations on meshes amounting to billions of
grid points, and advancing 1–10 billion macroparticles
over millions of time steps. Performing such simula-
tions with standard electromagnetic solvers and particle
movers requires a national-scale supercomputing facility.
As a result, an attempt to reproduce the long time-
scale evolution of the laser and the bubble together
with fine details of the electron self-injection dynamics
is usually a compromise between affordable simulation
load and unavoidable coarseness of results. However, the
high precision of modern LPA experiments and high
beam quality requirements of applications are rather
unforgiving to these compromises and do not tolerate
numerical artefacts (Cormier-Michel et al. 2008).

These considerations make it clear that PIC
algorithms must be modified in order to reduce the
required computational resources without compromising
precision. One of the main directions is development of
electromagnetic solvers that minimize numerical error
while using the lowest possible grid resolution. One
particular limitation of PIC that requires high longit-
udinal resolution is that of numerical dispersion. In
PIC, electromagnetic fields are typically updated using
the finite-difference time-domain (FDTD) method on
a staggered Yee grid (Yee 1966; Taflove and Hagness
2005). This method is second-order accurate, and since
it is explicit and local, it parallelizes efficiently, enabling
large-scale simulations. However, it is known that this
algorithm experiences numerical dispersion error for
waves propagating along the axis, which leads to errors
in the group velocity of the laser pulse. This artificial
slowdown of the driver and the bubble leads to incorrect
dephasing of accelerated electrons and also permits
synchronization of sheath electrons with the bubble,
leading to their unphysical injection. Mitigating this
effect by using higher resolution increases the com-
putation time quadratically. Because of the deleteri-
ous effects of numerical dispersion in FDTD schemes,
efforts have been made to develop perfect dispersion
algorithms, which exhibit no numerical dispersion for
waves propagating along a grid axis. For accelerator
applications, several modifications to FDTD have been
described that correct for numerical dispersion using
implicit methods (Zagorodnov et al. 2003; Zagorodnov
and Weiland 2005). Since LPA simulations tend to
be of quite large scale (using thousands of processor
cores), an explicit algorithm is desirable for reasons of
computational efficiency. Such an algorithm has been

described in two dimensions (Pukhov 1999) and three
dimensions for cubic cells (Kärkkäinen et al. 2006).
These algorithms have been also explored for LPA as
a means of reducing noise in boosted-frame simulations
(Vay et al. 2011).

In this paper, we use two complementary simulation
codes (with different numerical approaches and physics
content) to explore physical phenomena involved in
self-injection and acceleration of electrons until deph-
asing under typical conditions of recent experiments
with 100 -TW-class lasers. We use a newly developed
perfect-dispersion algorithm (Cowan et al. in prepar-
ation) implemented in a fully explicit 3D Cartesian
vorpal simulation framework (Nieter and Cary 2004),
subsequently referred to as vorpal-pd. The algorithm,
briefly described in Sec. 2, eliminates numerical disper-
sion in the direction of pulse propagation. Thus, even
with a relatively large longitudinal grid spacing (∼15
grid points per λ0), the correct group velocity of a broad-
bandwidth laser pulse is obtained.

The other code used here, calder-circ, uses cyl-
indrical geometry. This code uses poloidal mode de-
composition of fields and currents defined on a radial
grid, while macroparticles retain their full 3D dynamics
in Cartesian coordinates (Lifschitz et al. 2009). Well-
preserved cylindrical symmetry of the laser-plasma inter-
action enables using just a few lower-order modes. Neg-
lecting higher order, non-axisymmetric contributions to
the wakefields and currents makes it possible to ap-
proach the performance of a 2D code. calder-circ thus
allows for fast, extra high resolution runs with excellent
macroparticle statistics (Kalmykov et al. 2010, 2011a,
2012).

The paper is organized as follows. In Sec. 2 we outline
the main features of the recently implemented perfect
dispersion algorithm in the vorpal-pd code. Section 3
is dedicated to the benchmarking of vorpal-pd against
calder-circ. Section 4 summarizes the results and in-
dicates the directions of future work.

2. The perfect dispersion method
In this section we give a brief overview of the perfect
dispersion method we use; a more complete description
together with detailed benchmarks will be presented in
Cowan et al. (in preparation). Our method is based on
that of Pukhov (1999) and Kärkkäinen et al. (2006), in
which the FDTD algorithm is modified by smoothing
the fields in curl operator in one of Maxwell’s equations.
We choose to smooth electric fields for the magnetic
field update; our update equations are then

DtB = −∇′×E , DtE = c2∇×B − J

ε0
, (2.1)

where J is the electric current deposited from particle
motion. Here Dt is the finite difference time derivative,
∇× is the standard finite difference curl operator, and
∇′× is the modified curl operator. Our modification to
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the curl operator involves applying smoothing transverse
to the coordinate axis along which the derivative is
taken. For instance, when computing ∂Ey/∂x, Ey is
smoothed in the y and z directions. This is equivalent
to applying a smoothing operator before the numerical
derivative operator. The electric field is smoothed only
for the update of the magnetic field; the smoothed fields
are not stored for the next time step.

The smoothed curl operator ∇′× is formed by modify-
ing the finite difference operation. If Di is the numerical
derivative operator in the ith direction, then for the
modified curl we use DiSi in place of Di, where Si is
the smoothing operator for the derivative. The smooth-
ing operator Sx is defined by the stencil in y and z

directions ⎡
⎢⎣
γyz βz γyz

βy αx βy

γyz βz γyz

⎤
⎥⎦ , (2.2)

and similar relations hold for cyclic permutations of
coordinate indices. The coefficients αi, βi, and γij are
chosen to guarantee that waves propagating along the
x-axis (the laser propagation direction in our simula-
tions) in vacuum experience no numerical dispersion as
described in Cowan et al. (in preparation). The only
constraint is that the longitudinal grid spacing ∆x must
satisfy ∆x � ∆y,∆z for the transverse grid spacings ∆y
and ∆z.

3. Benchmarking
While a technological path to high-quality GeV beams
exists, experimental progress is impeded by an incom-
plete understanding of the intrinsic relation between
electron self-injection and nonlinear optical evolution of
the driver, and hence by the lack of suitable criteria for
the selection of optimal regimes that produce beams with
the smallest possible phase-space volume. Control and
optimization of the fully kinetic, intrinsically 3D process
of electron self-injection is a daunting task. It involves a
systematic study of the links among the dynamics of self-
injection and the nonlinear optical processes involving
the laser pulse and the bubble.

Because of the extended acceleration length, the in-
teraction of the laser pulse with the plasma is rich in
nonlinear phenomena. Even a Gaussian beam which
is perfectly matched to the electron density gradient
in which it propagates is not immune to nonlinear
optical processes. Oscillations of the pulse spot size
because of nonlinear refraction (Oguchi et al. 2008;
Kalmykov et al. 2010; Zhidkov et al. 2010), self-phase
modulation leading to the formation of a relativistically
intense optical piston (Tsung et al. 2002; Lontano and
Murusidze 2003; Faure et al. 2005; Pai et al. 2010;
Vieira et al. 2010; Kalmykov et al. 2011a,b, 2012), and
relativistic filamentation (Andreev et al. 2007; Thomas
et al. 2007; Thomas et al. 2009) are processes that
result in pulse deformations. Electron self-injection

appears to be extremely sensitive to such changes in
pulse shape, which lead to the contamination of the elec-
tron beam by polychromatic, poorly collimated back-
ground (Kalmykov et al. 2011b, 2012). Such contamin-
ation is readily seen even in simulations with idealized
initial conditions (Froula et al. 2009; Kneip et al. 2009;
Kalmykov et al. 2010; Martins et al. 2010; Kalmykov
et al. 2011a, 2012). The complicated modal structure of
incident pulse further aggravates the situation, leading to
continuous off-axis injection, collective betatron oscilla-
tions (Glinec et al. 2008; Mangles et al. 2009; Cummings
and Thomas 2011), and electron beam steering (Popp
et al. 2010). In practice, these phenomena currently pre-
clude operation reliable enough to enable high-precision
user experiments; reported islands of stability for self-
injection in laser and plasma parameter space remain
relatively narrow (Karsch et al. 2007; Mangles et al.
2007; Thomas et al. 2007; Hafz et al. 2008; Maksimchuk
et al. 2008; Wiggins et al. 2010). Numerical codes used
in predictive modelling of LPAs must be able to re-
produce these phenomena with high precision in order
not to confuse the instability of acceleration caused
by physical processes with unphysical artefacts caused
by intrinsic deficiencies of numerical algorithms, such
as numerical dispersion, high sampling noise, and grid
heating.

3.1. Simulation parameters

The simulations presented here extend the earlier case
study by Kalmykov et al. (2011a) and use the same
set of initial conditions. A transform-limited Gaussian
laser pulse with full width at half-maximum (FWHM)
in intensity τL = 30 fs, wavelength λ0 = 0.805µm, and
70 -TW power is focussed at the plasma border (x =
0) into a spot size r0 = 13.6µm, and propagates in
the positive x-direction. The laser pulse is polarized
in the y-direction. The peak intensity at the focus is
2.3 × 1019 W/cm2, giving a normalized vector potential
of a0 = 3.27. The plasma density has a 0.5 -mm linear
entrance ramp followed by a 2 -mm plateau and a 0.5 -
mm linear exit ramp. The density in the plateau region,
n0 = 6.5 × 1018 cm−3, corresponds to γg ≈ P/Pcr ≈ 16.3
and dephasing length Ld ≈ 1.7mm.

The simulations carried out with vorpal-pd use grid
spacings of ∆x = 0.06λ0 = 48.3 nm longitudinally and
∆y = ∆z = 0.5λ = 403 nm transversely, with four
macroparticles per cell. Use of third-order splines for
macroparticle shapes reduces the sampling noise, mitig-
ating the adverse effect of the coarse grid. The domain in
the vorpal-pd simulations is 72µm long and 91µm wide,
and is surrounded transversely by a 16-layer perfectly
matched layer absorbing boundary. The code is fully
parallelized, and was run using 6 144 cores on the
Hopper supercomputer at the National Energy Research
Scientific Computing Center (NERSC). Completion of
a typical run took ∼3 × 105 CPU hours.

The calder-circ simulation uses 45 macroparticles
per cylindrical cell, formed by the revolution of the grid
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cell around the propagation axis. The longitudinal grid
spacing is ∆x = 0.125c/ω0 ≈ 16 nm. The aspect ratio

∆r/∆x = 15.6 (where r =
√
y2 + z2), and the time step

∆t = 0.1244ω−1
0 . With these grid parameters, numerical

dispersion is negligible, and the sampling noise is sig-
nificantly reduced. This high resolution simulation does
not indicate any new physical effects compared to the
vorpal-pd simulation, and does not exhibit significant
differences in quantitative results. Well-preserved cyl-
indrical symmetry during the interaction (confirmed in
the vorpal-pd simulation) enables us to approximate
fields and currents using just the two lowest order
poloidal modes, thus reducing the 3D problem to an
essentially 2D one. These results confirm the earlier
established fact (Lifschitz et al. 2009) that in the case of
a linearly polarized laser, higher order modes contribute
only weakly to the electric field. Comparison with the
results of the vorpal-pd runs shows that our restriction
to only two modes is sufficiently precise to reproduce all
relevant physical effects, and to simulate the propagation
through a 3 -mm plasma in 2 625 CPU hours on 250
cores.

3.2. Formation of quasi-monoenergetic bunches and phys-
ical origin of dark current

Upon entering the plasma, the strongly overcritical pulse
rapidly self-focuses, reaching its highest intensity at
x ≈ 0.8mm, soon after entering the density plateau.
Full blowout is maintained over the entire propagation
distance. In both simulations, electrons are accelerated
until dephasing in two distinct stages, each characterized
by completely different laser pulse dynamics. Transverse
evolution of the laser pulse is the hallmark of Stage I.
The pulse spot size oscillates, first causing expansion and
then contraction of the bubble. The bubble expansion
produces self-injection of electrons from the sheath;
stabilization and contraction of the bubble extinguish
injection, limiting the beam charge to a fraction of
a nC. Phase space rotation creates a well-collimated
quasi-monoenergetic bunch long before dephasing. Fur-
ther acceleration (Stage II) is dominated by longitudinal
(temporal) self-compression of the pulse, leading to
gradual elongation of bubble and continuous injection,
producing a polychromatic, poorly collimated energy
tail – known as dark current – with a few nC charge.
This two-stage evolution has been noticed in earlier
simulations (Froula et al. 2009; Kneip et al. 2009), and
explained in detail in Kalmykov et al. (2011a,b, 2012).

The correlation between the plasma bubble evolution
and the self-injection process is quantified in Fig. 1. Panel
(a) shows the length of the accelerating phase on axis,
viz. the length of the region inside the bubble where the
longitudinal electric field is negative. Panel (b) shows
the longitudinal ‘collection phase space,’ viz. momenta
of macroparticles reaching the dephasing point, px(x =
xdeph), versus their initial position in plasma. Panel (c)
shows the collection volume: the initial positions of
electrons reaching the dephasing point. (The same quant-

ities were used by Kalmykov et al. (2012) to evaluate
the role of beam loading in the self-injection process.)
Comparison of these three panels shows that electrons
are injected only during the periods of bubble expansion.

During Stage I, radial oscillation of the laser pulse
tail inside the bubble causes alternating expansion and
contraction of the first bucket, clearly seen in the pro-
gression from x = 0.6 to 1.24 mm in Fig. 1(a). The
bubble size oscillates around the average value pre-
dicted by the estimate (1.3), Lacc ≈ 9.5µm. Electron
self-injection into the oscillating bubble leads to the
formation of a quasi-monoenergetic component in the
energy spectrum. At the end of Stage I, at x ≈ 1.24mm,
the bubble contracts to the same size in both runs,
truncating the tail of injected bunch and expelling elec-
trons injected between x = 0.825 and 0.95 mm. These
electrons do not reach dephasing and thus are missing in
Figs. 1(b) and (c). Electrons injected between x = 0.65
and 0.825 mm remain in the bubble and are further
accelerated. This well-separated group of particles is
clearly seen in Fig. 1(b). In both the vorpal-pd and
calder-circ simulations, these electrons reach deph-
asing first, preserving low-energy spread, and are ac-
celerated to the highest energy, E ≈ 500MeV. The
bubble expands more rapidly and stabilizes sooner in
the vorpal-pd simulation, causing stronger reduction
of phase velocity in subsequent buckets (second and
third). Hence, in contrast with the calder-circ run,
vorpal-pd gives a noticeable amount of charge trapped
and pre-accelerated in these buckets. These electrons,
indicated by red ellipse in Fig. 1(b), are swallowed
by the expanding first bucket during Stage II and
are further accelerated, contributing to a dark current.
This contribution, however, appears to be fairly minimal
in comparison to the amount of continuously injected
charge during Stage II.

The leading edge of the laser pulse constantly ex-
periences a negative gradient of the nonlinear index
of refraction. As a result, by the end of Stage I, it
accumulates considerable red-shift. During Stage II,
plasma-induced group velocity dispersion slows the red-
shifted spectral components relative to the unshifted
components, leading to front etching and pulse self-
compressing into a relativistically intense, few cycle
long optical piston (Tsung et al. 2002; Lontano and
Murusidze 2003; Faure et al. 2005; Kalmykov et al.
2011a). As the pulse transforms into a piston, the bubble
constantly elongates, resulting in copious trapping and
creating a poorly collimated, polychromatic tail, clearly
seen in Fig. 1(b). At the dephasing point, xdeph ≈ 2.4mm,
the bubble size becomes nearly twice the estimate Lacc ≈
9.5µm based on the scaling law (1.3). Even though Fig.
1(a) shows a larger bubble expansion in the vorpal-pd

run, the sections of collection phase space corresponding
to Stage II look nearly identical for both codes in Fig.
1(b). Notably, beam loading provides only a minor con-
tribution to bubble expansion, and is thus not a domin-
ant cause of continuous injection (Kalmykov et al. 2012).
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Figure 1. (Colour online) (a) Length of the accelerating phase vs. propagation distance in calder-circ (black) and vorpal-pd

simulations (red/grey). Expansion and contraction of the bubble because of nonlinear focusing of the driver (Stage I) is followed
by continuous expansion caused by pulse self-compression (Stage II). (b) Longitudinal momentum of electrons reaching the
dephasing point, xdeph ≈ 2.4mm, vs. their initial longitudinal positions. Black dots are the calder-circ macroparticles; the color
map represents the normalized number density of vorpal-pd macroparticles. Electrons are injected only during periods of bubble
expansion. A quasi-monoenergetic bunch is formed during Stage I and maintains its low-energy spread until dephasing, indicated
by the group of early injected particles with px ≈ 0.5 GeV/c. Groups of electrons encompassed by the ellipses were injected into
the second and third buckets, to be further captured and accelerated by the expanding first bucket. Continuous injection during

Stage II creates a polychromatic energy tail. (c) Collection volume: initial radial offsets (Rin =
√
y2

in + z2
in) of electrons reaching

dephasing limit vs. their initial longitudinal positions xin. Black (red/grey) dots are calder-circ (vorpal-pd) macroparticles.
This collection volume indicates that the vast majority of electrons are collected from a hollow conical cylinder with a radius
slightly smaller than the local bubble size.

The collection volume depicted in Fig. 1(c) indicates
that the electrons are collected from a conical shell with
a radius slightly smaller than the bubble radius. This
structure of the collection volume indicates that the
vast majority of trapped and accelerated electrons have
impact parameters of sheath electrons (Tsung et al. 2006;
Wu et al. 2009; Kalmykov et al. 2010; Pukhov et al. 2010;
Kalmykov et al. 2011a, 2012). Collection volumes in the
vorpal-pd and calder-circ runs are almost identical
during Stage I, whereas the radius of the cone is larger
for vorpal-pd during Stage II, on account of the greater
expansion because of pulse diffraction.

Snapshots of electron density, longitudinal phase
space, and energy spectra at the points of maximal
expansion and contraction of the bubble are presented in
Figs. 2–4. Data for panels (a), (b), and (c) in Figs. 2 and
3 are from the calder-circ simulation, and for panels
(d), (e), and (f) are from the vorpal-pd simulation.

The fully expanded bubble in the middle of Stage I
is shown in Figs. 2(a) and (d). As soon as the bubble

expands fully, injection terminates. Uninterrupted injec-
tion of sheath electrons before this point produces a
large spread of longitudinal momentum and energy as
shown in Figs. 3(a), (d), and 4(a).

A slight contraction of the bubble between x = 0.95
and 1.24 mm truncates the bunch. Electrons injected at
the very end of the expansion interval are expelled,
while particles remaining in the bucket are further ac-
celerated. The transverse self-fields of the bunch are
unable to prevent bucket contraction. Snapshots of the
contracted bubble are presented in Figs. 2(b) and (e).
During the contraction interval, the tail of the electron
bunch, exposed to the highest accelerating gradient,
equalises in energy with earlier injected electrons, pro-
ducing a characteristic ‘U’ shape in the longitudinal
phase space. This feature (also observed in the sim-
ilar situation by Lu et al. 2007) is clearly seen in
Figs. 3(b) and (e). As a result of this evolution, quasi-
monoenergetic bunches are formed in both vorpal-pd

and calder-circ simulations at the end of Stage I. These
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Figure 2. (Colour online) Electron density (in cm−3) in the plane of laser polarization in calder-circ (top row) and vorpal-pd

simulations (bottom). Panels (a) and (d) show the fully expanded bubble in the middle of Stage I, (b) and (e) show the fully
contracted bubble at the end of Stage I, and (c) and (f) show the bubble in the vicinity of electron dephasing point at the end of
Stage II. x = ct is the trajectory of the laser pulse maximum in vacuum; (a) and (d) correspond to the distance x = ct ≈ 930µm
from the plasma edge, (b) and (e) correspond to x = ct ≈ 1210µm, and (c) and (f) correspond to x = ct ≈ 2364µm. Before the
dephasing point, the bubble, elongated and deformed due to the laser pulse self-compression, traps considerable charge. Beam
loading, however, is yet unable to terminate self-injection (cf. panels (c) and (f)).

Figure 3. Electron density (arbitrary units) in longitudinal phase space in calder-circ (top row) and vorpal-pd simulations
(bottom). Each panel corresponds to the same panel of Fig. 2. Full expansion of the bubble saturates injection and initiates
phase space rotation (panels (a) and (d)). Contraction of the bubble terminates injection, clipping the rear of the injected bunch,
eliminating the low-energy tail. Phase space rotation makes the bunch quasi-monoenergetic (panels (b) and (e)). Elongation and
deformation of the bubble because of the laser pulse self-compression causes continuous injection, producing an electron beam
with a continuous spectrum of longitudinal momenta (panels (c) and (f)).
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Figure 4. (Colour online) Electron energy spectra in calder-circ (black) and vorpal-pd simulations (red/grey). Panels (a), (b),
and (c) correspond to the phase space snapshots (a) and (d), (b) and (e), and (c) and (f) of Fig. 3, respectively. (a) At the point
of full expansion, the electron energy spectrum is broad. (b) Full contraction of the bubble suppresses the low-energy tail and
reduces the energy spread. Electrons from the second bucket contribute to the background, seen in the diffuse peaks around
150MeV. (c) Continuous injection caused by bubble expansion and deformation produces a massive polychromatic tail. The
leading bunch, at E ≈ 500MeV, reaches dephasing, but is still distinct from the tail.

Table 1. Parameters of the quasi-monoenergetic bunch
(E > 200 MeV) at the end of Stage I (cf. the spectra in
Fig. 4(b)). Qmono is the charge in pC; Emono is the energy
corresponding to the spectral peak (in MeV); ∆Emono is the
absolute energy spread (FWHM) in MeV; εN,y and εN,z are the
normalized transverse emittance (in mm mrad) in and out of
the laser polarization plane, respectively.

Qmono Emono ∆Emono εN,y εN,z

calder-circ 214 215 20 6.87 7.08

vorpal-pd 193 245 20 10.7 6.08

quasi-monoenergetic spikes with <10% energy spread
can be seen in Fig. 4(b). In addition to the quasi-
monoenergetic spikes, these energy spectra also reveal
diffuse features near 150 MeV, corresponding to the
electrons trapped in the second bucket; these particles
can be seen in the snapshots of electron density as
shown in Figs. 2(b) and (e). These electrons, however,
never equalise in energy with the leading high-energy
bunch.

Parameters of the bunches, summarized in Table 1,
appear to be very similar. Normalized transverse emit-
tances presented in this table are calculated according
to the usual definition εN,i = (mec)

−1[(〈p2
i 〉 − 〈pi〉2)(〈r2i 〉 −

〈ri〉2) − (〈piri〉 − 〈ri〉〈pi〉)2]1/2, where i = y and z corres-
pond to the emittance in and out of polarization plane.
The beam asymmetry is more pronounced in the vorpal-

pd simulation, presumably on account of the inclusion
of the complete electromagnetic field, in contrast to just
two poloidal modes in calder-circ.

Agreement between two codes worsens during Stage
II. As has already been noted, the bubble expansion
is larger in the vorpal-pd simulation. As a result, the
amount of continuously injected charge at the dephasing
point (2.5 nC) is about 60% higher and the divergence
of the continuously injected beam (80 mrad) is about
twice that in the calder-circ simulation. The difference
in charge can be easily inferred from Fig. 4(c). On the
other hand, parameters of the leading bunches are in
reasonable agreement with the central energy 485 ±
20MeV in the vorpal-pd run against 515 ± 25MeV in

the calder-circ run. In both simulations, the emittance
of the quasi-monoenergic component increases by ∼30%
over its value at the end of Stage I. The lower energy of
the leading bunch in the vorpal-pd run can be explained
by its earlier dephasing because of more rapid expansion
of the bubble.

Both codes agree that the bubble not only elongates
during Stage II but also becomes more and more asym-
metric in the laser polarization plane. The ‘pennant-like’
bubble shape is responsible for massive off-axis injection,
leading to the noticeable beam centroid oscillations
in the laser polarization plane seen in Figs. 2(c) and
(f). Such phenomenon has been observed in similar
situations by others (Glinec et al. 2008). This violation
of symmetry is a manifestation of carrier-envelope phase
effects in the interaction of a relativistically intense,
linearly polarized, few cycle piston with the plasma
(Nerush and Kostyukov 2009). Conversely, in the plane
orthogonal to the laser polarization, both bucket and
beam remain perfectly symmetric (not shown). Surpris-
ingly, the two poloidal radiation modes of calder-

circ still capture the field evolution well. Inclusion
of higher order modes should improve the situation.
On the other hand, Figs. 2(c) and (f) indicate that
electromagnetic solvers of both codes agree on the group
velocity of the laser pulse even in the situation where
the pulse shrinks down to less than two cycles and
remains strongly relativistic. This means that (a) poloidal
mode decomposition does not damage dispersion in the
axial direction, and (b) the coarse grid and dispersion
properties of vorpal-pd are sufficient to describe well
the extreme case of pulse spectral broadening to ∆ω ∼
ω0 and compression to nearly a single cycle.

Examination of the bubble evolution and collection
volumes (cf. Fig. 1), together with individual snapshots
of electron density in coordinate and longitudinal phase
space, indicate that in spite of great difference in al-
gorithms, vorpal-pd and calder-circ reproduce the
same correlation between the evolution of the bubble
and the self-injection of sheath electrons, and agree
quantitatively on the parameters of quasi-monoenergetic
beams produced by the oscillating bubble. Self-injection



Computationally efficient methods for LWFA in bubble regime 477

100 200 300 400 500
px (MeV/c)

0

1

2

3

4

F
re

qu
en

cy
[#

/(
M

eV
/c

)]

×107

Perfect dispersion

Normal dispersion

1730 1740 1750 1760 1770 1780 1790
x (µm)

0

100

200

300

400

500

p x
(M

eV
/c

)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4
×107

1730 1740 1750 1760 1770 1780 1790
x (µm)

0

100

200

300

400

500

p x
(M

eV
/c

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

×107

Figure 5. (Colour online) (Top) Electron longitudinal momentum spectra after 1.8 -mm propagation for perfect and normal
dispersion. (Bottom) Longitudinal phase space for perfect dispersion (left) and normal dispersion (right).

begins, terminates, and resumes at exactly the same
positions along the propagation axis in both runs, and
electrons are collected from the same plasma volume.
Despite differences in minor details, both codes con-
sistently reproduce physical details of the self-injection
process over the entire dephasing length. This level of
agreement between very different numerical models in-
dicates that the results are largely free of numerical arte-
facts. Importantly, the discrepancies emerge when the
interaction develops noticeable non-cylindrically sym-
metric features, and hence the reduced field description
of calder-circ loses precision. We believe that the
agreement between the models may be improved in a
straightforward fashion (viz. using a larger number of
poloidal modes) without significantly reducing compu-
tational efficiency.

3.3. Effects of numerical dispersion control

As described above, simulating upcoming experiments
will require economizing on computational cost as much
as possible without sacrificing physical accuracy. One
means of reducing longitudinal resolution requirements,

and hence allowing a larger time step, is to minimize
numerical dispersion through a modified electromag-
netic update. Here we show how numerical dispersion
quantitatively affects the injected electron bunch.

The immediate effect of numerical dispersion is an
unphysically low group velocity of the laser pulse. While
this effect is difficult to observe directly in the laser
pulse because of more significant changes in the pulse
shape, it can be seen in the electron phase space, which
is of experimental importance. We examine the initially
injected electrons at the point where they have rotated
in phase space such that the beam has achieved minimal
energy spread. The minimal energy spread condition is
characterized by the phase space of the bunch being
roughly longitudinally symmetric and in the shape of
a ‘U’. We find from the perfect dispersion simulation
that this occurs after the laser has propagated approx-
imately 1.8 mm into the plasma. We show longitudinal
momentum spectra and phase space at this point for
both perfect dispersion and normal dispersion in Fig. 5.
We find that with the normal dispersion algorithm, the
beam achieves lower energy and exhibits higher energy
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Figure 6. (Colour online) Longitudinal phase space for perfect dispersion (left) and normal dispersion (right) at the minimal
energy spread point for both algorithms. For perfect dispersion, this is after 1.8mm of propagation, and for normal dispersion
after 1.6mm.

spread than with the perfect dispersion algorithm. We
also find that phase space rotation has occurred more
quickly.

We also compare the two dispersion algorithms at
points of minimal energy spread. Without dispersion
control, the more rapid phase space rotation causes
the minimal energy spread to occur after just 1.6 mm
of propagation rather than 1.8 mm. We show the two
phase space plots in Fig. 6. This comparison is relevant
since for applications, one would want to design the
system such that the injected beam exits the plasma
at this point of minimum energy spread (Hafz et al.
2011). It is clear from these plots that with the normal
dispersion algorithm, the beam has reached lower mean
energy (390 MeV) at the minimum energy spread point
than with perfect dispersion, where the beam has a mean
energy of 460 MeV. In addition, the normal dispersion
case exhibits slightly higher energy spread and total
charge in the bunch.

We also compare the longitudinal momentum spectra
and phase space at the points compared with calder-

circ simulations in the previous section, namely 960µm,
1.24 mm, and 2.4 mm. These comparisons are shown in
Fig. 7. We can see, especially in the later two plots, that
the injected bunch in the normal dispersion simulation
shows both lower mean energy and greater phase space
rotation than in the perfect dispersion run, and thus
perfect dispersion agrees better with the calder-circ

simulations as seen in the previous section.
While these discrepancies are small, they are notice-

able and consistent with numerical group velocity error.
As LPA system designs are refined, and diagnostics and
control over the laser pulse and plasma improve, it
will be important to control numerical effects on this
level to optimize parameters through simulation. The
perfect dispersion algorithm allows us to do so while
still using low longitudinal resolution for computational
efficiency.

4. Conclusions
In this paper we have demonstrated the utility of using
computationally efficient, fully explicit 3D PIC codes
to describe and explain the physical phenomena ac-
companying electron acceleration until dephasing in a
self-guided LPA in the blowout regime. Electron self-
injection and its relation to nonlinear dynamical pro-
cesses involving the laser pulse and bubble were ex-
plored. Two approaches to reducing the computational
cost of simulations were considered.

First, using the Cartesian code vorpal with a newly
developed perfect dispersion algorithm (Cowan et al.
in preparation), vorpal-pd, made it possible to use
large grid spacings (∼15 grid points per wavelength in
the direction of propagation) and proportionally larger
time steps. This approach reproduces the correct group
velocity of a broad bandwidth laser pulse. The red-shift,
self-compression, and depletion of the laser pulse were
thus described correctly, with proper resolution of all
important physical scales.

Second, the well-preserved axial symmetry of the
problem allowed us to use a reduced geometry descrip-
tion, with poloidal-mode decomposition of currents and
fields. This approach was realized in the code calder-

circ (Lifschitz et al. 2009). By using only two modes,
we approached the performance of a 2D code, at the
same time preserving the correct cylindrical geometry
of the interaction. The high computational efficiency of
calder-circ allowed us to use a very high longitudinal
resolution (∼50 grid points per laser wavelength in the
direction of propagation) and a large number of macro-
particles (∼50 per cylindrical cell), eliminating numerical
dispersion and strongly reducing the sampling noise.
This high resolution simulation did not indicate any new
physical effects relative to the vorpal-pd runs, and did
not exhibit significant differences in quantitative results.
Even with strong violation of cylindrical symmetry (such
as near the dephasing limit, when oscillations of the



Computationally efficient methods for LWFA in bubble regime 479

50 100 150 200
px (MeV/c)

0

1

2

3

4

5

6

F
re

qu
en

cy
[#

/(
M

eV
/c

)]
×107

Perfect dispersion

Normal dispersion

890 900 910 920 930 940 950
x (µm)

0

50

100

150

200

p x
(M

eV
/c

)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

×108

890 900 910 920 930 940 950
x (µm)

0

50

100

150

200

p x
(M

eV
/c

)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

×108

50 100 150 200 250 300 350
px (MeV/c)

0

1

2

3

4

5

6

7

F
re

qu
en

cy
[#

/(
M

eV
/c

)]

×107

Perfect dispersion

Normal dispersion

1170 1180 1190 1200 1210 1220 1230
x (µm)

0

50

100

150

200

250

300

350

p x
(M

eV
/c

)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2
×107

1170 1180 1190 1200 1210 1220 1230
x (µm)

0

50

100

150

200

250

300

350

p x
(M

eV
/c

)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4
×107

100 200 300 400 500
px (MeV/c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F
re

qu
en

cy
[#

/(
M

eV
/c

)]

×108

Perfect dispersion

Normal dispersion

2330 2340 2350 2360 2370 2380 2390
x (µm)

0

100

200

300

400

500

p x
(M

eV
/c

)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

×108

2330 2340 2350 2360 2370 2380 2390
x (µm)

0

100

200

300

400

500

p x
(M

eV
/c

)

0

1

2

3

4

5

6

7

8

9
×107

Figure 7. (Colour online) Comparisons of longitudinal momentum and phase space. Momentum spectra for perfect and normal
dispersion (left), the perfect dispersion phase space (center), and the normal dispersion phase space (right). The top row shows
electron distribution at 960µm of propagation, the middle row at 1.24mm, and the bottom row at 2.4mm of propagation.

beam centroid are apparent), the calder-circ results
remained qualitatively correct.

Both codes described precisely the self-focusing of
the laser pulse, the oscillations of its spot size, and
related oscillations of the bubble; electron self-injection
into the oscillating bubble and formation of a quasi-
monoenergetic bunch; laser pulse frequency broaden-
ing and self-compression into the relativistic piston;
constant elongation of the bubble during the piston
formation; and uninterrupted electron injection eventu-
ally overloading the bubble. The codes showed excellent
agreement on the locations of initiation and extinction
of injection, on the collection volume, and on parameters
of the quasi-monoenergetic component in the electron
spectrum, indicating that the results are free of numerical
artefacts. It is especially interesting that the calder-

circ simulation with just two poloidal modes did not
lose accuracy and preserved the correct group velocity
(agreeing with the vorpal-pd run) even when the laser
pulse was compressed down to two cycles.

We thus conclude that (1) using perfect dispersion,
taking a coarser grid and larger time steps, and using

higher order splines for macroparticle shapes to sup-
press the sampling noise, or (2) neglecting high-order
non-axisymmetric field and current components, thus
reducing the dimensionality of the problem are both
effective and promising means to increase the compu-
tational efficiency without sacrificing fidelity. Both of
these methods are applicable to the design of upcoming
experiments on GeV-scale acceleration of electrons with
100 -TW-scale lasers.
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