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Nonlinear evolution of the plasma beat wave: Compressing the laser beat notes
via electromagnetic cascading
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�Received 22 November 2005; published 18 April 2006�

The near-resonant beat wave excitation of an electron plasma wave �EPW� can be employed for generating
the trains of few-femtosecond electromagnetic �EM� pulses in rarefied plasmas. The EPW produces a comov-
ing index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of
sidebands red and blue shifted by integer multiples of the beat frequency is generated in the laser spectrum.
The bandwidth of the phase-modulated laser is proportional to the product of the plasma length, laser wave-
length, and amplitude of the electron density perturbation. When the beat frequency is lower than the electron
plasma frequency, the redshifted spectral components are advanced in time with respect to the blueshifted ones
near the center of each laser beat note. The group velocity dispersion of plasma compresses so chirped beat
notes to a few-laser-cycle duration thus creating a train of sharp EM spikes with the beat periodicity. Depend-
ing on the plasma and laser parameters, chirping and compression can be implemented either concurrently in
the same, or sequentially in different plasmas. Evolution of the laser beat wave and electron density perturba-
tions is described in time and one spatial dimension in a weakly relativistic approximation. Using the com-
pression effect, we demonstrate that the relativistic bistability regime of the EPW excitation �G. Shvets, Phys.
Rev. Lett. 93, 195004 �2004�� can be achieved with the initially subthreshold beat wave pulse.

DOI: 10.1103/PhysRevE.73.046403 PACS number�s�: 52.35.�g, 52.38.�r

I. INTRODUCTION

An electron plasma wave �EPW� is a natural tool for ma-
nipulating the properties of intense radiation beams. It can be
used for up shifting the laser frequency �1�, for enhancing the
self-focusing of copropagating �2,3� and counter-propagating
�4� radiation beams, for the resonant self-modulation of the
laser amplitude �5�, and for coupling the signal and pump
lasers in the parametric amplifier �6�. Also, the high-
amplitude EPW driven by a short laser pulse can induce the
pulse shrinkage with time �7�.

In this paper we show that the near-resonant excitation of
the EPW strongly modifies an originally two-color driving
laser beam: a train of few-cycle relativistically intense spikes
can be created from the initially nonrelativistic amplitude-
modulated pulse. It is known for a long time that the pon-
deromotive force �beat wave� of the two-color laser �8–12�
can provide a controlled excitation of the EPW. When the
beat wave frequency � is close to the electron Langmiur
frequency �p=�4�e2n0 /me �n0 is an electron plasma density,
me and −�e� are the electron rest mass and charge�, the near-
resonantly driven EPW can reach a high amplitude and be-
come nonlinear. In this case, the laser and EPW dynamics
becomes very multifaceted. The nonlinear plasma wave is
highly sensitive to the variations of frequency and amplitude
of the ponderomotive force. For example, by chirping the
beat frequency �13� the EPW excitation can be enhanced by
the autoresonance effect. Downshifting the beat frequency
from the plasma resonance ����p� can also result in the
large-amplitude wake excitation due to the effect of relativ-

istic bistability �14,15�. Conversely, the driven electron den-
sity perturbations can cause the laser amplitude modulation,
either transverse �2,3� or longitudinal �16�. Therefore, the
performance of the beat wave scheme critically depends on
the self-consistent evolution of the light and plasma waves
that includes effects of numerous plasma nonlinearities �17�.
The nonlinear processes of relativistic self-phase modulation
�18�, stimulated forward Raman scattering �19,20� �SFRS�,
and electromagnetic cascading �2,3,16,21,22� �EMC�
broaden the laser frequency bandwidth. At the same time, the
group velocity dispersion �GVD� of radiation results in the
amplitude modulation of the frequency broadened laser. In
this paper we incorporate the physically important aspects of
the beat wave evolution in a homogeneous fully ionized
plasma �nonlinear frequency shifts of the waves, nonlinear
excitation, and relativistic bistability of the EPW, electro-
magnetic cascading, amplitude and phase modulation of the
laser, and SFRS� in a consistently derived one-dimensional
�1D� weakly nonlinear nonstationary model. In this sense,
our work finalizes the weakly nonlinear 1D plasma beat
wave theory.

We apply the developed model to the particular effect of
compressing the laser beat notes to a few-cycle duration
�whereby generating trains of few-femtosecond radiation
spikes of relativistic intensity; the spikes are separated in
time by the beat period �b=2� /�� �16�. The beat note com-
pression requires the frequency downshifted ����p� beat
wave pulse of initially moderate amplitude. In this case, the
broad bandwidth necessary for compression is generated
mainly due to the EMC effect. At every point of the per-
turbed plasma, the EPW creates an index grating comoving
with the laser beams. Hence, the laser frequency becomes
modulated at a difference frequency �, which results in a*Electronic address: kalmykov@physics.utexas.edu
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cascade of Stokes and anti-Stokes sidebands shifted by inte-
ger multiples of � from the laser fundamental �0. The effect
of EMC has been known in physics of laser-plasma interac-
tions since early 1970s when Cohen et al. �21� suggested to
enhance plasma heating by the decay of the cascade-driven
EPW. Later on, the EMC was considered as a plasma wave
diagnostic in the plasma beat wave accelerator �22�. System-
atic study �2,3� of plasma waveguiding options provided by
the nonlinear interaction of laser beams with the cascade-
driven EPW revealed an enhanced self-focusing of the co-
propagating beams detuned in frequency below plasma reso-
nance ����p�. Calculations of Refs. �2,3� describe the
nonstationary cascade evolution in two dimensions �2D� in
the planar and three dimensions �3D� in cylindrical geom-
etry, take a full account of the relativistic nonlinearities of
both cascade components and the EPW. Neither of the pre-
ceding papers payed attention to the longitudinal transport of
the cascade energy due to the effect of nonzero GVD and
consequent amplitude distortion of the laser. Our work fills
this gap by concentrating on the 1D compression of laser
beatnotes due to the EMC and GVD.

We prove that the GVD completely dominates the evolu-
tion of weakly-relativistic beat wave �with intensity of initial
beams over 1016 W/cm2� in either centimeter-scale rarefied
�n0�1018 cm−3� or millimeter-scale dense plasmas �n0

�1019 cm−3�. We show that the EPW driven below reso-
nance, ���p, chirps the laser frequency in a very special
way: near the center of each laser beat note the redshifted
sidebands are advanced in time with respect to the blue-
shifted ones. The GVD can compress thus chirped beatnotes
to a few-laser-cycle duration provided the laser bandwidth
tends to �0. The effect of GVD is controllable: proper ad-
justment of the plasma and laser parameters can reduce it
while preserving the desirable bandwidth. In this case, the
cascade compression can be made in two stages �16� �see
Fig. 1�: �i� a low-density plasma �the modulator� with �
��p�M� is used for the frequency modulation of initially two-
frequency laser, and �ii� a higher-density plasma �the com-
pressor� with �p�C��� serves for the beat note compression.
Therefore, a train of sharp electromagnetic spikes of inten-
sity by several orders of magnitude higher than ionization
threshold for any medium can be generated. Similar concept
of using Raman cascades for radiation beams compression in
molecular gases has been successfully tested in experiments
�23� at low laser intensities �	1014 W/cm2�. The technique
of the EMC compression in gases is not appropriate for ap-

plications requiring high laser intensity. One such application
is using multiple short laser pulses with a tunable time delay
for the coherent generation of plasma waves �24–26�. Mak-
ing a sequence of several independent ultrashort high-
intensity laser pulses with the terahertz repetition rate could
be a major experimental challenge �24�. The approach dis-
cussed in our paper suggests a viable path to creating such
pulse trains at weakly relativistic intensity.

The outline of the paper is as follows. In Sec. II we derive
the basic theoretical model �Sec. II A� and analyze the basic
scalings for the EMC and the cascade compression
�Sec. II B�. In a realistic plasma, the EMC is a complicated
interplay between the sideband coupling through the driven
electron density perturbations, GVD of radiation, nonlineari-
ties due to the relativistic increase of an electron mass, and
SFRS. Fully nonlinear simulations presented in Sec. III ac-
count for all these effects and describe the cascade develop-
ment in either two-stage �Sec. III A� or single-stage �Sec.
III B� compressor. Because the longest time scale of the
problem is only a few ion plasma periods, parametric decay
of the EPW �27� and consequent plasma heating �21� are
insignificant and thus ignored. The simulation parameters of
Secs. III A and III B are optimized so as to eliminate the
relativistic nonlinearities and SFRS. We also prove that the
compression effect persists in the very rough conditions of
dense plasmas and short subrelativistic lasers of a possible
real-scale experiment �28�. When the parameters of the setup
are not optimized, the SFRS can be seeded by the plasma
wake driven by the beatwave pulse of finite duration. Con-
tribution from the SFRS into the cascading process is dis-
cussed in Sec. III C. Numerical analysis of the SFRS mani-
festation reveals the conditions which the beat wave pulse
should satisfy to eliminate this potentially adverse instability.
In Sec. III D we have shown for the first time that, with the
help of the cascade compression, the relativistic bistability of
the EPW can manifest in the dynamic simulations with the
laser initially not optimized to meet the bistabilty threshold
�14,15�. Conclusion gives the summary of the results.

II. ONE-DIMENSIONAL THEORY OF EMC

A. Basic equations

We assume that the laser duration does not exceed a few
ion plasma periods, so the ions are immobile and form a
positive neutralizing background. In one spatial dimension
and in the limit of weakly relativistic electron motion, Max-
well’s equations and hydrodynamic equations of electron
fluid give the coupled equations for the longitudinal and
transverse momentum of electrons �29�

� �2

�t2 + �p
2	qz =

�p
2

2
qzq

2 −
c

2

�2q2

�z�t

− cqz�1 −
q2

2
	 �

�z
� �qz

�t
+

c

2

�q2

�z
	 , �1a�

FIG. 1. Schematic of the two-stage cascade compressor. The
frequency modulation �FM� occurs in a rarefied plasma. Denser
plasma is used for the compression of beat notes.
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Here, a
pe� / �mec� and qz
 pez
/ �mec� are the normalized

transverse and longitudinal components of the electron mo-
mentum, and q2
qz

2+a�
2 �1. We take a
Re�e0a�, where

e0= �ex+ iey� /�2 is a unit vector of circular polarization;
hence, q2=qz

2+ �a�2 /2. In the 1D approximation, conservation
of the transverse canonical momentum expresses the normal-
ized momentum through the laser vector potential, A�

= �mec
2 /e�a. The normalized electron density perturbation
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obeys the equation
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obtained through differentiating Eq. �1a� with respect to z
and t. At the plasma entrance z=0, the amplitude of a planar
two-frequency laser beam is given by

a�0,t� = e−i�0t�a0�0,t� + a1�0,t�e−i�t� , �4�

where ���p	�0. The ponderomotive beat wave �the right-
hand side �RHS� of Eq. �3�� produces an electron density
grating comoving with the laser beams. The moving index
grating produces the cascade of laser sidebands

a�z,t� = e−i�0t+ik0z �
l=−�

+�

al�z,t�e−il�t+ilk�z, �5�

where k�=� /vg, and vg=k0c2 /�0 is the group velocity as-
sociated with the laser fundamental frequency. vg is found
from d
n0 /nc=1− �vg /c�2, where nc=me�0

2 / �4�e2� is a
critical plasma density. The amplitudes an vary slowly in
time and space on the scales �−1 and k�

−1.
To describe the nonlinear evolution of the cascade �5�, we

take into account Eq. �2� and rewrite Eq. �1b� as

� �2

�t2 − c2 �2

�z2	a + �p
2a�1 −

q2

2
	�1 +

�n

n0
	 = 0. �6�

We retain in Eq. �6� the terms of order not higher than a3.
Having in mind that qz��n /n0, and that the relativistic satu-
ration of the beat wave-driven EPW �8� occurs at qz�a2/3,
we keep in Eq. �6� the nonlinear terms of order aqz, a3, aqz

2,
aqz

3 and finally arrive at

� �2

�t2 − c2 �2

�z2 + �p
2	a � �p

2�Ra + Rq − C� . �7�

The terms

Ra = a�a/2�2, �8a�

Rq � �a/2���n/n0�2�1 + �n/n0� �8b�

originating from the relativistic mass correction of an elec-
tron oscillating in the transverse �Ra� and longitudinal �Rq�
fields describe the relativistic self-phase modulation of laser.
The leading nonlinear current term

C = a��n/n0� �9�

is responsible for the EMC and stimulated forward Raman
cascade �30�. Our earlier work �16� assumed the nonresonant
EPW excitation ��n /n0�a2�, so the term �8b� was neglected.
By including this term we include the regime with relativistic
saturation of the resonantly driven EPW ��n /n0�a2/3�a2�.

We substitute the expansion �5� into Eq. �7�, replace the
variables �z , t� by �z ,
� �where 
 /vg= t−z /vg is a retarded
time, and z is the propagation distance through plasma�, and
collect the equal frequency terms. The resulting set of
coupled envelope equations

�2i
�l

vg

�

�z
−

d

vg
2 ��l − �0�2
al � kp

2�Cl − Rl
a − Rl

q� , �10�

where kp=�p /c, accounts for the propagation of sidebands
through plasma �the first term in the left-hand side �LHS��,
the GVD of the sidebands �the second term in the LHS�, and
the sideband coupling through the nonlinearities �the RHS�.
To evaluate the RHS of Eq. �10� we have to specify the
nonlinear plasma response. The ponderomotive force �the
RHS of Eq. �3�� approximated as
−�c /2�2�l�lk��2�l�z ,
�eilk�
 drives the nonlinear density per-
turbation

�n�z,
� =
1

2�
l

�nl�z,
�eilk�
, �11�

where �n−l=�nl
*, ��nl�	n0, and ���nl /�
�	k���nl�. The in-

tensity momenta in Eq. �11� are

�l = �
n

anan+l
* , �12�

and ���l /�z�	k���l�. We assume that each density harmonic
is driven by the corresponding harmonic of the ponderomo-
tive force. The terms with l= ±1 in Eq. �11� are the closest in
frequency to the natural modes of plasma oscillations. They
produce the dominant contribution to the cascade dynamics.
Keeping in Eq. �3� the terms of order not higher than a4, and
having in mind the scaling ��n /n0��a2/3 relevant to the case
of relativistic saturation of the resonantly driven EPW �8�,
we find that the amplitude Ne
�n−1�z ,
� /nc obeys the non-
linear equation

� i

k�

�

�

+

��

�
	Ne + R =

d

4
�−1. �13�

Here, ��= ��2−�p
2� / �2�� is the beat wave detuning from

resonance, and R is proportional to the nonlinear frequency
shift due to the relativistic mass increase of an electron os-
cillating in the longitudinal and transverse electric fields

NONLINEAR EVOLUTION OF THE PLASMA BEAT¼ PHYSICAL REVIEW E 73, 046403 �2006�

046403-3



R =
3

16
Ne�Ne

d
�2

+
1

8
��0Ne + �−2Ne

*� . �14�

The initial condition for Eq. �13� is Ne�z ,−��
0 �quiescent
plasma ahead of the pulse�. Amplitudes of the nonresonantly
driven density harmonics �l� ±1� are found from the linear-
ized Eq. �3�

�nl�z,
�
n0

�
1

2

��l − �0�2

��l − �0�2 − �p
2 �l�
,z� . �15�

Using Eqs. �15�, we evaluate the nonlinear terms in the
cascade equations �10�. We extract from the terms C the
contribution from the EPW harmonics of orders l� ±1 and
include it into the terms Ra. Therefore, only the contribution
from the near-resonant EPW harmonic Ne determines the
form of the “cascade” nonlinearity Cl. And, only near-
resonant EPW harmonic is taken into account for evaluating
the terms Rl

q. The result is

Cl =
Neal−1 + Ne

*al+1

2d
, �16a�

Rl
a �

1

4�
n

an+l�n −
1

4�
n

�an+l�n
��n − �0�2

��n − �0�2 − �p
2 , �16b�
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1

4
��Ne

d
�2�al +

3

4

Ne

d
al−1 +
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4

Ne
*

d
al+1	

+
1

2
�Ne

d
	2�al−2 +

1

2

Ne

d
al−3	

+
1

2
�Ne

*

d
	2�al+2 +

1

2

Ne
*

d
al+3	
 . �16c�

The second term in the RHS of Eq. �16b� comes from the
nonresonant EPW harmonics �15�, prime means that the
terms with n= ±1 are not included in the sum. Physical
meaning of the nonlinearities �16� is as follows.

�1� The terms Cl couple the neighboring laser sidebands
through the near-resonantly-driven harmonic of the EPW.
These terms describe the electromagnetic cascading and the
stimulated forward Raman cascade.

�2� The terms Rl
a describe the nonlinear frequency shifts

produced by the relativistic mass increase of an electron os-
cillating in the transverse fields and by the nonresonantly-
driven harmonics of EPW.

�3� The terms Rl
q describe the nonlinear frequency shifts

produced by the relativistic mass increase of an electron os-
cillating in the longitudinal electric field of the
nearresonantly-driven harmonic of the EPW. Only when the
EPW is driven resonantly and reaches the relativistic satura-
tion the term Rl

q can dominate Rl
a. In all the simulations that

will follow in this paper Rl
q’s are negligibly small.

Assuming vg�c, we rewrite the set �10� as

�2i

k0

�

�z
− d��l − �0

�0
	2�0

�l

al � d

Cl − Rl
a − Rl

q

�l/�0
. �17�

The boundary condition for Eqs. �17� is given by Eq. �4�.
The weakly relativistic theory based on Eqs. �13� and �17�
describes the nonlinear evolution of the plasma beat wave in
one spatial dimension and in time. The nonlinear processes
of the EPW excitation and bistability, the laser phase-self-
modulation due to the relativistic frequency shifts, the elec-
tromagnetic cascading, and the FSRS are self-consistently
included. The model also assumes the nonzero group veloc-
ity dispersion of radiation.

By the judicious choice of parameters the terms Cl can be
made dominating in the RHS of Eq. �17�, and laser spectral
broadening will occur exclusively due to the EMC. Despite
the large laser bandwidth achieved in certain regimes of
EMC, the effect of GVD can be negligible �see the discus-
sion at the bottom of Sec. II B�. The laser amplitude can be
then modified in a separate, denser, plasma with the high
GVD �the compressor�. In this two-stage scenario, nonlin-
earities of the modulator affect primarily the laser phase,
while in the compressor the GVD modulates the amplitude.
Compression of the laser beat notes in plasma can result in
the laser intensity so high as to give �a�2�1.

In the compressor, the laser sidebands remain coupled
through the nonlinear frequency shifts, and the frequency
bandwidth keeps growing. The relativistic nonlinearities of
plasma can thus compete with the linear compression pro-
cess. We choose the compressor density so as to entirely
exclude the possibility of resonant plasma response: �p�C� is
never close to an integer multiple of �. Provided �l�l�	1,
the amplitude of density perturbation at the lth beat wave
harmonic is described by Eq. �15� with n0 and �p replaced
by n0�C� and �p�C�. As the electron density perturbations in
the compressor are nonresonant and thus small, we neglect
the terms Rl

q. Moreover, the terms Cl are absorbed by Rl
a


Rl
a�C� �that is, summation in the second term of Eq. �16b� is

extended to n= ±1, and Cl’s do not show up in the compres-
sor equations�. We redefine the retarded time as � /vg�C�= t
−z /vg�C� �where vg�C� is the group velocity of the laser fun-
damental component in the compressor plasma of density
n0�C��n0� and find that the compression process can be de-
scribed in terms of the coupled nonlinear equations similar to
Eqs. �17�

�2i

k0

�

�z
− dC��l − �0

�0
	2�0

�l

al � − dC

�0

�l
Rl

a�C�. �18�

Here, dC=n0�C� /nc	1 is the normalized compressor density.
The boundary conditions are given by the solution of Eqs.
�17� at the modulator exit, an�z=zM ,
�.

B. Basic scalings for laser frequency modulation
and compression

In the ideal two-stage compressor sketched in Fig. 1, the
processes of EMC and compression are separated. The EMC
develops in the modulator plasma with zero GVD, while in
the dense compressor plasma with all the nonlinearities ne-
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glected the GVD compresses the radiation beat notes. It is
instructive to derive the basic scalings for each process be-
cause these approximate scalings will help to select the op-
timal parameters of fully nonlinear simulations.

When both Rl
a and Rl

q are taken to be zero, and the GVD
is neglected �d=0� in Eq. �17�, scaling laws for the EMC are
particularly simple. Assuming �l��0, we derive from Eqs.
�17� a set of conservation laws: ��l /�z=0. Hence, �l
0 for
l�0, −1, �0�z ,
�
�a0�0,
��2+ �a1�0,
��2, �−1�z ,
�

a1�0,
�a0

*�0,
�, and, in the comoving frame, Ne is inde-
pendent of z despite the evolution of the laser phase. Thus
simplified Eqs. �17� have the analytic solution �22�

al�z,
� = �
�=0,1

a��0,
�ei�l−����+��Jl−��2W� , �19�

satisfying the initial condition �4� �here, Jn�x� are the Bessel
functions, and ��z ,
� and W�z ,
� are the phase and absolute
value of the generating function w�z ,
�
Wei�

= i�k0z /4�Ne�
��. Substituting Eqs. �19� into Eq. �5� yields
the expression for a train of phase-modulated beat notes

a�z,
� = �
�=0,1

a��0,
�cos�k�
 + ��z,
�� ,

where ��z ,
�= �k0z /2��Ne�
��sin��−k�
�. The physical
meaning of this result is that, without GVD, the laser under-
goes frequency modulation only. The magnitude of the
plasma wave depends only on the laser amplitude which re-
mains unchanged. This is valid for any pair of a0�0,
�,
a1�0,
� and the corresponding Ne�
�.

The phase modulation is periodic in time with the beat
period �b when Ne�
� is almost constant �this is the case for
���−1 /�
�	 ����−1 /c��. To avoid the oscillations of Ne with
time due to the relativistic dephasing �3,8,10�, we take ����
�3��p /4��33��−1�2 /2. Then, the term proportional to ��
dominates in the LHS of Eq. �13�, which yields Ne�
�
�d��−1�
� /4��� /���; then, for real �−1�
�,

a = �
�=0,1

a��0,
�cos�k�
 + �k0z/2�Ne�
�cos�k�
�� . �20�

From Eq. �19�, a modulator plasma slab of thickness

zM � 2M/�Nek0� �21�

produces M sidebands on either side of the fundamental,
and a frequency bandwidth ���2�dM�0. Conversely,
M�rezM�0�ne−n0�, where �0=2�c /�0 is the fundamental
laser wavelength, and re=e2 / �mec

2� is the classical electron
radius.

As follows from Eq. �20�, only for ���0 the laser wave-
length shrinks with time near the amplitude maximum of
each beat note �positive chirp�. The GVD of plasma tends to
compress thus chirped beat notes: the shorter �blueshifted�
wavelengths catch up with the longer �redshifted� wave-
lengths, eventually building up the field amplitude near the
beat note center. Thus, a sequence of sharp spikes is pro-
duced. If we consider an unperturbed compressor plasma of
given density, neglect the relativistic effects by setting

Rl
a�C��0 in Eq. �18�, and fix laser frequency and the number

2M of satellites, we find that the peak compression occurs at
a distance

zC �
�/3

k0M
� �0

�p�C�
	2��0

�
	2

. �22�

This estimate assumes that the outer sidebands were initially
separated in time by roughly �b /2 within one beat note.
To catch up with the red sidebands at the beat
note center, the blue sidebands need the propagation time
zC /c��c /�vg���b /2�, where the group velocity mismatch is
�vg�2M���vg /����0

��3M� /k0���p�C� /�0�2.
The nonzero GVD of radiation in the modulator plasma

must be properly accounted for. The cascade components can
be redistributed in time and space thus reducing coherence of
the EPW excitation and affecting the frequency chirp. Na-
ively, the GVD can become significant if the modulator
length zM is close to the compression length estimated from
Eq. �22� with �p�C�
�p. However, the higher-order Stokes-
anti-Stokes sidebands are generated later in plasma and have
less time to catch up with the fundamental. Recalling that
�aM�� �JM�z�� in the modulator, we define the half-growth
length zM,1/2 at which �aM� reaches a half of its maximum
value, �JM�zM,1/2��= �JM�zM�� /2. Thereby, compression ef-
fectively takes place over the shorter distance �z�zM
−zM,1/2�zM. The analytic formula �z�M−2/3zM accu-
rately fits �z for M�5 �see Fig. 2�. Therefore, �z	zM for
M�1. Hence, for

zM 	 M2/3zC � ��0/6�M−1/3d−2, �23�

the GVD effect is negligible because the distance �z actually
available for the compression in the modulator is less than
zC. Otherwise, if zM�M2/3zC, the GVD in the modulator
becomes important.

Another manifestation of the GVD in the modulator is the
SFRS seeded due to the finite duration of the beat wave
pulse. The stimulated forward Raman cascading �30� can in-
terfere with the process of phase modulation and contami-

FIG. 2. Normalized distance between the points of the first
maximum and half maximum of JM�z� �solid line� and the scaling
function M−2/3 �dashed line�.

NONLINEAR EVOLUTION OF THE PLASMA BEAT¼ PHYSICAL REVIEW E 73, 046403 �2006�

046403-5



nate the laser frequency chirp. Reduction in the compression
efficiency can follow. The effect of SFRS is examined in
Sec. III C.

III. NONLINEAR SIMULATIONS OF THE EMC

A. The two-stage cascade compressor

We model the EMC by numerically solving the set of
coupled nonlinear equations �13� and �17� with the boundary
condition

a0�0,
� = a1�0,
� = Ae−
2/�c�L�2
�24�

for the laser sidebands, and Ne�z ,
=−��
0 for the EPW.
The beat note compression in the second stage is modeled by
numerically solving the compressor equations �18�. All the
nonlinearities associated with the effects of relativistic mass
correction and nonresonant electron density perturbations are
retained in the modeling of both stages. In all the simulations
below, the fundamental laser wavelength is fixed at �0
=0.8 �m.

The two-stage compression starts with the initial laser am-
plitude A=0.2, the modulator density n0=8.75
1017 cm−3

�hence, d=5
10−4�, and ��=−0.1�p. The laser pulse dura-
tion is �L=4.5 ps �about half the ion plasma period for a fully
ionized helium�. Having chosen the peak density perturba-
tion �Ne�z=0��max�0.5
10−4 and expected final spectral
width of the laser �M�8 sidebands on each side�, we find
the modulator length z8�4.1 cm. Importantly, the periodic
phase modulation of the laser can be achieved only with the
plasma wave driven quite far from resonance. Hence, the
requirement of the plasma longitudinal homogeneity �which
has always been a challenge for the original scheme of
plasma beatwave accelerator �9�� is considerably relaxed.
The present day technology is able to maintain highly �lon-
gitudinally� homogeneous plasmas over centimeter length
scales. This can be done, for example, by confining the
plasma in a differentially pumped cell �31� or in the pondero-
motively created cm-long plasma channels �11,32�.

The simulation results are shown in Fig. 3. From the plot
�a� it is seen that the peak laser intensity at the compressor
exit �z=z8+zC� is by a factor of 7.2 larger than at the modu-
lator entrance �z=0�. The increase in intensity results from
the shown in plot �c� beat note compression from the initial
duration of �b�in��120 fs to �b�out��13 fs �roughly 5 laser
cycles�. Compressor plasma has the density n0�C�=25n0 and
length �0.0275z8�1.1 mm �such a short dense plasma can
be created by the ablation of a microcapillary �33��.

The inequality �23� is very well satisfied for the modula-
tor parameters. Consequently, the beat note precompression
seen in the plot �c� is quite insignificant. Plot �b� shows that
Ne�z ,
� also reveals almost negligible variation with z in the
modulator. Thereby, according to the plots �b� and �c�, the
EMC develops in accordance with the scenario outlined in
Sec. II B.

Compression in the second stage clearly proceeds in the
nonlinear regime. The laser amplitude becomes relativistic
��a�→1�, and the nonlinear frequency shifts in Eqs. �18�
couple the laser sidebands and further increase the laser

bandwidth. Figure 3�d� shows that the resulting frequency
spectrum is at least twice as broad if compared with that at
the modulator exit. As a consequence, the linear formula �22�
overestimates zC by a factor of three since it ignores both
precompression of the pulse in the modulator and additional
bandwidth increase in the compressor. Also, quality of the
compressed beat notes is not perfect: instead of a single
sharp spike, one can observe a multispike structure in Fig.
3�c�, the distance between the spikes being roughly �b /5.
One can relate this structure to the phase modulation occur-
ring due to the electron density perturbation at fifth harmonic
of the beat wave frequency, which is the closest to the natural
mode of the compressor plasma oscillations. Due to this ef-
fect, one beat note is not gradually compressed into one
spike but rather splits into five spikes, of which the one lo-
cated near the original beat note maximum has the largest
amplitude.

A number of issues are yet to be addressed before the
theory of the two-stage compression is complete. The ne-
glected effects of transverse evolution of the laser, such as
relativistic self-focusing and cascade focusing �3�, are domi-
nant at high plasma density in the compressor and are poten-
tially adverse. But, we find the 1D scenario of the two-stage
compression conceptually simple and helps to understand the
underlying phenomena. In the next section we consider the
single-stage approach which assumes concurrent cascading
and compression in the same low-density plasma.

FIG. 3. The two-stage cascade compression. The physical quan-
tities are shown at the entrance �z=0, light gray� and exit of the
modulator �z=z8, medium gray�, and after the compressor �z=z8

+zC, black�. �a� The laser pulse intensity �the time window contains
about 100 beat notes�. �b� The normalized amplitude of the near-
resonant EPW, �n−1 /n0=Ne /d. �c� The beat note intensity near the
laser pulse center; one beat period near 
=0 is shown. �d� The laser
spectra near 
=0. The nonlinearities and GVD in both plasmas are
included.
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B. The single-stage cascade compressor

Increasing plasma density in the modulator increases the
GVD. Therefore, we can explore the idea of compressing the
beatnotes concurrently with generating the sidebands. In the
following set of simulations the electron density is doubled,
n0=1.75
1018 cm−3. Cascade compression is simulated in
plasma of the same length, z8=4.1 cm, and with the same
initial density perturbation �Ne�z=0��max�0.5
10−4 as in
the previous section. The laser amplitude is A�0.071, and
the beat wave detuning is ��=−0.025�p. As we shall see in
Sec. III C, the SFRS manifestation can be large in this re-
gime. Appropriately low seed level can be achieved with the
beat wave pulse envelope varying slowly on the time scale
��−1. We choose the beat wave pulse �L=14.25 ps long
�which is about three ion plasma periods for a fully ionized
helium�, which corresponds to ����L��27. The given initial
intensity on axis and laser duration would require the pulse
energy of about 5 J in the focal spot of 30 �m radius.

The linear estimate of the effective compression length
�22� shows that the inequality �23� almost breaks under the
simulation parameters. Hence, a beat note compression is
large at the plasma exit. Figure 4�a� shows that the resulting
peak intensity is by an order of magnitude larger than at the
plasma entrance. Initial duration of the laser beat note, as
shown in Fig. 4�c�, is reduced from �b�in��85 fs by roughly
a factor of 10 �to roughly 3 laser cycles�. The spectral fea-
tures of the EMC are different from those obtained with the
nonlinear frequency shifts and the GVD neglected �i.e., with
d=0 in Eqs. �17��. A red asymmetry of the cascade spectrum

is seen in Fig. 4�d�. Some spectral broadening versus the
case of d=0 can be attributed to the self-phase modulation
produced by the nonlinear frequency shifts. Figure 4�b�
shows that the electron density perturbation is not an integral
of motion. Its final amplitude is roughly twice the initial, and
a small-amplitude wake is left behind the train of com-
pressed spikes which can be recognized as a signature of
SFRS. However, under parameters chosen, neither the self-
phase modulation nor the SFRS are adverse for the cascade
compression.

The transverse evolution of the cascade is an aspect of
high importance of the realistic laser and plasma dynamics.
For instance, electron density perturbations can significantly
reduce the nonlinear focusing threshold of counter-
propagating laser beams �4�. The copropagating cascade of
electromagnetic beams also experiences enhanced focusing
in both 2D �planar� and 3D �cylindrical� geometry if �
��p �Refs. �2,3��. We shall give here a few necessary esti-
mates �effects of transverse evolution will be given a detailed
consideration in the forthcoming publications�. When the
beat wave is downshifted by ��=−3��p /4��33��−1�2 /2, the
self-focusing threshold in the planar 2D geometry �2,3� is
a0�kpx0 /10�3�0.064, where x0 is a laser focal spot size

�a=a0e−x2/x0
2
�. So, the subthreshold regime under the param-

eters of Figs. 3 and 4 requires the spot size x0�40 �m. If we
loosely translate x0 into the radius of the laser focal spot in
the cylindrical geometry, we find that the refraction-limited
interaction length 2zR= �2� /�0�x0

2 is less than 1.2 cm. How-
ever, the required z8�4.1 cm can be achieved by means of
the plasma channel guiding �32�.

In the regime of cascade compression considered above,
eliminating potentially adverse effects of laser self-phase
modulation and SFRS required complying with some hard
restrictions on the laser pulse amplitude, duration, and beat
wave frequency detuning ��a�2	1, and ����L�≫1�. The
next set of simulations shows that these conditions are desir-
able but not necessary for the manifestation of the effect. The
cascade compression can be observed even for ultrashort
��100 fs� beat wave pulses propagating in a dense plasma
�n0�1019 cm−3� where neither GVD nor relativistic nonlin-
earities are small. We consider the evolution of a two-color
ultrashort laser �28� whose energy is initially distributed be-
tween the fundamental �97%� and the Stokes �3%� compo-
nents. The laser frequencies are �0=2.356
1015 s−1

��0=0.8 �m� and �1=2.159
1015 s−1 ��1=0.873 �m�. As-
suming that �0−�1=0.95�p, we derive the plasma density
n0=1.35
1019 cm−3; hence, d=7.725
10−3. We choose a0
�0.3, and a1�0.048. At z=0, the laser pulse is Gaussian
�24� with a duration �L�90 fs. In this case ����L��0.9, and
the beat wave pulse amplitude is not slowly varying. Never-
theless, under these seemingly unfavorable conditions, the
EMC develops very effectively and the intensity contrast of
the amplitude-modulated laser pulse grows rapidly. The
plasma length is chosen so as to produce five sidebands on
either side; the plasma length is bounded from above by z5
�2.5 mm, while the compression length evaluated from for-
mula �22� for M=5 gives the lower bound, z�0.45 mm.
The most spectacular features of the EMC shown in Fig. 5
are observed at z�1.8 mm. At the plasma border, z=0, the

FIG. 4. The single-stage compressor with concurrent EMC and
compression. In plots �a�–�c�, the physical quantities are shown at
the entrance �z=0, gray� and exit of the plasma �z=z8, black�. �a�
The laser pulse intensity �the time window contains about 500 beat
notes�. �b� The normalized amplitude of the near-resonant EPW,
�n−1 /n0=Ne /d. �c� The beat note intensity near the laser pulse cen-
ter, 
=0. �d� The laser spectra near 
=0 with �black� and without
�gray� GVD and all nonlinear frequency shifts.
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intensity variation of the two-color laser is about 50%, while
at z�1.8 mm very deep amplitude modulation develops with
the intensity contrast ratio reaching a factor of 25. The
mostly affected are the beat notes in the tail of the laser
pulse; they are compressed to roughly a quarter of a plasma
period. The laser nonlinear evolution boosts the amplitude of
the plasma wake �which is increased by a factor of 3�. The
laser spectrum broadens and reveals a redshift by about
−�0 /2. This is a clear indication of the forward stimulated
Raman cascade �30� which, as appears in this simulation,

does not prevent the beat note compression. Moreover, the
laser frequency redshifts towards the pulse tail. The red-
shifted field components that form the compressed beat notes
in the tail move slower than those in the pulse head. Thus, as
seen in Fig. 5�a�, the beat notes in the tail accumulate a
considerable time delay �about a quarter of the beat period�
with respect to the initial positions of their maxima. This
time delay is in agreement with the frequency shift −�0 /2.

The simulations presented in this section demonstrate the
robustness of the EMC in the conditions when the GVD is
large, and the nonlinear processes of the relativistic self-
phase modulation and the SFRS interfere the cascading pro-
cess. Slow variation of the beat wave pulse envelope is there-
fore helpful but not necessary for the cascade compression.

C. Manifestation of SFRS in cascade compressor

Equations �17� admit the longitudinal transfer of electro-
magnetic energy in the comoving frame. Therefore, the laser
amplitude modulation may result not only from the EMC
with concurrent compression of beatnotes but also from the
SFRS instability �19,20,30� �also referred to as the 1D reso-
nant modulational instability �5��. The SFRS is different
from the EMC. The latter is merely a phase modulation
which may proceed in the absence of GVD.

The SFRS is a resonant process seeded by the electron
density perturbations oscillating at the plasma frequency �p.
The instability bandwidth is much narrower than �p even in
the case of relativistically strong pump, a0�1 �Ref. �20��.
And, in the examples of Figs. 3 and 4, the SFRS bandwidth
is much lower than the absolute value of the beat wave fre-
quency detuning ��. However, an electron plasma response
to the laser beat wave always contains a component oscillat-
ing at �p. This component is due to the finite duration of the
beat wave pulse, and its amplitude is governed by the prod-
uct ����L�. These resonant density perturbations can be en-
hanced by the SFRS to a level comparable to that of a non-
resonant plasma response, and can interfere the phase
modulation process. Hence, the effect of the SFRS is adverse
and should be avoided by the judicious choice of laser and
plasma parameters.

The seed level for the SFRS can be reduced by taking
����L�≫1. For example, parameters used in Figs. 3 and 4
correspond to ����L��30 and reveal no SFRS manifestation:
no considerable plasma wake is left behind the laser at z
=z8. Hence, the plasma response is almost entirely nonreso-
nant in these simulations.

Under parameters of Fig. 3, reduction in the beat wave
pulse duration by a factor of 2.5 �����L�=10� produces vis-
ible enhancement of the plasma wake that can be attributed
to the SFRS manifestation �see Fig. 6�. At the plasma border,
the wake amplitude is �n�z=0�
�ns�2.4
10−3n0. Taking
�ns as the SFRS seed amplitude, we can theoretically evalu-
ate the amplification factor by using the formula �4.12� of
Ref. �20�, ln��n�z� /�ns���2/c��z�−�

+��0
2���d��1/2. This expres-

sion takes into account the laser temporal profile and is valid
for z�
�c�L; �0

2���= �1/8���p
4 /�0

2�a0
2��� stands for the in-

stantaneous growth rate. The theoretical estimate of the am-
plification factor is ln��n�z8� /�ns��3.36. On the other hand,

FIG. 5. The EMC of the two-color short-pulse �90 fs� laser �28�
in a dense �1.35
1019 cm−3� plasma. Physical quantities are shown
at the plasma entrance �z=0, gray lines� and exit �z=1.8 mm, black
lines�.
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comparing the wake amplitudes at the entrance �z=0� and at
the exit �z=z8� of the plasma gives the amplification factor of
ln��n�z8� /�ns��3.2, which is very close to the analytical es-
timate. We have found that the theory and simulation agree
for 80��p�L�300. Therefore, throughout this range,
plasma wakes are excited almost entirely by the SFRS. Re-
markably, the peak laser intensity, as well as the shape of
individual beat notes, is almost the same at z=z8 for the
parameters of Figs. 3 and 6. Hence, in the considered param-
eter range the effect of SFRS has a negligible effect on the
laser evolution.

Oppositely to the just discussed case of rarefied plasma,
reducing the laser duration by the same factor 2.5 under the
parameters of Fig. 4 �i.e., the plasma twice as dense versus
that of Figs. 3 and 6� causes significant enhancement of
SFRS. Figure 7�a� shows the plasma wake amplification by a
factor of ln��n�z8� /�ns��6.05. Theoretical estimate of the
SFRS gain gives 4.2; this discrepancy can be partly ex-
plained by the laser amplitude growth due to the beat note
compression. Figure 7�b� demonstrates the strong deforma-
tion of the beat wave intensity profile. The spectral content
of the electromagnetic cascade varies considerably and can
exhibit either overall red or blue shift at different 
 in the
window −100�k�
�100.

In conclusion, to get rid of the SFRS, one should keep the
SFRS seed low by keeping the product ����L� very large. As
the simulations show, it should exceed 20; this may require
the beat wave pulse of several picoseconds or even longer.

D. Relativistic bistability of EPW

Cascade compression is a perfect tool for studying thresh-
old phenomena. One of them, the relativistic bistability �RB�
of the EPW driven by the long �����L��1� beat wave pulse
with ���p, is considered in this section. The RB results in
the excitation of large-amplitude plasma wakes �14�. The in-
tensity threshold should be met for the RB to occur. The
threshold is multifaceted: it is determined by the beat wave

FIG. 8. Relativistic bistability of the EPW. Magnitude of the
near-resonant electron density perturbation �plot �a�� and the laser
intensity �plot �b�� are shown at z=0 �light gray�, z=0.52 mm �me-
dium gray�, and z=0.54 mm �black�. Inset in plot �b�: one beat note
selected near 
=0. Plot �c�: the laser spectrum at z=0.54 mm. The
RB threshold is crossed at z�0.53 mm. Crossing the threshold in-
creases the EPW amplitude by a factor of 2.3.

FIG. 6. Electron density perturbation �a� and the temporal pro-
file of laser intensity �b� for the parameters the same as of Fig. 3
except the laser duration reduced by a factor of 2.5, �p�L�100.
Gray color corresponds to z=0, black—to z=z8.

FIG. 7. Electron density perturbation �a� and the temporal pro-
file of laser intensity �b� for the parameters the same as of Fig. 4
except the laser duration reduced to �p�L�440, and ����L�=10.
Gray color corresponds to z=0, black—to z=z8.
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frequency detuning ��, the laser amplitude, shape, duration,
contribution from the plasma wave harmonics, etc. Various
aspects of the RB in the approximation of the prescribed
�nonevolving� driver �−1�
� are addressed in Ref. �15�. Now,
with the help of the cascade compression effect, we are
showing for the first time that the RB can manifest in the
dynamic simulations with the laser initially not optimized to
meet the bistabilty threshold.

The laser amplitude modulation becomes important when
the propagation over a considerable distance in plasma is
concerned. Strong distortion of the beatwave temporal pro-
file within a finite distance �few millimeters� in a dense
�n0�1019 cm−3� plasma does have adverse consequences for
the amplitude- and phase-sensitive process of RB. On the
other hand, we demonstrate below that the beat note com-
pression helps to cross the RB threshold in the case of ini-
tially subthreshold laser amplitude. We start the simulation
with the parameters of the numerical example from Ref.
�14�: simulation starts at z=0 in a plasma with a density n0
=1019 cm−3, the beat wave pulse having a Gaussian temporal
profile �24� with �p�L�212 and ��=−0.05�p, and the laser
fundamental wavelength being �0=0.8 �m �then, d
�0.0057�. Solution of Eq. �13� with a given driver �equiva-
lent to the calculations of plasma response at the entrance
point z=0� gives the RB threshold A2�0.034 �16% lower
than in Ref. �14��. This threshold corresponds to the normal-
ized peak intensity �a�max

2 �0.136. To demonstrate how this
threshold is crossed in the course of laser evolution in
plasma, we start the simulation with a sub-threshold value of
the laser intensity, A2�0.027. The simulation results are
shown in Fig. 8.

As the laser travels through plasma, the cascade compres-
sion of the beat notes locally increases the intensity, and the
RB threshold is crossed at a distance z�0.53 mm. At this
point, the magnitude of the electron density perturbation
jumps abruptly by a factor of 2.3 ��n−1 /n0 immediately be-
fore and after crossing the RB threshold is shown in Fig.
8�a��. After that point, the resonant density perturbation
grows steadily to roughly 80% of background density. At z
�1.2 mm the beat wave amplitude distortion becomes so
strong as to destroy the coherence of the plasma response,
and �n−1 drops sharply. Importantly, at the point where the
RB threshold is met, the beat note profile is not very different
from sinusoidal �see the inset in Fig. 8�b��, and the shape of
the beat wave pulse is not much different from the initial

Gaussian. The normalized intensity at which the RB occurs
in the simulation is �a�max

2 �0.145. The amplitude of the beat
wave pulse immediately before �z=0.52 mm� and after
�z=0.54 mm� crossing the RB threshold is almost the same,
as can be seen in the plot Fig. 8�b�. As follows from Fig.
8�c�, the beat note compression necessary for reaching the
RB threshold is achieved at the laser bandwidth roughly
equal to �0 /3.

Therefore, the proposed model of EMC in plasmas with
nonzero GVD is able to demonstrate the effect of relativistic
bistability in the dynamic simulations with initially sub-
threshold laser amplitude.

IV. CONCLUSION

In this paper, we have developed a nonlinear model that
comprehensively describes the evolution of laser beat wave
and electron density perturbations in time and in 1D in space
in the weakly relativistic regime. Electromagnetic spectrum
evolution and the effects of nonzero group velocity disper-
sion are accurately modeled. The model includes the nonlin-
ear frequency shifts related to the relativistic corrections of
electron mass and the harmonics of the electron density per-
turbations. It also takes into account the spatio-temporal evo-
lution of the near-resonantly driven electron density pertur-
bation. The theoretical model also describes a number of
nonlinear effects important for the implementation of plasma
beat wave accelerator. It is found that, for the beat wave
downshifted in frequency from the plasma resonance, the
electromagnetic cascading produced by the near-resonant
electron density perturbations leads to the compression of the
laser beat notes, which finally transforms the beat wave pulse
into a train of sharp �few laser cycle� electromagnetic spikes
separated by the beat period in time and space. A train of
electromagnetic pulses useful for the particle acceleration ap-
plications �24–26� can be self-consistently created. We are
also able to demonstrate how the electron plasma wave of
large amplitude can be excited due to the effect of relativistic
bi-stability even in the case of initially subthreshold beat
wave pulse.
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