
Electron density bubbles—wake structures generated in plasma of density n_{e} ~ 10^{19} cm^{-3} by the light pressure of intense ultrashort laser pulses—are shown to reshape weak copropagating probe pulses into optical ‘‘bullets.’’ The bullets are reconstructed using frequency-domain interferometric techniques in order to visualize bubble formation. Bullets are confined in three dimensions to plasma-wavelength size, and exhibit higher intensity, broader spectrum and flatter temporal phase than surrounding probe light, evidence of their compression by the bubble. Bullets observed at 0.8 < n_{e} < 1.2 x 10^{19} cm^{-3} provide the first observation of bubble formation below the electron capture threshold. At higher n_{e}, bullets appear with high shot-to-shot stability together with relativistic electrons that vary widely in spectrum, and help relate bubble formation to fast electron generation.
- Laser wakefield acceleration,
- blowout regime,
- frequency-domain shadowgraphy
Available at: http://works.bepress.com/serguei_kalmykov/12/