Skip to main content
Article
An Algebraic Algorithm for Nonuniformity Correction in Focal-Plane Arrays
Journal of the Optical Society of America A
  • Bradley Michael Ratliff, University of New Mexico - Main Campus
  • Majeed M. Hayat, University of New Mexico - Main Campus
  • Russell C. Hardie, University of Dayton
Document Type
Article
Publication Date
9-1-2002
Abstract

A scene-based algorithm is developed to compensate for bias nonuniformity in focal-plane arrays. Nonuniformity can be extremely problematic, especially for mid- to far-infrared imaging systems. The technique is based on use of estimates of interframe subpixel shifts in an image sequence, in conjunction with a linear-interpolation model for the motion, to extract information on the bias nonuniformity algebraically. The performance of the proposed algorithm is analyzed by using real infrared and simulated data. One advantage of this technique is its simplicity; it requires relatively few frames to generate an effective correction matrix, thereby permitting the execution of frequent on-the-fly nonuniformity correction as drift occurs. Additionally, the performance is shown to exhibit considerable robustness with respect to lack of the common types of temporal and spatial irradiance diversity that are typically required by statistical scene-based nonuniformity correction techniques.

Inclusive pages
1737-1747
ISBN/ISSN
1084-7529
Publisher
OSA: The Optical Society
Peer Reviewed
Yes
Citation Information
Bradley Michael Ratliff, Majeed M. Hayat and Russell C. Hardie. "An Algebraic Algorithm for Nonuniformity Correction in Focal-Plane Arrays" Journal of the Optical Society of America A Vol. 19 Iss. 9 (2002)
Available at: http://works.bepress.com/russell_hardie/38/