Skip to main content
Article
Fast and Space-Efficient Location of Heavy or Dense Segments in Run-Length Encoded Sequences
COCOON: Ninth International Computing and Combinatorics Conference
  • Ronald I. Greenberg, Loyola University Chicago
Document Type
Conference Proceeding
Publication Date
7-1-2003
Pages
528--536
Publisher Name
Springer-Verlag
Abstract

This paper considers several variations of an optimization problem with potential applications in such areas as biomolecular sequence analysis and image processing. Given a sequence of items, each with a weight and a length, the goal is to find a subsequence of consecutive items of optimal value, where value is either total weight or total weight divided by total length. There may also be a specified lower and/or upper bound on the acceptable length of subsequences. This paper shows that all the variations of the problem are solvable in linear time and space even with non-uniform item lengths and divisible items, implying that run-length encoded sequences can be handled in time and space linear in the number of runs. Furthermore, some problem variations can be solved in constant space. Also, these time and space bounds suffice for certain problem variations in which we call for reporting of many “good” subsequences.

Comments

© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Creative Commons License
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
Citation Information
Ronald I. Greenberg. Fast and space-efficient location of heavy or dense segments in run-length encoded sequences. In COCOON: Ninth International Computing and Combinatorics Conference, volume 2697 of Lecture Notes in Computer Science, pages 528--536. Springer-Verlag, 2003.