
Let M = M_{g,k} denote the space of properly (Alexandrov) embedded constant mean curvature (CMC) surfaces of genus g with k (labeled) ends, modulo rigid motions, endowed with the real analytic structure described in [kmp]. Let P=Pg,k=rg,k×Rk+ be the space of parabolic structures over Riemann surfaces of genus g with k (marked) punctures, the real analytic structure coming from the 3g-3+k local complex analytic coordinates on the Riemann moduli space r_{g,k}. Then the parabolic classifying map, Phi: M --> P, which assigns to a CMC surface its induced conformal structure and asymptotic necksizes, is a proper, real analytic map. It follows that Phi is closed and in particular has closed image. For genus g=0, this can be used to show that every conformal type of multiply punctured Riemann sphere occurs as a CMC surface, and -- under a nondegeneracy hypothesis -- that Phi has a well defined (mod 2) degree. This degree vanishes, so generically an even number of CMC surfaces realize any given conformal structure and asymptotic necksizes.
Available at: http://works.bepress.com/robert_kusner/14/