Skip to main content
Article
Evaluation of Commercial Nickel–Phosphorus Coating for Ultracold Neutron Guides Using a Pinhole Bottling Method
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment (2017)
  • Robert W. Pattie, Los Alamos National Laboratory
  • Evan R. Adamek, Indiana University Bloomington
  • T. Brenner, Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble CEDEX, France
  • A. Brandt, North Carolina State University
  • Leah J. Broussard, Los Alamos National Laboratory
  • Nathan Callahan, Indiana University Bloomington
  • Stephen M. Clayton, Los Alamos National Laboratory
  • Chris Cude-Woods, North Carolina State University
  • Scott A. Currie, Los Alamos National Laboratory
  • Peter Geltenbort, Institut Laue-Langevin
  • Takeyasu M. Ito, Los Alamos National Laboratory
  • T. Lauer, Technische Universität München
  • ChenYu Liu, Indiana University Bloomington
  • Jaroslaw Majewski, Los Alamos National Laboratory
  • Mark F. Makela, Los Alamos National Laboratory
  • Yasuhiro Masuda, High Energy Accelerator Research Organization
  • Christopher L. Morris, Los Alamos National Laboratory
  • John C. Ramsey, Los Alamos National Laboratory
  • Daniel J. Salvat, Indiana University Bloomington
  • Alexander Saunders, Los Alamos National Laboratory
  • Juri Schroffenegger, Technische Universität München
  • Zebo Tang, Los Alamos National Laboratory
  • Wanchun Wei, Los Alamos National Laboratory
  • Zhehui Wang, Los Alamos National Laboratory
  • Erik B. Watkins, Los Alamos National Laboratory
  • Albert R. Young, North Carolina State University
  • B.A. Zeck, Los Alamos National Laboratory
Abstract
We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle was interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10 –4. In conclusion, we also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.
Keywords
  • Ultracold neutron,
  • Neutron guide coating
Disciplines
Publication Date
August 10, 2017
DOI
10.1016/j.nima.2017.07.051
Publisher Statement
This document is an author manuscript from arXiv. The publisher's final edited version of this article is available at Nuclear Instruments and Methods in Physics Research.
Citation Information
Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, et al.. "Evaluation of Commercial Nickel–Phosphorus Coating for Ultracold Neutron Guides Using a Pinhole Bottling Method" Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment Vol. 872 (2017) p. 64 - 73 ISSN: 0168-9002
Available at: http://works.bepress.com/robert-pattie/6/