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A B S T R A C T   

This study examines the details of creating and validating an empirical liquefaction model, using a worldwide 
cone penetration test (CPT) liquefaction database with the intent of incorporating the rigor found in predictive 
modeling in other fields and addressing shortcomings of existing models. Our study implements a logistic 
regression within a Bayesian measurement error framework to incorporate uncertainty in predictor variables and 
allow for a probabilistic interpretation of model parameters when making future predictions. The model is built 
using a hierarchal approach to account for intra-event correlation in loading variables and differences in event 
sample sizes. The model is tested using an independent set of recent case histories. 

We found that the Bayesian measurement error model considering two predictor variables, normalized CPT tip 
resistance and cyclic stress ratio decreased model uncertainty while maintaining predictive utility for new data. 
Hierarchical models revealed high model uncertainty potentially due to the database lacking in high loading non- 
liquefaction sites. Models considering friction ratio as a predictor variable performed worse than the two variable 
case and will require more data or informative priors to be adequately estimated. The framework developed is 
flexible and can be extended using different methods of predictor variable selection, model function forms, and 
validation processes.   

1. Introduction 

Seismic soil liquefaction is a major cause of earthquake damage to 
the built environment, second only to tsunamis in overall cost. For 
purposes of this paper, seismic soil liquefaction is defined as when a 
loose, saturated, granular soil loses shear strength due to dynamic 
earthquake loading (NAP, 2016). 

Current practice relies on empirical liquefaction models (ELM’s) to 
make predictions of potential liquefaction occurrence at future sites 
during engineering design and analysis (NAP, 2016). These models 
assess liquefaction potential using predictive models built on a database 
of observed case histories. As discussed at length by the Committee on 
State of the Art and Practice in Earthquake Induced Soil Liquefaction 
Assessment there are appreciable shortcomings of current ELM’s (NAP, 
2016). 

Ideally, liquefaction assessment will eventually be conducted in a 
fully performance-based engineering (PBE) approach that evaluates 
engineered features over the entire range of possible loadings rather 
than a single or discrete group of seismic events. A PBE approach 

requires a probabilistic description of liquefaction potential; a predic-
tion of the probability of failure rather than a factor of safety or yes/no 
output. Currently, only two models used in common practice (Moss 
et al., 2006; and Boulanger and Idriss, 2016) provide predictions of 
liquefaction probability. 

However, a greater limitation of existing ELM’s is a lack of openness 
regarding the model building process. Because these training methods 
and metrics are often not reported, practitioners cannot currently 
evaluate model biases when selecting which relationships to use or 
recommend in guidance documents. 

Furthermore, there is a lack of rigorous model performance valida-
tion. Many popular studies simply do not report performance metrics (e. 
g. Moss et al., 2006, Boulanger and Idriss, 2016). Others use the same 
data to validate the model as was used to build the model (Juang et al., 
2002, Yazdi and Moss, 2017, Lai et al., 2006, etc). This approach results 
in optimistically biased performance metrics because they measure the 
model fit to the training data, not necessarily how well it will perform 
for out-of-sample predictions. This is referred to as over-fitting in the 
predictive modeling world (Kuhn and Johnson, 2013). To date, only a 
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few relevant models (Oommen et al., 2010, Rezania et al., 2011, etc.) 
split their databases into training and testing sets through cross valida-
tion or other methods to develop relatively unbiased metrics of model 
performance. 

Finally, existing models do not account for intra-event correlation 
between outcomes or sample size discrepancies between events. This 
may become problematic as the updated Next Generation Liquefaction 
(NGL) database introduces a large number case histories from a limited 
number of events (Brandenberg et al., 2020). The field of ground motion 
modeling has addressed these shortcomings using hierarchical ap-
proaches (e.g Abrahamson and Youngs, 1992 or Kuehn and Scherbaum, 
2015), commonly referred as mixed or random effects models. No 
existing liquefaction triggering model has implemented such 
techniques. 

This work described here presents an open and extensible modeling 
methodology for triggering models developed on the updated NGL cone 
penetration test (CPT) case history database to address these model 
shortcomings. 

2. Modeling Framework 

Our overall methodology includes three major steps: exploratory 
data analysis, model building (including data preprocessing) and model 
validation. These last two steps can be performed in an iterative fashion, 
using results from previous model fits to inform future work. Because the 
primary goal of this work is to focus on the statistical modeling process it 
is necessary to adopt a liquefaction framework and database as givens. 
For purposes of this study, we use CPT liquefaction database as devel-
oped in Moss et al. (2006) while recognizing that case history screening 
and processing of raw field measurements are an important ongoing 
field of research. 

2.1. Exploratory Data Analysis 

Understanding the distributions and interactions between predictors 
and outcomes in the dataset is a critical step in selecting the proper 
model. The database used from Moss et al. (2006) included 182 case 

Fig. 1. Cross correlation of predictor variables used in the model building phase of this study. Scatter plots show trends in correlation between variables and 
distribution plots show the central tendency and dispersion of each variable. 
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histories from 18 events. These case histories contained 139 instances of 
liquefaction and 43 instances of nonliquefaction. These outcomes were 
associated with 12 predictor variables:  

• Data class (A, B, or C), subjectively assigned based upon confidence 
in field data  

• Critical depth: the depth range of the layer determined to have 
liquefied  

• Groundwater table level: Depth below ground surface of the 
groundwater table  

• Vertical total stress (σv)

• Vertical effective stress (σ’
v)  

• Peak ground acceleration (amax), usually estimated indirectly from 
attenuation relationships  

• Shear stress reduction coefficient (rd) used to calculate CSR  
• Cyclic stress ratio (CSR)  
• CPT normalization exponent (c), an input to the equation for 

normalizing CPT measured tip resistance  
• Normalized CPT tip resistance (qc,1)  
• Friction ratio (rf): the CPT measured sleeve friction divided by the 

penetration resistance  
• Moment magnitude (Mw) 

Importantly many of these predictor variables are correlated or even 
functions of each other (Fig. 1). This can be problematic because many 
functional forms will have greater uncertainty in parameter estimates 
when predictors are correlated. 

To illustrate the spread of data both as a whole and within the 
liquefaction/nonliquefaction classes, we first focus on a single load and 
resistance predictor; CSR and qc,1. The database includes a reasonably 
wide range of CSR and qc,1 mean values. In both cases, the data are left 
skewed and have a moderately high coefficient of variation 
(μ

σ ≈ 0.5 − 0.7). Additionally, Fig. 2 shows that each event has a slightly 
different distribution of load and resistance values. There is a noticeable 
association between event and CSR due to certain earthquakes having 
higher ground motions than others. Unlike CSR there is not a noticeable 

association between event and qc,1. 
Fig. 3 shows the separability between instances of liquefaction and 

nonliquefaction for the three predictor variables considered. Although 
there is no dramatic separation between the classes, liquefaction is 
generally associated with lower penetration resistance and higher CSR, 
and Rf does not show any clear separation. 

2.2. Model Validation Framework 

Modern predictive modeling techniques can learn complex re-
lationships between predictors and outcomes (Kuhn and Johnson, 
2013). However, if not supervised properly they may end up over-
emphasizing patterns that do not generalize to new data. In a sense, they 
have “memorized” the training data instead of learning how to predict 
future outcomes. This is further compounded when the model is vali-
dated using the same data as it was built on, because the apparent 
performance will be good despite the model making poor future pre-
dictions. With an appropriate data splitting strategy, e.g., k-fold cross 
validation or training/testing sets, data can be used independently for 
training and testing. This results in realistic measures of model perfor-
mance on out of sample predictions. 

Because the goal of this paper is the modeling process instead of a 
new triggering model we ultimately chose to use the entire Moss et al. 
(2006) data for training, and set of select case histories from the 2011 
New Zealand Canterbury earthquake sequence summarized in Green 
et al. (2014) for testing. This choice was primarily made to make coding 
the models easier. Fig. 4 shows a scatterplot in qc,1 and CSR space of the 
liquefied and non-liquefied case histories. The New Zealand case his-
tories are indicated by open and closed triangles for nonliquefied and 
liquefied cases respectively and the Moss et al. (2006) case histories are 
indicated by open and closed circles. The mean values of predictors in 
the New Zealand testing set are generally similar to the Moss et al. 
training set, however the maximum values (i.e. data breadth) are lower. 
This is visualized by the clustering of the New Zealand cases in the 
bottom left corner of the chart. The class ratio of liquefaction to non-
liquefaction is 49:15, which is nearly equal to the Moss et al. data. 

Fig. 2. Box plots of CSR and qc1 showing the central tendency and dispersion for each earthquake event.  
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A binary classification model’s performance on a training set is 
quantified by the confusion matrix, i.e., true positive, false positive, true 
negative, or false negative (Kuhn and Johnson, 2013). With these counts 
several metrics can be calculated, such as accuracy, precision, recall, and 
others. Most predictive modeling texts provide equations to calculate 
these metrics 

and discuss their applicability. When selecting an appropriate 
metric, a modeler should be aware of the limitations of various perfor-
mance metrics and select one that fits the purpose of the model. For 
example, if negative outcomes are infrequent then a model can achieve 
near perfect accuracy (the proportion of events labeled correctly) by 
only predicting positive outcomes (Kuhn and Johnson, 2013). If false 
positives are of interest, such as with unnecessary expensive ground 
improvements or cancer treatments, this is an inappropriate perfor-
mance metric. A metric that is not affected by natural class frequencies 
would be more appropriate. 

Models that produce outcome class probabilities of can be converted 
to binary classifiers by selecting a probability threshold at which all 
points below are considered “no” and all above are considered “yes”. 
This threshold between yes and no classifications can be thought of as of 
a threshold of acceptable liquefaction risk (THL). This can be selected 
based upon acceptable risk, on a project specific basis. Sites falling 
above that threshold are classified as liquefiable and those below are not 
and design proceeds accordingly. The selected threshold may differ 
appreciably from project to project so we want a model that performs 
well at all levels of THL. 

Receiver operating characteristics (ROC) curves are a useful tool for 
evaluating a model’s performance across all possible threshold values. 
They compare the true positive rate (after Fawcett, 2006): 

TPR =
Postives Correctly Classified

Total Positives
=

TP
TP + FN

(1) 

And the false positive rate (After Fawcett, 2006): 

FPR =
Negatives Incorrectly Classified

Total Negatives
=

FP
FP + TN

(2) 

ROC curves are plotted as FPR vs TPR, with each point corresponding 
to a specific threshold value. The area under the curve (AUC) is a useful 
scalar summary of performance, which will range from 0 0.5 to 1.0 with 
higher values indicating better model performance (Fawcett, 2006). The 
statistical interpretation of this value is the probability that a randomly 
chosen positive instance will have a computed higher probability of 
occurrence than a randomly chosen negative one (Fawcett, 2006). The 
benefit of using the TPR and FPR is that they are not sensitive to natural 
class frequencies because only the total positives or negatives are re-
flected in the denominators. 

Precision-Recall (PR) curves, and their associated area under the 
curve (AUC-PR) are an alternative threshold independent metric used to 
evaluate binary classifiers. Recall is defined identically to TPR. Precision 
is defined as (After Davis and Goadrich, 2006): 

Fig. 3. Separability of liquefaction cases via the three primary predictors for the training data. Box plots show the central tendency and dispersion with respect to 
yes/no classification. 
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Precision =
Postives Correctly Classified

Predicted Positive
=

TP
TP + FP

(3) 

PR curves are plotted as Recall vs Precision. PR curves are sometimes 
recommended over ROC curves by practitioners when evaluating per-
formance on imbalanced data (e.g. Saito and Rehmsmeir, 2015, Davis 
and Goadrich, 2006, and others). The imbalanced datasets referred to in 
these cited works are dominated by negative cases, typically the number 
of negatives is hundreds to thousands of times more than the positives, 
and that the rare, positive outcome is the only outcome of interest. In 
this case, precision will vary considerably more between models than 
FPR and the algorithm that more accurately predicts positive outcomes 
will be more apparent. However, the PR curve does not consider true 
negatives and is unsuited for problems when both classes need to be 
identified correctly like liquefaction assessment. Although it is not 
without its flaws (see Cook, 2007) we adopt the AUC as our measure of 
model performance. 

Reporting the metrics used to inform modeling choices is critical to 
understanding the unavoidable biases they introduce. For example, a 
model trained to maximize accuracy may have a high false positive rate. 
This can have positive or negative implications for the model’s usage. 
Tosteson et al. (2014) discusses the implications of model training 
criteria in the context of breast cancer screening. 

2.3. Basic Model Form 

We now have a dataset with vectors of predictor variable values 
associated with binary outcomes coded 1 for liquefaction and 0 for 
nonliquefaction. The most common parametric assumption is that these 
observations are realizations of Bernoulli random variables. A Bernoulli 

random variable takes on a value of 1 with probability p and 0 with 
probability 1 - p. A logistic regression models the expected value of the 
ith Bernoulli random variable given β, a vector of model coefficients 
(with intercept β0), and xi, an equal length vector of the corresponding 
predictor variables’ values as (After Liao et al., 1988): 

E(yi) = Pr(yi = 1|β, xi) = PL,i =
1

1 + exp{ − (β0 + βTxi) }
= sig

(
β0 + βTxi

)

(4) 

[Note the use of vector multiplication to simplify expressing a linear 
combination of model parameters and predictor variables.] 

Assuming independent outcomes, we can use this formula to express 
the likelihood of observing the training dataset D (predictor variables 
and outcomes) for a fixed vector of parameters β for nL liquefied cases 
and nNL nonliquefied cases: 

l(D|β) =
∏nL

i=1
PL,i

∏nNL

j=1

(
1 − PL,j

)
(5) 

It is mathematically useful to deal instead with the logarithm of the 
above function. It can also be modified to include weights that account 
for the pre-existing class imbalances: 

ln[l(β) ] = wL

∑nl

i=1
ln
(
PL,i

)
+wNL

∑nNL

j=1
ln
(
1 − PL,j

)
(6) 

Where wL and wNL are the weights assigned to liquefied and non-
liquefied cases respectively. The maximization of the above function 
gives point estimates of model referred to as maximum likelihood esti-
mates used in data pre-processing decision making. 

2.4. Data Preprocessing 

2.4.1. Predictor Variable Selection 
Predictor variable selection is a fundamental step in any model 

development and can be thought of as a balance between under and over 
fitting (Kuhn and Johnson, 2013). Including predictors that have little 
effect on predicted outcomes will increase model uncertainty and make 
the model more difficult both to fit and interpret (Kuhn and Johnson, 
2013). An overly complicated model may confuse users or be imprac-
tical for regular use. 

As a preliminary tool, we used a stepwise selection process to 
determine which predictor variables were worth including based upon 
the Akaike Information Criterion (AIC) of the maximum likelihood fits. 
AIC is a metric for making relative comparisons about model utility that 
estimates the tradeoff between model goodness of fit and the simplicity 
of the model, essentially over versus under fitting (Burnham and 
Anderson, 2004). At each step in the process, the predictor variables are 
added or removed one by one from the model and the AIC calculated. 
The model with the lowest AIC is selected for the next step and the 
process continues until no proposed model outperforms the current. 

Based upon these results there is justification for considering models 
of three predictor variables: qc,1, CSR, and Rf. Qualitatively, these pre-
dictor variables cover several main factors affecting liquefaction: in-situ 
density, magnitude of cyclic shearing, and apparent fines content. 
Notably, including magnitude or stress did not produce a better ranking 
model. 

2.4.2. Predictor variable transformations 
A limitation of logistic regression is that it only allows for linear 

combinations of the predictor variables and model coefficients. How-
ever, performance is improved by instead dealing with transformations 
of predictor variables. We selected the Box-Cox family of monotonic 
transformations because of its flexibility and its ability to capture many 
common transformations such as powers and logarithms. A Box-Cox 
transformation of a predictor variable x, indexed by the parameter λ, 
is defined as (after Box and Cox, 1964): 

Fig. 4. Combined data sets from the training and testing data sets. Open and 
closed triangles from the New Zealand ((Green et al., 2014) data set, and open 
and closed circles from the worldwide (Moss et al., 2006) data set. 
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x’ =

⎧
⎨

⎩

ln(x)ifλ = 0

xλ − 1
λ

if λ ∕= 0
(7) 

We used a simple grid search method to determine the group λ’s that 
produced the best performing model, as measured by 5-fold cross vali-
dated AUC. Conceptually, this introduces a tuning parameter to the 
standard maximum likelihood logistic regression that allows for greater 
flexibility in the shape of the probability contours. The optimal Box-Cox 
parameters were λCSR = − 0.6and λqc,1 = 1.6 for the two variable case 
and λCSR = − 0.6, λqc,1 = 1.0, and λRf = 0.2 for the three variable case. 

Because only the mean and standard deviation of the predictor var-
iables are included in the database, the transformed moments cannot be 
calculated directly for a nonlinear transformation without assuming a 
distributional form for each data point. Instead, we use a first order 
second moment (FOSM) approximation technique that calculates the 
moments of the Taylor series expansion of the transformation (see Moss, 
2020 for a detailed derivation). The effects of these transformations are 
shown in Fig. 5, following. 

2.4.3. Accounting for sampling bias 
Because post-earthquake geotechnical reconnaissance is often 

focused on sites that have experienced ground failure (and subsequence 
impacts to engineered features) liquefaction databases contain more 
liquefied cases than non-liquefied cases. This is in contrast with the true 
class ratio, which likely contains more nonliquefied cases. For this study 
we considered up-sampling, randomly duplicating observations in the 
less frequent class to balance the dataset, and likelihood weighting to 
compensate for sampling bias. The weights used in likelihood function 
(equation (2)) were wL = 1.0 and wNL = 1.5 consistent with previous 
research (Cetin et al. 2004, Moss et al. 2006, Boulanger and Idriss, 2016, 
etc.). 

In preliminary work, the coefficients estimated by weighting method 
were nearly identical to the upsampling method as was model predictive 
performance. Going forward, all models were fit on the up-sampled 
dataset. 

2.5. Model Fitting 

Bayes’ Rule is the mathematical framework for updating our prior 
beliefs based upon observed evidence (Christensen et al., 2011). Bayes 
rule can be conceptualized as the posterior is proportional to the product 
of the prior and the likelihood (Posterior α Prior x Likelihood). There are 
three steps to performing Bayesian data analysis: specifying prior dis-
tributions for all model parameters, formulating a observational model 
for the training data to determine the appropriate likelihood function, 
and calculating or approximating the resulting posterior distributions 
for forward inference and model checking. In full generality, Bayes Rule 
is expressed mathematically as 

f (θ|x) =
l(x|θ)f (θ)

∫
l(x|θ)f (θ)dθ

(8) 

where l(x|θ) is the joint likelihood of observing the data given fixed 
parameters, f(θ) is our prior beliefs about parameters expressed as a 
joint probability distribution, and f(θ|x) is the joint posterior distribu-
tion of the parameters, given fixed data. The iterated integral of the 
product of the prior and likelihood over the support of all θ’s in the 
denominator scales the resulting distribution so it obeys the axioms of 
probability. This Bayesian formula is usually difficult to compute exactly 
and is commonly approximated computationally. 

2.5.1. Prior selection 
We use weakly informative normal distributions to constrain the 

scale of the regression coefficients. A weakly informative prior contains 
enough information to limit the mode to realistic parameter values while 

remaining relatively uninformative over this range (Gelman, 2006). 
When data is relatively limited, such as this study, choosing uniform 
prior places far too much mass on unrealistic (or impossible) parameter 
values and prevents accurate inference (Gelman, 2006). To determine a 
realistic scale for our prior we follow the logic of Gelman et al. (2008) 
that a typical increase (i.e. one standard deviation) in a predictor vari-
able would result in a jump from 1% probability to 99% probability. We 
default to a Normal (0,10) prior on regression slopes and use a slightly 
more diffuse distribution of Normal (0,25) for the intercept parameters. 
For a sensitivity study, we also run the models with prior standard de-
viations of 25 and 100 to examine the influence of the prior distribution 

Fig. 5. Transformed distributions for the three primary variables with Box-Cox 
parameters of λCSR = − 0.6, λqc,1 = 1.0, and λRf = 0.2. 
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on the models’ behavior. 

2.5.2. Model forms 
We developed 4 separate groups of models here to test out the in-

fluence of each step. Initially the model forms are expressed with only 
two predictors: qc,1 and CSR. The subsequent extension to any arbitrary 
number of predictors is straightforward. Model 0 was a logistic regres-
sion fit using typical maximum likelihood methods. The baseline model, 
Model 1, was a Bayesian Logistic Regression with no parameter uncer-
tainty to have something to compare subsequent models to. This pro-
duced nearly identical results to a logistic regression model (Model 0) 
which uses maximum likelihood to fit the functional form. Model 2 was 
a Bayesian Hierarchical model. Hierarchical models, referred to as 
mixed effects in ground motion attenuation relationship development 
(e.g Abrahamson and Youngs, 1992 or Kuehn and Scherbaum, 2015), 
allow model parameters (slopes and/or intercepts) to change between 
groups provided they are constrained by hyperparameters estimated 
from the data (Jiang, 2007). This can be thought of as a compromise 
between no pooling and complete pooling (Gelman and Hill, 2007). A no 
pooling model fits each group separately but is unfeasible for groups 
with limited data (Clark and Linzer, 2015). A completely pooled model 
fits a single set of parameters for all the data, ignoring group level 
variability (Gelman and Hill, 2007). Groups with more data points will 
“overwhelm” the smaller groups leading to “overconfident” out of 
sample predictions. This is of concern if events with limited data are the 
only ones available for data sparse regions (e.g. the upper right hand 
corner in qc,1 , CSR space). 

Model 3 is a Bayesian Measurement Error model based off the work 
by Kuehn and Abrahamson (2018) and Moss et al. (2006). The mea-
surement error model treats the true values of predictor variables as 
parameters to be estimated during the modeling process. The latent true 
values, xtrue, are assumed to come from a normal distribution centered at 
the observed value, xobserved, from the database and with the corre-
sponding estimated standard deviation, τx. The true values are given a 
hierarchical constraint that they come from the distribution of values 
observed in the database. This is assumed to be normal with database 
mean μx and standard deviation σx. The final model, Model 4, combines 
the measurement error and hierarchical functional forms from Models 2 
and 3. 

2.5.3. Posterior Solutions 
In this study we used the program Stan (Carpenter et al., 2017) to 

perform Hamiltonian Markov Chain Monte Carlo (MCMC) simulation of 
the posteriors of interest. Convergence criteria were a targeted R̂ of 1.0 
± 0.1 and qualitative inspection of the trace and autocorrelation plots to 
verify independent sampling of the entire joint posterior distribution. R̂ 
is a commonly used measure that compares the between-chain and 
within-chain variances (Gelman and Rubin, 1992). Large differences 
between the two (high R̂) indicate nonconvergence (Brooks and Gelman 
1997). We used 4 chains and selected an appropriate number of post- 
warmup iterations to satisfy convergence criteria. As necessary we 
modified sampler controls to ensure stability and efficiency. Schmidt 
(2020) describes the code use to fit the models and generate results in 
further detail. 

2.6. Bayesian Posterior Predictive Inference 

For a Bayesian analysis the result is a joint posterior distribution of 
model parameters (generically referred to as θ) conditioned on the 
observed data. In our case, the posteriors of interest are the regression 
coefficients (β0, β1, β2, and β3) or their population mean values (μβ) for 
the hierarchical models. Technically, we do not have the analytic form 
of the posterior but rather a MCMC estimate {θ(1), θ(2),⋯, θ(m)} where 

θ(n)is the nth draw of a vector of model parameter values from the 

posterior. β(n)
0 ,β(n)

1 ,and so on, are elements of θ(n). Given new data, x, we 
would like to predict the probability of liquefaction or Pr(y = 1||x). If we 
fix θ to the maximum likelihood estimate or the posterior mean/median 
we can use equation (3) to compute the probability (referred to as the 
maximum a posteriori estimate). However, this process ignores the pos-
terior variability in θ we just estimated. 

Instead we want to perform fully Bayesian inference from the pos-
terior predictive distribution resulting from the observed new data 
f(y|x). From the assumptions of the logistic model we know the distri-
bution of the new outcome conditional on fixed parameters f(y|x,θ) is 
Bernoulli(p). To find the unconditional predictive distribution f(y|x) we 
marginalize with respect to the parameter posterior distributions by 
taking the integral: 
∫

f(y|x, θ)f (θ)dθ (9) 

This can be conceptualized as weighting our estimates for y by how 
likely their generating parameters values are, given the training data. 
Then, the probability of interest is computed as Pr(y = 1||x) = E[f(y|x)]. 
However, because we only have samples from the posterior 

{
θ(1), θ(2),⋯ 

, θ(m)
}

we instead compute the MCMC estimate using draws of β(j)

Pr(y = 1||x) = E[f(y|x)] ≈
1
N

∑N

j

1

1 + exp
{
−
(

β(j)
0 + β(j)Tx

)} (10) 

This implies that models with greater uncertainty in their parameter 
estimates will results in more uncertain estimates of probability. 

3. Results 

The following sections present the results of our modeling process. 
To visually compare model performance we present four key graphical 
summaries discussed in the sections following (Figs. 6 through 10). The 
remaining model visualizations are included in Schmidt (2020). To 
visualize the models, the probability contours of the resulting surface 
over qc,1 and CSR are plotted. For the three variable models, this requires 
fixing Rf at 5, 50 (median) and 95 percentile values to visualize how the 
curves shift. The model summaries also include the ROC curve from 
testing the model on the training set and its AUC. In each graphic, the 
histograms summarize the posterior distributions for the regression 
intercept and the two slopes showing mean, standard deviation and the 
5, 50 (median), and 95 percentiles indicated by dashed lines. The hi-
erarchical models are generated using the group averaged coefficients, 
similar to the “ergodic” coefficents used in ground motion estimation. 

We discuss the following models:  

• Model 0 – Maximum likelihood model  
• Model 1 – Baseline Bayesian model  
• Model 2 – Hierarchal Bayesian model  
• Model 3 – Bayesian measurement error model  
• Model 4 – Combined measurement error and hierarchical model  
• We will refer to models with three predictor variables with a − 3 after 

the model number. For example, model 2–3 refers to the hierarchal 
Bayesian model with all three predictor variables. 

3.1. Model Uncertainty 

The uncertainty related to the outcome of a binary process, here 
liquefaction triggering, is sufficiently explained by its probability. The 
more certain about an event’s occurrence the higher probability we 
assign to it or vice versa. It would not make sense to express a standard 
deviation to a probability – this would imply that the probability is itself 
a random variable and violate the fundamental axiom of probability 
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requiring probabilities to be real numbers. 
A binary random variable that takes on a value of 1 (yes) with 

probability p has variance p(1 − p) (DeGroot and Schervish, 2012). We 
define σavg as the mean computed standard deviation (square root of 
variance) of an evenly spaced grid of predictors on the domain covered 
by the database. This metric summarizes how confident the models es-
timates of probability are, on average. Visually, this appears as the 
probability contours shifting closer together. 

4. Discussion 

Table 1 compares the performance metrics between all models. The 
following discussions are qualitative in nature. Although statistical 
methods exist for comparing AUC values, selecting and justifying an 
appropriate one for discriminating between triggering model perfor-
mance is out of the scope of this paper. 

When considering all the models four major trends are apparent:  

• The difference in AUC from the worst to best performing model is not 
large. However, this is expected given the limited number of case 
histories in the training and testing data.  

• Two predictor variables generally outperformed three predictor 
variables  

• The measurement error and hierarchal models outperform the 
baseline models, but not by a large margin.  

• More complex models, both in terms of number of predictors and 
functional form, tend to have diffuse coefficient posterior distribu-
tions. This resulted in greater model uncertainty. 

The following sections will discuss the final three trends in further 
detail. 

4.1. Comparing two and three predictor variables 

The lower than expected predictive performance of the three vari-
able models can be interpreted in several ways. Because the testing set is 
mostly clean sand cases it is possible that it does not capture the model’s 
overall performance. This is evidenced by the lack of separability be-
tween yes and no cases considering only Rf relative to the training set as 
shown in Fig. 11. In this case a testing set that includes a wider spread of 
Rf values may show improved predictive performance. Or, it can simply 
be that Rf as a predictor variable does not generalize well to new data. 

Additionally, Rf and qc,1 are correlated (Fig. 12) because Rf is a 
function of tip resistance and can be an input to the equation for the qc,1 
normalization exponent. When predictor variables are correlated the 
posterior will have a high spread because many logistic surfaces can fit 
the data leading to poor performance (Kruschke, 2015). Future models 

Fig. 6. The baseline Bayesian regression, Model 1–2, that mimics logistic regression using maximum likelihood to optimize the fit to the functional form.  
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might use sleeve friction directly instead of friction ratio to avoid this. 
These results illustrate the importance of distinguishing between 

model fit to the training data and its actual predictive performance. The 
AIC based selection indicated that there is statistical utility in including 
Rf as a predictor variable. However, this metric is based off the model fit 
to the training data rather than performance on testing data. This may 
indicate that this predictor selection process may not identify the best 
candidate models if future predictive performance is the end goal. 

4.2. Comparing model complexity 

For the two variable case, all the non-baseline models showed only 
slight improvement in performance with the combined model having 
the highest AUC. The average model uncertainty followed a similar 
trend. For three variables the combined model showed a greater increase 
in performance relative to baseline. In general, the hierarchal models 
(models 2- and 4-) had larger uncertainty metrics than the fully pooled 
cases (models 1- and 3-). This is consistent with the notion that the 
pooled models underestimate the uncertainty associated with out of 
sample predictions but hierarchal models account for event-to-event 
variability in the coefficients. A result of this is that probability con-
tours spread out in areas with fewer data points (the upper right of the 
scatter plot). This trend is generally considered one of the benefits of 
hierarchal models (Gelman and Hill, 2007). More data in this sparse 

region of “load-resistance” space are required to assess if this contributes 
or detracts from model predictive ability. 

There are a few possible explanations for why the hierarchical and 
measurement models did not dramatically outperform the baseline. As 
discussed before, it could be that the testing set may not cover enough of 
the model space to adequately assess overall performance. A second 
explanation may be the diffuse posterior estimates result in greater 
model uncertainty which in turn produces lower model predictive 
ability. This can be partially explained by the correlation between Rf and 
qc,1; correlated predictors leads to more diffuse posteriors. However, it 
also appears that particularly for models 3–3 and 4–3 that some or all 
posterior standard deviations are influenced by the prior. This inference 
is based on the rule of thumb proposed by the Stan development team 
that a posterior is “influenced” by a default prior if its standard deviation 
is greater than 10% of the prior’s (Gelman, 2019). That is, the data alone 
is not strong enough to constrain the posterior estimates for these pa-
rameters. However, the performance increase over baseline indicates 
these models have promise and can be improved with informative priors 
and/or more data. This is evidenced by the work of Kuehn and Abra-
hamson (2018), who used numerical simulation to justify informative 
priors on regression coefficients and had access to a larger dataset. 

Fig. 7. The Bayesian hierarchical regression model, Model 2–2, that uses mixed or random effects to account for inter- and intra-event uncertainty.  

J. Schmidt and R. Moss                                                                                                                                                                                                                       



Computers and Geotechnics 132 (2021) 103963

10

4.3. Model uncertainty 

While a reduction in model uncertainty usually leads to better pre-
dictive performance there will always be a certain amount of irreducible 
uncertainty in future observations. There will eventually be a point 
where models become “over-confident” and lose predictive ability even 
as the probability contours shrink closer and closer together. This can be 
seen by example with model 4–3. If we fix the population average pa-
rameters at their mean values and ignore the variability in their esti-
mates the result is a model that appears very certain (Fig. 13). The 
average uncertainty in this case is only 0.046, considerably lower than 
what is produced by using the full posterior uncertainty. However, the 
AUC for this model is only 0.649, compared to 0.694 obtained by using 
the full posterior uncertainty. Thus, the model performs worse when 
making out of sample predictions despite having lower model uncer-
tainty. The upshot is that future model development can balance seeking 
lower model uncertainty measures with making realistic out of sample 
predictions. 

4.4. A brief discussion on the dangers of overfitting 

Overfitting can be conceptually thought of as when a model has 
learned too much from training data. That is, it has learned overly 
complex patterns that do not generalize to new cases. Fig. 14 shows the 

predictive performance Model 4–2 but this time using the original 
training set for testing. Note that the AUC of Model 4–2 validated using 
the testing set is only 0.717. This approach, taken by most of the pre-
vious work in the field, dramatically overestimates the model’s predic-
tive ability. This is further compounded with practitioners often having 
to rely on self-reported validation metrics when deciding which is a 
better model to use. 

4.5. Prior sensitivity study 

To further assess the influence of prior choice we performed a 
sensitivity study on our models. The default priors, used for the results 
reported above, are Normal (0,25) on the intercept parameter and 
Normal (0,10) on the slope parameters. We then tested a second case 
using a Normal(0,25) prior on the slopes and intercept. The final case 
considered a Normal(0,100) prior on the slopes and intercept. After 
recording the change in posterior distributions moments and model 
predictive performance we found for the 2 variable models the posterior 
distributions of model coefficients changed only slightly. Both AUC and 
σ50 remained relatively unchanged. The three variables showed a larger 
increase in the model coefficients posteriors standard deviations (and a 
shift of mean values). However, similar to the two variable case the 
predictive performance and model uncertainty remained relatively un-
changed. Therefore, this indicates that model performance is not overly 

Fig. 8. The Bayesian measurement error model, Model 3–2, that includes parameter uncertainty for each variable.  
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sensitive to more diffuse priors. This study did not consider the effects of 
tighter priors. 

5. Conclusions and Recommendations for Future Work 

This study built a predictive modeling workflow for developing 
empirical models for liquefaction triggering potential. The intent is that 
this principled statistical workflow can be used for developing new 
triggering models when data from the NGL project is available. Our 
workflow and novel functional form address several shortcomings of 
existing triggering models. Firstly, existing liquefaction models lack 
open and consistent model building and evaluation approaches. The 
performance, if assessed at all, is almost always estimated by refitting 
the model to training data. Our paper summarizes methods that mod-
elers and guidance committees can use to develop principled new 
models and realistic comparisons of performance on out of sample data. 

Secondly, this paper this paper demonstrates how a hierarchical 
model can be built using Bayesian methods that also accounts for un-
certainty in measured or estimated predictors. This framework has not 
been applied in existing liquefaction triggering models. A hierarchical 
modeling approach, also called mixed effects, variance components, 
random effects, and others, will likely be necessary for NGL modeling 
efforts to account for intra and inter-event correlations and allow for a 

proportional weighting of the data from large and small sample events. 
Finally, the likelihood forms implied by a hierarchical model are 

appreciably more complex than those used to develop current work (i.e. 
Boulanger and Idriss, 2016) and will require sophisticated fitting stra-
tegies. For example, even our relatively simple hierarchical model with 
3 varying slopes and varying intercepts grouped by event cannot be 
solved by traditional maximum likelihood techniques. More complex 
models with additional predictor variables and models incorporating 
measurement error in the predictors will be similarly intractable without 
the inclusion of prior knowledge. A Bayesian approach can use weakly 
informative priors to sufficiently constrain the model and arrive at a 
solution as demonstrated in our work. Additionally, Bayesian priors can 
be tuned to ensure the model extrapolates according to principles of soil 
mechanics in regions of data sparsity. This is conceptually similar to 
Kuehn and Abrahamson (2018) used finite fault simulations to constrain 
coefficients for ground motion scaling. 

We first selected the predictor variables that resulted in the model 
that best balanced over and underfitting. The best performing model 
included qc,1, CSR, and Rf. Notably, this step indicated that models 
incorporating magnitude (Mw) and effective stress (σ’

v), and others were 
not as effective as the simpler forms. This is seemingly at odds with soil 
mechanics principles and laboratory studies showing initial stress and 
number of shear reversals strongly influence liquefaction behavior. 

Fig. 9. The combined measurement and hierarchical model, Model 4–2, that utilizes all the features in the Models 2 and 3.  
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However, the more useful interpretation is non-included predictors are 
either poor stand-ins for the underlying mechanical behavior (number of 
shear reversals, stress states during dynamic loading, etc.), the values 
included in the database are too similar to discriminate liquefaction 
occurrence, or the parameters are already embedded in the loading 

characterization using CSR. 
This highlights an important theme that should be considered when 

developing empirical models. While soil mechanics and other knowl-
edge certainly should guide efforts, it is misleading to view these models 

Fig. 10. Combined model with 3 predictor variables, Model 4–3. Probability curves are shown for three fixed values of Rf.  

Table 1  

Model σavg  % Difference from 
baseline 

AUC % Difference from 
Baseline 

0–2 0.12 – 0.699 – 
0–3 0.13 8% 0.649 − 7% 
1–2 0.10 − 17% 0.710 2% 
1–3 0.13 8% 0.644 − 8% 
2–2 0.09 − 25% 0.710 2% 
2–3 0.14 17% 0.694 − 1% 
3–2 0.09 − 25% 0.710 2% 
3–3 0.07 − 42% 0.644 − 8% 
4–2 0.09 − 25% 0.717 3% 
4–3 0.13 8% 0.694 − 1%  

Fig. 11. Separability of Rf for the training (Moss et al., 2006) and testing data 
(Green et al., 2015). 
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as describing physical behavior. Empirical models learn the trends in the 
data using the mathematics of probability and statistics, not by 
computing stresses and strains. Too strong of an emphasis on “rational” 
physical interpretation may hamper model development by excluding 
otherwise strong predictors or parametric forms that lack physical 
interpretations. 

We then selected Box-Cox transformations of these variables that 
produced the highest cross-validated AUC for both the two and three 
variable models. In this case, the separation of feature selection and 
transformation was for ease of computation. Future efforts can refine 
this approach by combining the two steps, i.e. selecting the best per-
forming predictors and transformations at the same time with the same 
metric. More flexible combinations of predictors and transformations 
could also be considered. This will likely result in a large space of 
possible models and optimization techniques such that simulated 
annealing or genetic algorithms will be necessary to select promising 
candidates. After selecting the appropriate combinations and forms of 

predictors four main models were considered; a baseline logistic 
regression, a hierarchal (or mixed/random effects) model, a Bayesian 
measurement error model, and a combination of the last two. The per-
formance of these models was assessed using a testing set of New Zea-
land case histories and reported as ROC curves and mean standard 
deviation of predictions (σ50). 

Three main trends are apparent in the results. The two predictor 
variable models usually outperform those including Rf , though the 
magnitude of the difference varied. The hierarchical and measurement 
error models show improvements (both AUC and σavg) for both two and 
three predictor variables over the baseline and likely will benefit from 
informative priors and more data. Hierarchical models should be 
considered for future work because they can systematically account for 
inter- and intra- event variability and give improved estimates for 
imbalanced group sample sizes. They can also be used to develop region 
specific correlations that still learn from the global database. A Bayesian 
approach, such as the one described in this paper, will likely be neces-
sary to fit these future models. 

Finally, it appears that using a limited single testing set does not give 
the best view of overall model performance. To remedy this, a cross 
validation approach that uses all the data independently for training and 
testing or curation of a more representative test set should be consid-
ered. Regardless of the validation metrics used in future work assessing 
model performance on the data it was built on will lead to overfitting 
and should not be done. 
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