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Towards Better Estimation of Jump Di¤usion Models

Richard Serlin

July 2nd, 2007

I Maximum Likelihood Estimation and The E-M Algorithm

Maximum likelihood estimation (MLE) is a highly regarded estimation technique for several

reasons. It is consistent and asymptotically normal (CAN). It is asymptotically unbiased,

although not necessarily in small samples. and most impressively it achieves the Cramer

Rao lower bound, meaning that it has the lowest asymptotic variance of any consistent

estimator.

It should be kept in mind, though, that MLE is a "large sample" technique. There

is often little known about its small sample properties in the situation at hand, although

often one might perform simulations to get an idea of small sample performance.

Standard errors are taken from the estimators�asymptotic variance covariance matrix,

so they are just estimates of the true variance covariance matrix, and typically the smaller

the sample, the worse of an estimate they will be. Thus, again it is recommended that

MLE only be used with "large" samples. In fact, the exact form even of the asymptotic

variance covariance matrix cannot be calculated because it would require knowing the true

value of the parameter vector (let�s call it �). We instead use a consistent estimator of the

asymptotic variance covariance matrix

One such estimator is the inverse of the Hessian of the likelihood function, evaluated

at the MLE. However, it is usually much easier computationally to use the estimator of

Berndt, Hall, Hall, and Houseman (1974). This estimator, also called the outer product of

gradients, or OPG, estimator, involves only the evaluation of �rst derivatives.

Although MLE has many desirable properties, it has drawbacks that can be enormous

in some cases. For the most part these involve numerical and computational di¢ culties.

Jump di¤usion models, for example, can have 10 or more parameters, and their likelihood



functions can be extremely complicated and poorly behaved. Deriving such a likelihood

function may be di¢ cult, and it may not be possible to express it in closed form. In that

case the computer will have to approximate the value of the likelihood function many times

each iteration, adding to the numerical di¢ culty.

Usually the biggest problem in complicated, high dimensional cases is global optimiza-

tion. Although current algorithms and software are very competent at �nding local opti-

mums, often in complicated high dimensional cases, there exist many, or an in�nite number

of, local optimums, and it can be very di¢ cult to be sure that the optimum you�ve found

is the global one. Global optimization of complicated high dimensional functions is very

di¢ cult and often intractable, however, a recent important advance is simulated annealing.

Simulated Annealing

The method is so named because it is analogous to the physical process of annealing.

Annealing is a process that occurs when metals cool from high temperatures. If they are

allowed to cool slowly, their molecules align in a pure crystal state, a state of minimum

energy. In other words, slow cooling allows the metal to attain a global minimum, while

fast cooling, or quenching, of the metal will result in the molecules arranging themselves

in a polycrystalline or amorphous state having higher energy, in other words not achieving

the global energy minimum.

Simulated annealing is like slow cooling. the algorithm is slow and patient in searching

for the global optimum, as opposed to being quick in its search, and running up to the top

of the nearest hill only to converge to a local, but not global, maximum.

The speci�c simulated annealing algorithm, for maximization, is essentially as follows

(if we want to minimize an objective function, we can just maximize the negative of that

function):

1) Choose a starting point (let�s call it �0) by using prior information, and perhaps by

applying another optimization technique. It should be clear as the algorithm is explained

further that the choice of starting point is much less important with simulated annealing

than with conventional local optimization techniques.

2) To �nd �i+1 given �i , try to think of an e¢ cient search algorithm, with a random

component, which will select a number of good candidate points in a neighborhood of �i.

These are candidates to be the next �; �i+1. We want our search algorithm to be intelligent
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and e¢ cient in that it selects points likely to be a move us smartly in the direction of the

global optimum. Call those candidates c1:::cK .

3) Evaluate the objective function, let�s call it l(�), at all of the candidate points. Then,

assign a probability of being "elected" the next �, to each of the c�s, according to the

following formula

Prob [ck is chosen to be �i+1] = exp ([l (ck)� l (�i)] =T )

and

Prob [�i is chosen to be �i+1] = 1�
KX
k=1

exp ([l (ck)� l (�i)] =T )

If any c has a probability greater than or equal to 1, then it is chosen with certainty. If

more than one c has a probability greater than or equal to 1, then the one with the highest

probability is chosen with certainty.

This probability function, a Boltzman probability function, is the type used in the phys-

ical model of the annealing process. Thus, it is another reason why this global optimization

technique is called simulated annealing.

In accordance with the probabilities of the c�s and of �i, one of them is chosen via a

random draw. Because of this randomness, it is possible that l (�i+1) will be lower than

l (�i). Thus, the algorithm has the capability to jump out of inferior local optimum. This

is in contrast to local optimization algorithms which always go in the direction of greatest

local increase, and thus will tend to stick at a local optimum.

The parameter T was given that letter because it is analogous to temperature in anneal-

ing. As can be seen from the probability function, when T is large, or when temperature

is high, the probability of moving from the current point is higher. Also, the candidate

search algorithm is typically made a function of T in that when temperature is high, the

average distance of candidates from the current point, xi; is greater than when temperature

is low. Thus, when the process is hot, it tends to roam widely sampling the surface of the

objective function.

Another part of the simulated annealing process is that the temperature T is gradually

decreased according to some schedule that the programmer decides on. Again, analogous to

3



physical annealing, if the temperature is cooled quickly, the process may quickly settle in a

local optimum and not leave before a programmer supplied convergence criteria is reached.

Thus, if the process is "quenched", an inferior point is likely to be reached.

With "slow cooling" the process will �rst build up a rough view of the surface by moving

often and with large steps. As the temperature falls and step length decreases it slowly

focuses on the most promising area.

Thus, the slower the cooling schedule, the more likely it is that the optimum found will

be global, but the longer the process will take. Therefore, with a di¢ cult and/or high

dimensional objective function, "slow enough" cooling may take an impractical amount of

computing time. On the other hand, if we cool too quickly, we may converge to only a local

optimum. It may be di¢ cult even with simulated annealing to be sure that the optimum

we have converged to is global.

We do, however, note that Veall (1990) contains a test for global optimization applicable

in some cases. Also, certain annealing schemes, that is candidate selection algorithms and

cooling schedules, have been proven to converge to the global optimum almost surely in

some cases. See Judd (1998) for details. But even here the guarantee is that when the

algorithm does converge, it will converge to the global optimum, no limit is given as to how

much computing time this will take.

Thus, simulated annealing is a powerful advance, but far from a cure all, and its ef-

fectiveness will depend on the cleverness of the programmer in deciding on the candidate

search algorithm and cooling schedule.

The method was �rst developed by Metropolis et al. (1953). Go¤e, Ferrier, and Rogers

(1994) provide a nice overview of the algorithm. They also test it against three common

conventional optimization routines with four important econometric problems, and �nd

impressive results. In addition they provide ideas for more e¢ cient speci�c implementation.

Singularities in the Likelihood Function

Sometimes the global optimum does not exist, and in fact �dramatic statement �this is

probably the case with the likelihood function of any jump di¤usion model. Kiefer (1978)

shows that if the likelihood function consists of a product of mixtures of normal densities,

then it contains an in�nite number of singularities, and the same reasoning behind why this
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is true implies that an in�nite number of singularities will exist with almost any mixture

of densities. We will discuss and develop this idea in detail in the pages to come.

Honoré (1998) develops keifer�s insight further, showing how singularities exist in the

likelihood function of the Merton (1976) jump di¤usion model. When there are multiple

singularities in the likelihood function, clearly it can be shown that maximum likelihood

estimation may not be reliable. We will also be show that the true parameter vector need

not be at one of these singularities. And, in fact, it won�t be in any of the models we would

work with because the singularity points do not make economic sense. Thus, maximum

likelihood estimation will not be consistent, and will yield nonsense answers, which, as

Honoré points out, has been reported by a number of researchers.

Let�s now examine in more detail why these singularities exist. Please consider the

following:

Case 1: MLE when xt � N(�; �2)

In this case:

L(x1:::xT j �; �) = fN(�;�2)(x1) � fN(�;�2)(x2) � : : : � fN(�;�2)(xT )

=

"
1p
2��

exp

 
�1
2

�
x1 � �
�

�2!#" 1p
2��

exp

 
�1
2

�
x2 � �
�

�2!#

: : :

"
1p
2��

exp

 
�1
2

�
xT � �
�

�2!#

Now, suppose � ! 0 and �! x1 . First, lets consider what happens intuitively. When

� ! 0 and �! x1 , the normal density becomes an in�nite spike at � = x1 . So, we end

up with:

L(x1:::xT j � = x1; � = 0) = fN(x1;0)(x1) � fN(x1;0)(x2) � : : : � fN(x1;0)(xT ) =1 � 0 � : : : � 0

and it can be shown that the relative speeds of convergence are such that this product is

0 (essentially because an exponential function converges far faster than a power function).

So, the strategy of trying to maximize the likelihood function, by creating an in�nite spike

at one of the sample points, will not create a singularity, but as we will see below, this kind

of strategy will create a singularity when we have a mixture of normal densities.
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Case 2: MLE with a Mixture of Normal Densities, for Example; fxt(xt) =
wfN1(�1;�21)(xt) + (1� w)fN2(�2;�22)(xt)

In this case:

L(x1:::xT j �; �) =

h
wfN1(�1;�21)(x1) + (1� w)fN2(�2;�22)(x1)

i
�
h
wfN1(�1;�21)(x2) + (1� w)fN2(�2;�22)(x2)

i
� : : : �

h
wfN1(�1;�21)(xT ) + (1� w)fN2(�2;�22)(xT )

i
Now, suppose we try a similar strategy to the one we used above in case 1; for the parameters

in the �rst normal, let �1 ! 0 and �1 ! x1 , but for the other normal in this mixture of

normal densities, let�s not make a spike. Let�s let �2 = a and �2 = b where a can be any

�nite real, and b is any �nite real that�s not 0, so that second normal won�t be an in�nite

spike, only the �rst normal will. What happens? First, lets look at the �rst term:

�
wfN1(x1;0)(x1) + (1� w)fN2(a;b2)(x1)

�
The �rst part is 1; and the second part is some �nite number; let�s call it k1 . So we have
1+ k1 =1:

But what happens with the second term:

�
wfN1(x1;0)(x2) + (1� w)fN2(a;b2)(x2)

�
The �rst part is 0; and the second part is some �nite number; let�s call it k2 . So we have

0+ k2 = k2: If we didn�t have a mixture we would only have the �rst part, and it would be

0. Then, we would be multiplying 0 �1; and because of the rates of convergence we would
get 0, so there would be no problem with a singularity. The mixture, however, allows us to

choose parameters for the second normal that don�t yield 0, so now instead of 1� 0 = 0; we
have1� (0 + k2) =1: So with a mixture of normals (as well as a mixture of most kinds of
densities), there exist singularities, thus there is no single global optimum, and maximum

likelihood estimation is not consistent.

The number of singularities is in�nite. A singularity exists at every point (�1 =

xt; �1 = 0; �2 = c1; �2 = c2); xt 2 fx1:::xT g; c1 2 R; c2 2 Rn0 as well as every
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point (�1 = c1; �1 = c2; �2 = xt; �2 = 0); xt 2 fx1:::xT g; c1 2 R; c2 2 Rn0 .

Examples of the Improper Use in the Literature of Standard Maximum
Likelihood Estimation when the Likelihood Function is a Mixture

Honoré (1998) points out several papers that improperly use standard maximum likelihood

estimation. These include Ball and Torous (1983,1985), Beckers (1981), Frost (1993), and

Jorion (1988). Let�s consider the example of Jorion (1988).

Jorion estimates the following jump di¤usion model:

dPt
Pt

= �dt+ �dzt + Ytdqt

where dqt is a Poisson process with mean number of jumps �, and Yt is the jump size;

logYt � N(�; �2). xt, the continuously compounded return, can be derived to be:

xt = log(Pt=Pt�1) = �+ �z +

ntX
i=1

log Yi

where nt is the actual number of jumps that occurred during the interval, and � � ���2=2.

The log likelihood function for this process (taken directly from the appendix of the paper)

is:

lj = �T��
T

2
log(2�) +

TX
t=1

log

24 1X
j=0

�j

j!
p
�2 + �2j

exp

 
� [xt � �� �j]

2

2
�
�2 + �2j

� !
35 (1)

Jorion assumes that more than one jump can occur in a non-in�ntesimal period, and in fact

he allows for the possibility of any number of jumps occurring. However, he must truncate

the number of possible jumps in order to numerically optimize the likelihood function. He

uses a formula for the upper bound of the truncation error that was derived by Ball and

Torous (1985). From this Jorion deduces that an upper bound of 10 provides satisfactory

accuracy for all of the parameter values encountered in his paper.

Now, I want to show that, as Honoré states, Jorion uses standard MLE, even though

his likelihood function is the product of mixtures of densities, and contains singularities.

If the likelihood function contains singularities, then so does the log likelihood function,
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and it is easier to analyze the likelihood function, so we back it out by exponentiating the

log likelihood function:

exp (lj) = Lj = exp (�T�) + exp
�
�T
2
log(2�)

�
+

TY
t=1

24 1X
j=0

�j

j!
p
�2 + �2j

exp

 
� [xt � �� �j]

2

2
�
�2 + �2j

� !
35

) Lj /
TY
t=1

264 1X
j=0

�j

j!
p
�2 + �2j

exp

0B@�1
2

[xt � (�+ �j)]2hp
�2 + �2j

i2
1CA
375

Now,we will show that this is the product of mixtures of normals.

=

TY
t=1

24 1X
j=0

 
�j

j!
p
�2 + �2j

!
exp

0@�1
2

"
xt � (�+ �j)p

�2 + �2j

#21A35

=

TY
t=1

24 1X
j=0

 
�j

j!
p
�2 + �2j

!�p
2�

q
�2 + �2j

� 
1

p
2�
p
�2 + �2j

!
exp

0@�1
2

"
xt � (�+ �j)p

�2 + �2j

#21A35

=
TY
t=1

24 1X
j=0

wj � fN(�+�j;�2+�2j) (xt)

35

where wj =

p
2��j

j!

So, as we can see, we have a likelihood function that is proportional to one where

each data point has a density that is a mixture of normal densities. Thus, we can create

singularities using the same strategy that we showed earlier. Let�s actually do this, so we

can see, concretely and speci�cally, how this actually happens in an actual model from the
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top teir literature. First, we truncate the summation at 10 as Jorion did.

Lj /
TY
t=1

24 10X
j=0

wj � fN(�+�j;�2+�2j) (xt)

35 =
h
w0 � fN(�+��0;�2+�2�0) (x1) + w1 � fN(�+��1;�2+�2�1) (x1) + : : :+ w10 � fN(�+��10;�2+�2�10) (x1)

i
�

h
w0 � fN(�+��0;�2+�2�0) (x2) + w1 � fN(�+��1;�2+�2�1) (x2) + : : :+ w10 � fN(�+��10;�2+�2�10) (x2)

i
� : : : �

h
w0 � fN(�+��0;�2+�2�0) (xT ) + w1 � fN(�+��1;�2+�2�1) (xT ) + : : :+ w10 � fN(�+��10;�2+�2�10) (xT )

i
Now, following our strategy, let�s let � = x1 , � = 0, and let�s let � and � be some regular

�nite numbers a and b , where b 6= 0 . This will give us:

�
w0 � fN(x1;0) (x1) + w1 � fN(x1+a;b2) (x1) + : : :+ w10 � fN(x1+10a;10b2) (x1)

�
�

�
w0 � fN(x1;0) (x2) + w1 � fN(x1+a;b2) (x2) + : : :+ w10 � fN(x1+10a;10b2) (x2)

�
� : : : �

�
w0 � fN(x1;0) (xT ) + w1 � fN(x1+a;b2) (xT ) + : : :+ w10 � fN(x1+10a;10b2) (xT )

�
(2)

This is a singularity, as it is equivalent to:

[w0 � 1+ w1k11 + : : :+ w10k110] � [w0 � 0 + w1 � k21 + : : :+ w10k210]

� : : : � [w0 � 0 + w1 � kT1 + : : :+ w10kT10]

where kij 6= 0

=1 � k2 � : : : � k10 =1

where ki 6= 0

It can also be shown more directly that Jorions�likelihood contains singularities by setting

� = x1 , � = a, � = b , and then taking the limit as � ! 0 .

Because almost any density (or perhaps any density) can become an in�nite spike at a

data point, with some parameter selections, any likelihood function made up of mixtures of
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densities is likely to have (or perhaps surely has) a singularity problem.

Next, we will address ways to deal with this problem.

Solutions to the Singularity Problem

Honoré provides two solution techniques, that is to say he provides two methods which

obtain consistent and asymptotically normal (CAN) estimates. And, these two methods

are very similar to, or very related to, standard maximum likelihood estimation. One he

created himself, and the other, he points out, is described in Chapter 22 of Hamilton�s book,

"Time Series Analysis" (1994). First, let�s go over Honoré�s method.

Honoré�s Method for Solving the Singularity Problem

I must say that I didn�t fully understand this when I �rst read it. It�s sketchy, sometimes

poorly worded with respect to clarity, and sometimes even literally false, perhaps because

English is not his native language, and although often cited, this is a working paper. I bring

this up to say that this paper is a good example of why I usually prefer texts. Of course, the

more one learns the tricks, the math, the background, etc., the more one quickly recognizes

the steps, explanation, etc. that the author is leaving out, and the less his sketchiness costs

you in either; 1. taking a lot longer than it could have to understand the article, or 2. just

unneccessarily understanding it in a poorer, more surface, way (or misunderstanding it).

What is really important is not how long it takes to say the words in your head, but

how long it takes to understand the subject matter. Very often a shorter written work will

take much longer to understand because of all of the explanation and clarity that is left

out. Years ago printing was relatively a lot more expensive than today and there was more

justi�cation for sketchiness, but today printing is very cheap (and computer storage space

is virtually free), while the time of highly skilled readers is very expensive, so it�s a mistake

to make it shorter at the expense of making it take signi�cantly longer to understand.

And, often people make the mistake of thinking that they are saving the reader time by

making it less words, but if the words left out are ones that would have made understanding

the material, faster, better, easier, then they are actually costing the reader time, and doing

him no favor.

On the other hand, if your audience has tremendous background, and has seen every

math trick in the book before at least three times, then it would make sense to leave a
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lot of steps and explanation out � to be sketchy. With such an audience it won�t slow

understanding, and will actually make the learning faster.

But, I would beware of the Du¢ e example. His text assumes the reader has a tremen-

dous background, and has seen every trick and theorem there is at least �ve times. So,

his explanations leave a tremendous amount out, yet the book is often used for second and

third year Ph.D. students, who are mysti�ed about how he got from math line 1 to math

line 2, because they don�t know the 5 in between steps he left out that utilize the 2 tricks

and the 3 useful theorems that they don�t know or haven�t seen enough to recognize.

Finally, If you really want to make it shorter, when the audience has a relatively lim-

ited background, then perhaps sometimes you should make it more of an understandable

overview, with less depth attempted. Although, it does depend on the speci�c situation,

audience, purpose, and other particulars. Sometimes, it might even be appropriate to use

a Du¢ e approach for an audience with limited background.

So, that�s my commentary on writing style. It is a literature review, so I thought it

might be alright to comment a bit on writing style as well as content.

Now, on to Honoré�s method. The good news is that after being in this program a

while, I was able to, I think, fully understand this paper when I went through it again

carefully. So, this is my description of Honoré�s method for dealing with the singularity

problem.

Our situation is as I described earlier. The data points in our sample are generated

from a density that is a mixture of densities, like a mixture of normals, so our likelihood

function looks like this:

L(x1:::xT j �; �) =
h
wfN1(�1;�21)(x1) + (1� w)fN2(�2;�22)(x1)

i
�

: : : �
h
wfN1(�1;�21)(xT ) + (1� w)fN2(�2;�22)(xT )

i
As we showed earlier, the likelihood function goes to in�nity when:

a) One of the variances is zero, and one isn�t: �1 = 0; �2 6= 0 or �1 6= 0; �2 = 0 .

and
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b) One of the means equals a data point.

What Honoré does is he constrains the parameters so that this can�t happen. Speci�cally,

he makes the restriction:

�21 = m�22 , where m is a real non-zero �nite constant (and we will discuss how m is

chosen later).

Note what this restriction does: Now, if �1 equals 0, then �2 must equal 0 also, and if

�1 is not 0, then �2 will not be 0 either. So, with this condition it is impossible to have

one of the variances equal 0, but not the other one. Therefore, it is impossible to satisfy

condition a above, and so it is impossible for the likelihood function to be evaluated at a

singularity point.

Thus, you have restricted the domain of the likelihood function to include no points

that will cause singularities. On the other hand, a given single choice of m tremendously

restricts the domain, and could easily restrict it to a subset of points that doesn�t include

the true �. Therefore, the m is not restricted to a single point. You can either make

m an unknown parameter to be estimated, where m can be any non-zero �nite real, or

perhaps you can incorporate some prior information and make m an unknown parameter

to be estimated on some subset of the reals.

A di¢ culty that I see with Honorés�technique, however, is the requirement that m be

constrained. Otherwise, a good global optimization program will try to create a singularity

by driving m to in�nity, thus allowing it to drive �1 to zero, while keeping �2 non-zero.

Also, the program could drive m to zero, which would remove any constraints on �1 and

�2. Thus, the programmer must constrain m away from zero and in�nity, but if she does

not constrain it far enough away then the constraint will bind, and the program will not

converge to the (unconstrained) bounded maximum. On the other hand, if the programmer

constrains m too heavily, then the parameters may be constrained to a space that does not

include the (unconstrained) bounded maximum.

As we can see again, global optimization, constrained or unconstrained, is a very serious

problem with likelihood based frequentist techniques that may make it hard to have con�-

dence in estimates researchers generate from these techniques. I found interesting a quote

from Veall�s 1990 Econometrica article (pg. 1459):
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Ideally for a particular problem it would be possible to show that any local

maximum must be a global maximum as well, such as if a likelihood function

can be shown to be everywhere concave in the parameters. Goldfeld and Quandt

(1972, pg. 21) write, however, that such a result is available "only in the rarest

cases". Therefore, perhaps the most popular approach to the problem is to try

a number of sets of starting values, perhaps randomly generated, and check that

in each case the maximization algorithm converges to the same solution. While

the more starting values that are tried without �nding a new maximum, the

more likely it is that the true global maximum has been located, it appears to be

di¢ cult to quantify the degree of certainty. Moreover, optimization algorithms

often move very slowly or even break down entirely in certain regions of the

parameter space. As a result, there may be a temptation, one suspects, to

choose alternative sets of starting values fairly close to either the initial set

or the solution, easing computational di¢ culties but making it less likely that

another maximum would be found if it existed.

The problem of global optimization is compounded further by the fact that our �eld,

unlike the physical sciences, places little value on duplicating results, so as to increase their

credibility. In fact, usually a researcher will be severely penalized for duplicating the results

of another, because the odds are slim that this will lead to a publication, yet he ticks o¤ a

lot of valuable time from his tenure clock. And, from what I�ve seen, in peer review, things

like global optimization are little checked , and usually not made publicly available (this is

also documented in McCullough and Vinod 1999). So, global optimization is an important

issue, and as we will see later, a key advantage of Bayesian techniques is that they usually

don�t require global optimization.

Now, let�s get back to the speci�cs of Honoré�s method. We substitute his constraint;

�21 = m�22 into the likelihood function, so that we are optimizing:

L(x1:::xT j �1; �1;m�1;m)

with respect to �1; �1; and m; rather than in standard MLE, where we would would be

attempting to optimize:

L(x1:::xT j �1; �1; �2)

with respect to �1; �1; and �2
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What you get with Honoré�s method is the highest point on the likelihood function,

except for the singularities. Intuitively, it seems like this point could be CAN, and that

this technique could achieve the Cramer-Rao lower bound. Honoré claims his estimator is

CAN, but does not refer to any proof, although he does generally reference Kiefer (1978)

(and, again Honoré 1998 is a working paper). Kiefer showed that likelihood functions

from mixture densities do, in fact, still contain a bounded local maximum that is a CAN

and e¢ cient estimate for � (see also Hartley 1978, pg. 738) and standard errors can be

constructed in the usual ways used with regular MLE.

Kiefer (1978)

It is interesting to note that the problem of singularities in the likelihood function, when

data is generated from mixture densities was pointed out in the literature as early as 1978

in Kiefer�s Econometrica paper, yet this problem still seems to be unknown to many. In

my own work (Santa Clara, Serlin, and Yan 2004), I was asked to do standard maximum

likelihood estimation on such a model, and experienced some of the same peculiarities that

Honoré reported. And, as I noted, Honoré mentions several well known papers in top

journals that performed standard maximum likelihood estimation on mixture likelihood

functions (note that the likelihood function will always be a mixture in jump di¤usion

models).

Nonetheless, those papers still might have gotten e¢ cient CAN estimates as they might

have restricted the domain of � in such a way that they found the maximum except

for the singularities, that is the bounded maximum, or they might have started a local

optimization routine close enough to this point that the routine moved to it rather than

one of the singularities.

Kiefer also provides a technique for �nding the bounded maximum, which is iterative

and involves the method of moment generating functions of Quandt (1972).

Hamilton�s Method

Hamiltons method is actually a special case of the EM algorithm developed by Dempster,

Laird, and Rubin (1977), and as such there is formal proof that it is CAN, and e¢ cient

under regularity conditions. Standard errors can be obtained using the same techniques

as with standard MLE, as both methods share the same asymptotic variance covariance

matrix. The advantage of EM is that the global optimization necessary can be much

easier. When Hamilton describes his method as, "a special case of the EM algorithm", what
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this essentially means is this is the E-M algorithm. Let me clarify. The E-M algorithm is

like GMM in that GMM is a broad general technique. In a sense, there�s no single speci�c

GMM algorithm. There�s one for every set of moment conditions that one can think of,

and a clever researcher who can think of especially good moment conditions can provide

much value to the �eld. An example is Aït-Sahalia (2004). Likewise, the EM algorithm is

a broad general technique, and there�s room for a lot of creativity and cleverness in coming

up with a good speci�c implementation of it, or what Hamilton calls a "special case" of it.

Let�s now discuss the E-M algorithm in detail.

The EM Algorithm

This is a key intuition regarding the EM algorithm: Suppose you have a data generating

process (DGP) with a parameter vector 	, and you have some data that came from that

DGP, y. So, Y � fY j	 (y j 	 =  ) , or Y � f (y j  ). You want to estimate  via

maximum likelihood estimation, but the likelihood function is very di¢ cult to optimize, or

intractable.

So, you say to yourself, if only I had this additional data that I can�t observe, call it u ,

for unobservable, then, it would be easy (or easier) to do MLE, because then the likelihood

function would be:

TY
t=1

fYt;Ut (yt; ut j  ) (3)

instead of

TY
t=1

fYt; (yt; j  ) (4)

Now, a few things to note here:

First, the  in (3) is exactly the same as the  in (4) : The model doesn�t change, we�re

just now dreaming about how wonderful it would be to observe, if only we could, additional

data that was generated from that same model, additional data that we call u, because if

only we could observe u, then our likelihood function would be (3) instead of (4) : And,

likelihood function (3) is a function that�s much easier to optimize than likelihood function

(4).
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Let�s give an example to make this more concrete and clear. Suppose the model is the

following Euler discretized jump di¤usion:

Rt =

�
�� 1

2
�2t�1 + ��

2
t�1

�
�t+ �t�1

p
�t�t +Q

R
t Bert(P )

where:

�t � N (0; 1)

QRt � N(�QR; VQR)

Bert(P ) is a standard Bernoulli random variable with event probability P .

And, our data is Rt , t = 1; :::; T .

The likelihood function, when this is all the data we have, is:

L(R1:::RT ) =
TY
t=1

�
PfJt (Rt) + (1� P )fNt (Rt)

	
(5)

where fNt (Rt) is the density of Rt given that a jump does not occur, and fJt (Rt) is the

density of Rt given that a jump does occur.

fNt is a N (�Nt; �Nt) density.

and

fJt is a N (�Jt; �Jt) density.

where,

�Nt =
�
�� 1

2�
2
t�1 + ��

2
t�1
�
�t

�Nt = �t�1
p
�t

�Jt =
��
�� 1

2�
2
t�1 + ��

2
t�1
�
�t+ �QR

�
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�Jt =
q
�2t�1�t+ VQR

As we can see, this likelihood is the product of mixtures of normals, so it contains an in�nite

number of singularities, and we will not be able to globally optimize it.

But, what if we had more data than just the observed values R1; :::; RT : What if we

also knew whether a jump had actually occurred at time t, that is what if we could directly

observe the unobservable value of Bert(P ) for t = 1; :::; T .

The model wouldn�t change; the parameter vector would still be exactly the same. It

would still be 	 =
�
�; �; �QR; VQR; P

�
. It�s just that we would now have more data

that occurred from the model, with which to do maximum likelihood estimation on its

parameters. And, because of that extra data, the form of our likelihood function would be

di¤erent. It would be much nicer.

Before we had:

L = f (R1; :::; RT j  ) =
TY
t=1

f (Rt j  ) =
TY
t=1

�
PfJt (Rt) + (1� P )fNt (Rt)

�
Now, we have:

Lc = f ([R1; Ber1(P )] ; :::; [RT ; BerT (P )] j  ) =
TY
t=1

f (Rt; Bert(P ) j  ) (6)

=

TY
t=1

f (Rt j Bert(P );  ) f (Bert(P ) j  ) (7)

=

"
TNY
t=1

[f(Rt j Bert(P ) = 0)f(Bert(P ) = 0)]
TJY
t=1

[f(Rt j Bert(P ) = 1)f(Bert(P ) = 1)] j  
#

=

"
TNY
t=1

[(1� P ) f(Rt j Bert(P ) = 0)]
TJY
t=1

[Pf(Rt j Bert(P ) = 1)] j  
#

(8)

As we can see, this likelihood function no longer contains mixtures of normals, so it does

not have the singularity problem, and is globally optimizable. By the way, this likelihood

function is called in the literature the "complete information" likelihood function, and is

17



thus denoted, Lc.

So, if only we could observe Bert(P ) (our ut in this example). But, alas, that�s just a

dream. We just can�t know for sure, by looking at our observable data Rt (our yt in this

example) whether a jump has occurred at time t. So let�s get back to reality. We can�t

observe Bert(P ) , t = 1; :::; T , so we can�t observe likelihood function (8). And, if we

can�t observe likelihood function (8), we can�t argmax likelihood function (8) for 	 to �nd

an MLE for 	.

But, while we can�t �nd the 	 that makes likelihood function (8) the biggest, because

we can�t observe likelihood function (8) �that is for any given 	 we don�t know for sure

exactly how big (8) is �we can put informed probabilities on how big (8) is when evaluated

at any given 	: And, from these probabilities we can �nd the 	 that, on average, makes

likelihood function (8) the biggest.

Intuitively, it seems like the 	 that makes the mean size of the likelihood function the

biggest would be a nice estimate of the true 	. After all, if you had a choice between

estimator e	 which made the mean size of the likelihood function 1,000, and an estimatorb	 which made the mean size of the likelihood function 1,400, all other things equal, which
would you take? I tried developing this intuition more formally, and explaining the EM

algorithm along these lines, but although this story seems to start out nice and intuitive,

it runs into some irritating complications and questions that I wasn�t able to resolve before

time became too short. So, perhaps the EM algorithm could be developed and explained

nicely along these lines, but I wasn�t able to do it before the alarm clock went o¤. So

instead, I will explain and prove the EM algorithm in the standard way it is done in the

literature.

We start with the following application of Bayes rule:

f (y j  ) = f (y; u j  )
f (u j y;  )

Next, we take the log of both sides of the equation:

) log f (y j  ) = log f (y; u j  )� log f (u j y;  ) (9)

So, now we have a new way to express the standard MLE loglikelihood function. We can

express it in terms of any additional un directly observable data, u, by utilizing the RHS of
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(9) : And, obviously, because the RHS and LHS are equivalent, any  that maximizes the

RHS, will also maximize the LHS.

When we resort to the EM algorithm, it will be because maximizing the standard MLE

loglikelihood function, the LHS, is very di¢ cult, or intractable, so we might consider max-

imizing instead the RHS. The problem is we can�t because we don�t know what u is in

the two RHS terms, but we can know the expected value of those two terms given some

information. For example, we can know:

E ([log f (y; u j  )] j C) (10)

Now, let�s talk about an important subject in the EM algorithm, notation. It�s hard to

explain this algorithm with notation that is clear and not too bulky and complicated. The

notation used in the literature, which I will go over, makes it easy to misunderstand, or not

be clear on what�s going on. So, I am going to make some innovations that I hope will

make things clearer and less ambiguous. In fact, I already made one; the use of u to denote

the unobserved data, as opposed to z and x used in the literature. Because "unobservable"

starts with u, it should be easier to keep this variable straight, and y, which is used in the

literature, is not too hard to remember as it is a variable we are used to seeing to denote

observed data.

The expectation in (10) is conditioned on the set of conditions C (again the hardly

original, but sometimes underused, pneumatic device of using the �rst letter of the word, C
for conditions). In the literature, conditions and sub-conditions are written out explicitly.

The conditions can get long and/or easy to confuse or misunderstand. The notation I�m

using will make the equations more compact, plus then I will have the luxury of writing out

the conditions elsewhere, in a nice clear expansive way. We�ll see how it works.

Now, what is the expectation (10) conditioned on? look at the expectand: [log f (y; u j  )].
Already we see layers of conditions: f (y; u) is given, or conditioned on,  , and then the

whole expression that it is included in is conditioned on C. So, we have to be careful to

notate and explain this in a clear, unambiguous way.

The expectand is log f (y; u j  ). What is this expression? We will be trying to do

a maximization with respect to  . So,  is just a choice variable in a maximization. It

is not an unknown random variable, or random vector in the multidimensional parameter

case; we decide what it is, and we pick it so that it makes our loglikelihood function the
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biggest. So, given that this  is our choice vector in a maximization, let�s denote it:  m,

again, to remember what it is, m for maximization. So, our expectand is log f (y; u j  m).
And, it may help to make things clearer to write this as:

log f
�
y; u j 	M =  m

�
(11)

So, in words, (11) says, "the log of f (y; u) given that the 	M vector we will be using in f

will be the numbers  m, say [12; 5:1; 3:8; 157] ,or whatever."

So the expectand of (10), log f
�
y; u j 	M =  m

�
; is just some function with y�s, u�s, and

 �s, like for example:

log f
�
y; u j 	M =  m

�
=

TX
t=1

log

"
1p

2�ut 
m
1

exp

 
�1
2

�
yt �  m2
ut 

m
1

�2!#
(12)

Now, let�s consider this example. It is important to note that the only things that

are random here are the u�s. That�s it. Everything else is non-stochastic, a constant.

The observed data, y, is observed and known with certainty, a constant. The  is some

vector of constants that we have chosen to maximize the loglikelihood, or to evaluate the

loglikelihood in the process of helping us to maximize it. The only thing that is random is

ut. The u�s are not actually observed, so we don�t know for certain what they are.

So because u�s are the only random variables in (12), the expectation operator will act

only on them, as expectation does nothing to constants. So, when we make the expectation

conditional, we will make it conditional on things having to do with the random variables.

And, of course, the pressing thing here for taking the expectation of (12) is tell us what is

the density of u! We can�t �nd the expectation of random variables, or functions of random

variables, without knowing their probability density. So, we will make the expectation of

(12) conditional on what the density of u is. That is what we will make C. Now, the

data u is generated from our model which has a parameter vector 	, and we have some

data which might tell us something about u, our observed data y, so our density of u is:

u � f (u j y;	). But that wont be good enough to do the EM algorithm, we are going to

have to specify what the speci�c parameter vector 	 is in u�s density. So let�s do that.

Let�s call that vector  u. So, we are going to take the expectation of (12) given that the

density of its random variables, u, is f (u j y;	 =  u) So we will make:

C = fu � f (u j y;	 =  u)g
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O.k., now, let�s get back to equation (9) ; with  now renamed  m to emphasize that this

is the value of psi that we are substituting in to try to maximize the loglikelihood:

log f (y j  m) = log f (y; u j  m)� log f (u j y;  m)

We next take the expectation of this equation given C = fu � f (u j 	 =  u)g :

(9)) E [log f (y j  m) j C] = E [log f (y; u j  m) j C]� E [log f (u j y;  m) j C]

) log f (y j  m) = E [log f (y; u j  m) j C]� E [log f (u j y;  m) j C] (13)

Now, it is very important to be clear on the di¤erence between  m and  u.  u is the vector

of numbers we use for 	 only for the purpose of calculating the probabilities of u. It is

used only for u�s density, while  m is the di¤erent vector of numbers we use the purpose of

evaluating the loglikelihood function in our process of searching to �nd that loglikelihood

function�s maximum. Let�s look at this using the example equation (12) :

log f
�
y; u j 	M =  m

�
=

TX
t=1

log

"
1p

2�ut 
m
1

exp

 
�1
2

�
yt �  m2
ut 

m
1

�2!#

Now, we will take the expectation given C, of both sides of the equation, to get the form of

(13) :

log f
�
y; u j 	M =  m

�
= E

 
TX
t=1

log

"
1p

2�ut 
m
exp

 
�1
2

�
yt �  m

ut 
m

�2!#
j C
!

And, in this example, let�s suppose we are assuming that the density of u has  u = [8; 80].

And, let�s say that we want to evaluate the loglikelihood function at [7; 70], so  m = [7; 70].

Then we will have:

log f
�
y; u j 	M =  m = [7; 70]

�
= E

 
TX
t=1

log

"
1p

2�ut � 70
exp

 
�1
2

�
yt � 7
ut � 70

�2!#
j C
!

=
TX
t=1

E

 
log

"
1p

2�ut � 70
exp

 
�1
2

�
yt � 7
ut � 70

�2!#
j C
!

=

TX
t=1

(Z
u(y)

log

"
1p

2�ut � 70
exp

 
�1
2

�
yt � 7
ut � 70

�2!#
f (u j y;	 =  u = [8; 80]) du

)
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Let�s now go back to equation (13) :

log f (y j  m) = E [log f (y; u j  m) j C]� E [log f (u j y;  m) j C]

This gives us another way to express the loglikelihood function, log f (y j  m), a way
that the EM algorithm makes use of. But �rst, still more notation:

(13) � log f (y j  m) = E [log f (y; u j  m) j  u]� E [log f (u j y;  m) j  u] (14)

� Q ( m;  u)�H ( m;  u)

� Q ( m;  ui )�H ( m;  ui ) (15)

� Q ( ; i)�H ( ; i) and log f (y j  m) � log f (y j  ) (16)

Thus:

log f (y j  ) = Q ( ; i)�H ( ; i) (17)

In line (15) we add the subscripts, because the EM algorithm is iterative. Line (17)

uses the notation that is most common in the literature. This is the notation we will now

use.

And now, the moment you�ve been waiting for, we�re done with the notation and we

can actually give the algorithm. Again, we use the EM algorithm when we want to do

maximum likelihood estimation, but the loglikelihood function, as expressed in the standard

way, the LHS of (17), is di¢ cult or intractable to optimize, so instead we utilize the RHS

of (17) :

This is what we will do: First, we will make our initial guess of what the true value of  

is. We will call this initial guess  0. Next, we will �nd the  that maximizes just Q ( ; 0).

Notice that Q ( ; 0) is the expected value of the full information loglikelihood function

given that the unobservable data u has a probability density u � f (u j Y = y;	 =  0 ).

We will call the  that maximizes Q ( ; 0),  1.

Now, let�s compare  1 to  0: Q ( 1; 0) � Q ( 0; 0) because  1 was chosen as the argmax

of Q ( ; 0). So, if we can show that H ( 1; 0) � H ( 0; 0), then we will have shown
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that  1 makes the standard MLE loglikelihood function bigger than  0 does (or at least as

big). So, now let�s show that it is, in fact, true that H ( 1; 0) � H ( 0; 0). And, sorry,

you�ll notice some new notation: E 0 [�]. This is used in the literature, and it does have a
nice compactness. E 0 [�] � E [� j u � f (u j y;  0)].

H ( 1; 0)�H ( 0; 0) � E 0 [log f (u j y;  1)]� E 0 [log f (u j y;  0)]

= E 0

�
log

�
f (u j  1)
f (u j  0)

�
j y
�
� logE 0

�
f (u j  1)
f (u j  0)

j y
�

(18)

= log

Z
u(y)

f (u j  1; y)
f (u j  0; y)

f (u j  0; y) du = 0 (19)

Line (18) is due to Jensens inequality. Line (19) �rst just utilizes the de�nition of expec-

tation, then after cancellation of the f (u j  0; y) terms you have the integral of a density
over its entire support, which is 1.

Thus, by choosing  1 so that it maximizes the expected value of the full informa-

tion loglikelihood function given that the unobservable data u has a probability density

u � f (u j y and 	 =  0), that is by choosing  1 so that it maximizesQ ( ; 0), we are guar-

anteed that logL ( 1) � logL ( 0). Thus, by iterating this process to produce  0;  1;  2; :::
, in the limit we will converge to the standard MLE, and that is the EM algorithm. It is a

way to �nd the MLE, but a way that involves maximizing Q ( ; i) (iteratively), rather than

maximizing logL ( ), and if we choose our u well, Q ( ; i) can be far easier to maximize

than logL ( ).

Now, let�s do an example of the EM algorithm, the one we started earlier, the jump

di¤usion model on page 16. In that model our y is R = R1; :::; RT . And, we decided

to make our u, Ber(P ) = Ber1(P ); :::; BerT (P ) , where Bert(P ) is whether or not a jump

occurred at time t, something that we cannot directly observe with certainty, just by looking

at our observable data, R. We decided to make Ber(P ) our u because we had a hunch it

would make the resulting complete information loglikelihood function, and that functions

conditional expectation, much easier to optimize than the intractable standard loglikelihood

function for this model.

The Q ( ; 0) for our example model can be derived as follows: starting with the de�-
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nition of Q ( ; 0) from equation (7):

Q ( ; 0) = E [log f (y; u j  ) j  i] = E i [log f (y; u j  )]

= E i [log f (R;Ber(P )) j  ]

= E i

"
log

TY
t=1

f (Rt; Bert(P ) j  )
#

= E i

"
log

TY
t=1

f (Rt j Bert(P );  ) f (Bert(P ) j  )
#

= E i

"
log

(
1�TJY
t=1

f (Rt j Bert(P ) = 0;  ) f (Bert(P ) = 0)

�
TJY
t=1

f (Rt j Bert(P ) = 1;  ) f (Bert(P ) = 1) j  
)#

(20)

= E i

"
log

(
1�TJY
t=1

(1� P ) fNt (Rt)
TJY
t=1

PfJt (Rt) j  
)#

) Q ( ; 0) = E i

"(
1�TJX
t=1

log
�
(1� P ) fNt (Rt)

�
+

TJX
t=1

log
�
PfJt (Rt)

�
j  
)#

(21)

Now, let�s consider equation (21): what is random in the expectand? The P is an

element of the vector 	, and the 	 in that expression is given 	 =  . So, P is given.

It�s a constant. All of the parameters in fNt (�) and fJt (�) are in  , so they�re given and
therefore constants, and the data Rt is observed and non-stochastic. So, the only thing
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that�s random in the expectand is TJ . Therefore:

E i

"(
T�TJX
t=1

log
�
(1� P ) fNt (Rt)

�
+

TJX
t=1

log
�
PfJt (Rt)

�
j  
)#

(22)

=

(
TX
t=1

log
�
(1� P ) fNt (Rt)

�
+

0X
t=1

log
�
PfJt (Rt)

�
j  
)
Pr ob (TJ = 0)

+

(
T�1X
t=1

log
�
(1� P ) fNt (Rt)

�
+

1X
t=1

log
�
PfJt (Rt)

�
j  
)
Pr ob (TJ = 1)

...

+

(
0X
t=1

log
�
(1� P ) fNt (Rt)

�
+

TX
t=1

log
�
PfJt (Rt)

�
j  
)
Pr ob (TJ = T ) (23)

Thus:

Q ( ; 0) =
TX
k=1

"(
T�kX
t=1

log
�
(1� P ) fNt (Rt)

�
+

kX
t=1

log
�
PfJt (Rt)

�
j  
)
Pr ob (TJ = k)

#
(24)

Next, we need to derive Prob(TJ = k). This is the probability that there were k 1�s, out

of T independent Bernoullis, or Bernoulli trials, so it looks like it�s a binomial, but it�s not

because in a binomial, all of the independent Bernoulli trials have the same probability of

success. But, that is not true in our case. First, remember the expectation in (22) is given

Ber(P ) � f (Ber(P ) j R; i). In our example model, the jumps are assumed to be indepen-
dent of each other, and it is assumed that the probability of a jump having occurred depends

only on the current return. So, this is equivalent to saying: Bert(P ) � f (Bert(P ) j Rt;  i) ;
t = 1; :::; T: Thus, the �rst Bernoulli is distributed Ber1(P ) � f (Ber1(P ) j R1;  i) ; the
second is distributed Ber2(P ) � f (Ber2(P ) j R2;  i) ; and so on. So, all of the Bernoullis
have a di¤erent probability of a success (a jump). Therefore, the probability of k successes

is unfortunately not a nice simple binomial(T; k): From probability theory, the probability

of k successes is the sum of the probabilities of all the ways that k successes can occur.

So, for example, the probability of 4 successes, or jumps, is: the probability observations

t = (3; 892; 1007; 3708) are jumps, plus the probability observations t = (15; 734; 1598; 3724)

are jumps, and so on, until you include every possible way you can have 4 jumps. And,
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the formula for the number of possible ways you can have k jumps is:

T !

k! (T � k)!

where, in our example, T = 3739. So, for example, the number of ways approximately half

of those days, 1869, can be jump days is:

3739!

1869! (3739� 1869)! = 4: 641 2� 10
1123

Forget it, not if you have all the computers in the world! So, have we hit a dead end?

Maybe not. A �rst thought is to just average all of the jump probabilities for Ber1(P )

through BerT (P ), and then just use that average in a binomial. Usually, in a complicated

expression, we cannot replace random variables with their averages because there is some

Jensen�s inequality problem, but actually here, upon �rst examination, it actually looks like

there may not be a problem. Q ( ; 0) is a linear function of Ber1(P ); ::; BerT (P ). Post

script: I later found out that something similar was was done in Böhning and Nityasuddhi

(2003), so that encourages me that this will still allow monotonic convergence to the bounded

maximum.

Another possible solution for what to do about Prob(TJ = k) is a simulation idea. In-

stead of trying to actually calculate this probability analytically, let�s go back to equation

(21) :

Q ( ; 0) = E i

"(
1�TJX
t=1

log
�
(1� P ) fNt (Rt)

�
+

TJX
t=1

log
�
PfJt (Rt)

�
j  
)#

Rather than optimizing the expected value of the expectand conditional on Bert(P ) �
f (Bert(P ) j Rt;  i), we could instead take a draw from the density of the expectand con-

ditional on Bert(P ) � f (Bert(P ) j Rt;  i)1, and optimize that. Again, the only thing

random in this expectand is TJ , so we would just have to take a draw from the density of

TJ . Now, TJ = [Ber1(P ) j Rt;  i] + ::: + [BerT (P ) j Rt;  i]. So, to take a draw from TJ ,

we just take a draw from each of the Bernoullis and then add those draws together. To do

this we will need to derive f (Bert(P ) j Rt;  i).

1By taking a draw from a density, I mean actually generating from some random number computer
program, a realization, a number, from, that density. Given the limitations of this project, from this point
on I will have to assume that the reader has a basic working knowlege of Bayesian and Monte Carlo methods.
For those who are interested, a good introduction can be found in Kennedy (2003, Ch. 13), Lee (2004), and
Koop (2003).
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By Bayes rule:

f (Bert(P ) = 1 j Rt;  i) =
f (Rt; Bert(P ) = 1 j  i)

f (Rt j  i)

=

�
PfJt (Rt)

(1� P ) fNt (Rt) + PfJt (Rt)
j  i
�

(25)

And, note that (25) is conditioned on	 =  i, so if  i =
�
�i; �i; �QRi ; VQRi ; Pi

�
= [20,14,7,2,.01],

then the P in (25) is .01. Post script: Later I found out this is a method called the sto-

chastic EM algorithm, or SEM algorithm. Its convergence is proven under reasonable

conditions, and we will discuss this technique later on page 30. Note that with this tech-

nique, the simulated Q ( ; 0) that we are maximizing, allows for relatively easy analytical

derivation of its gradient and even its Hessian to improve the speed and accuracy of the

maximization, or "M" step. This is not uncommon in EM type algorithms. Lange (1999)

notes, "Because the M step usually involves maximizing a much simpler function than the

likelihood of the observed data, we can often solve the M step analytically" (pg. 115)

Before we discuss extensions, or variations, of the EM algorithm, let�s �rst discuss a

technique or framework that can be used in combination with a member of the EM algo-

rithm family to sometimes make estimation more tractable �limited information maximum

likelihood (LIML).

FIML and LIML

Let�s give an example to make this more concrete and clear. Let�s consider my own

research (Santa Clara, Serlin, and Yan 2004). We have a jump di¤usion model whose Euler

discretization is:

Rt =

�
�� 1

2
�2t�1 + ��

2
t�1

�
�t+ �t�1

p
�t�t +Q

R
t Bert(P ) (26)

��t =

�
� + �1�t�1 + �2

1

�t�1
+ �3�t�1 ln�t�1

�
�t+ c�t�1

p
�t�t +Q

�
t Bert(P ) (27)

where:

�t and �t are standard normals with correlation �.

QRt and Q
�
t are independent of each other and all other random variables in the model
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and:

QRt � N(�QR; VQR) , Q
�
t � Exp(�Q�)

Bert(P ) is a Bernoulli random variable.

Now, with full information maximum likelihood estimation (FIML), the likelihood func-

tion that is optimized is

TY
t=1

f [Rt;��t j 	] (28)

where 	 is the 13 x 1 vector of all of the parameters in both of the models equations.

With limited information maximum likelihood estimation (LIML), or two step maximum

likelihood estimation, the two model equations are considered separately. First, maximum

likelihood estimation is done on the �rst equation by optimizing:

TY
t=1

f [Rt j 	1] (29)

where 	1 is the 5 x 1 vector of all of the parameters in the �rst model equation. The

resulting b	1 will have as one of its elements a bP .
That bP is then substituted in for P in the second model equation, and we do maximum

likelihood estimation on this, that is to say we optimize:

TY
t=1

f
h
��t j 	2 and P = bPi

for 	2, where 	2 is the vector of all of the parameters in the second model equation except

P: This will give us an estimate for every parameter except �. Because � depends on the

interaction between the two model equations (26) and (27), both must be used to jointly

estimate �, so we must optimize the more complicated likelihood function (28), but we

can use the LIML principle and insert the estimates b	1 and b	2 into (28) �rst, then the
dimensionality of the optimization drops from 13 to 1.

As we suspect, because LIML underutilizes information, it is not as e¢ cient as FIML.
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For example, we used only the data R to estimate P , when the data �� also tells us about

P , and in general LIML does not take into account covariation between the equations,

which often contains information about the parameters. Because LIML is not as e¢ cient,

it does not have the same asymptotic variance covariance matrix. An estimate of the LIML

asymptotic variance covariance matrix is given by Murphy and Topel (1985).

It seems as though one could iterate a LIML process to, at least analytically, get better

results, although like I said, until I get experience or knowledge otherwise I am leery about

numerical problems; all other things equal, the more number crunching, the more round-o¤

error. But, for example, in the model we�ve been working with, it does seem like we could

reinsert the estimates of all of the parameters except P , and then re-estimate P using the

joint likelihood function. Then, we could insert this new estimate of P; and re-estimate

the other parameters. It does seem like an algorithm along these lines would be more

e¢ cient, at least analytically, than LIML, and might in the limit converge to FIML. Post

script: I did actually later read something implying that this iterating of LIML does, in

fact, converge to the full information maximum likelihood estimate, but feeling rushed, I

didn�t write it up, and now I can�t remember exactly where I saw it. It might have been

in ECM algorithm literature, which is related. I�ll try to dig it up later.

I discuss LIML at this point because it appears it can be used in combination with EM

type algorithms to cut down to size particularly nasty maximum likelihood optimizations.

When �nding the parameter vector that maximizes each of the individual model equations,

EM can be used instead of traditional techniques for maximizing the likelihood function

directly.

It is true that the EM algorithm is used when the maximization necessary to do stan-

dard maximum likelihood estimation is very di¢ cult or intractable, but even with EM,

maximization, the M step in EM, may still be very di¢ cult or intractable. So, we may

have to take further measures to chop things down to size, like utilizing the LIML frame

work so that we can do EM on each of the equations separately rather than jointly, thus

decreasing the dimensionality and complexity of our maximizations.

So, the EM algorithm can make tractable the �nding of MLE�s, or bounded MLE�s,

when they are intractable, but not always. The E step could be a problem, the M step

could be a problem, or both. To solve these problems many variants or extensions of

the EM algorithm have been developed in the literature. We will now discuss the most

important ones. The �rst we have already mentioned, the stochastic EM algorithm. As
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we have seen, this is a way of dealing with a di¢ cult or intractable E step.

The Stochastic EM Algorithm

As I�ve said, when I was struggling with the E-step in the example on page 26, one idea

I had was perhaps just using a draw from Q ( ; i) instead of its expectation . Shortly

afterwards, I found out that this is a published variant of the EM algorithm called the

Stochastic EM algorithm, and, in fact, it was developed for �nite mixture models like ours

(the example on 26 is the �rst equation from our model; Santa Clara, Serlin, and Yan 2004).

Again, we �rst calculate Q ( ; i), then, instead of taking, and maximizing, its expectation,

we instead take, and maximize, a draw from it. The algorithm was developed by Celeux,

and Diebolt (1985, 1986). The stochastic EM algorithm is also related to a technique called

the data augmentation algorithm, by Tanner and Wong (1987). This technique generalizes

the stochastic EM algorithm, and is also suitable for Bayesian methods, so we will discuss

it after our discussion on Bayesian methods.

The Monte Carle EM (MCEM) Algorithm

Again, when I was struggling with the E-step in the example on page 26, one of my �rst

ideas was perhaps just using a draw from Q ( ; i) instead of its expectation, and that

turned out to be the stochastic EM algorithm, but really the idea was not developed, or

generalized, far enough. The MCEM algorithm does more. The basic idea is this: at the

E-step of the EM algorithm you want to �nd the expectation of Q ( ; i). But, as we saw

in our example, sometimes this task is intractable, so one solution is to use the stochastic

EM algorithm, which says instead of maximizing the expectation of Q ( ; i), maximize a

single draw from the density of Q ( ; i).

One way to look at this is, a single draw from the density of a random variable is an

unbiased and consistent estimate of the expected value of that density. So, perhaps a single

draw can be used as a proxy for that expected value, and it has been proven that doing

this does, in fact, still allows the algorithm to converge to the MLE. But converging to the

MLE, and converging to the MLE fast, are two di¤erent matters, and it may be possible to

use a better proxy for the expected value of Q ( ; i) in order to speed convergence.

A single draw from a density is the sample mean �if the sample has a size of 1 �and

the sample mean is unbiased and consistent, but clearly the sample mean from a larger

sample will yield a better estimate of the mean, one whose variance is �2=n rather than

�2. And, that is the idea behind the MCEM algorithm. In the stochastic EM algorithm
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we use a single draw form Q ( ; i) as the estimate of the expected value of Q ( ; i) : In

the MCEM algorithm we use the sample average of a sample of n draws as our estimate

of the expected value of Q ( ; i). Thus, each iteration of the MCEM algorithm contains

less noise than each iteration of the stochastic EM algorithm, and therefore the MCEM on

average converges in less iterations. However, each iteration takes longer, because n draws

have to be taken instead of 1. Nonetheless, it sems as though this algorithm would usually

take less computer time to converge, but I haven�t seen anything on that in my reading.

MCEM was introduced by Wei and Tanner (1990). It has been used to tackle some

challenging estimations. For example, Guo and Thompson (1992) used MCEM to tackle a

complex genetic model, and Chan and Ledolter (1995) successfully use MCEM on a time

series model with count data where the E step cannot even be done by standard numerical

integration methods because of extremely high dimensionality.

The MCEM does not have the monotonicity property of the EM, that is with the EM,

as we have proven, each iteration produces a parameter vector,  i; which makes the likeli-

hood function larger than its predecessor,  i�1. With MCEM because of the randomness

introduced, by bad luck, L ( i) may be less than L
�
 i�1

�
: However, Chan and Ledolter

(1995) show that under reasonable conditions this is very unlikely.

Wei and Tanner (1990) recommend starting with small values of n in the initial stages

of the algorithm and then increasing it as the algorithm moves closer to convergence. For

deciding on convergence, it appears that they just recommend plotting, visual inspection,

and judgement.

The stochastic EM algorithm is a special case of the Monte carlo EM algorithm, the

case where n = 1. Diebolt and Ip in chapter 15 of the book "Markov Chain Monte Carlo in

Practice" (1996) (the map of France book), make some interesting points regarding the SEM.

On page 262 they state, "Alternatively imputing pseudo-complete data (the S-step) and

performing maximization (the M-step) generates a Markov chain {�(m)} which converges to

a stationary distribution � (�) under mild conditions (Ip 1994). The stationary distribution
is approximately centered at the MLE of �." They later explain that the Markov chain

output of the SEM algorithm, {�(m)}; after an appropriate burn-in settles in a "plausable

region" from which some inferences can be made about the likelihood function in that area.

A point estimate of � can be obtained by choosing the � in the plausable region that makes

the standard loglikelihood function the largest.
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On page 260 they state, "Stochastic EM generally converges reasonably quickly to its sta-

tionary regime. Such behavior can be partially explained by the duality principle (Diebolt

and Robert 1994). The deterministic M-step and the stochastic S-step generate a Markov

chain which converges to its stationary distribution faster than the usual long chains of

conditional stochastic draws used in many gibbs sampling schemes". So, here we see an

example of a bene�t a frequentist method can have over a Bayesian one. In some cases

the frequentist method may be faster, easier, or more tractable. I note this because when

I look at the bene�ts of Bayesian techniques, the entire posterior is generated etc., I ask

myself when would I not want to use them, and one answer is that sometimes at least some

bayesian methods are more di¢ cult than frequentist alternatives, or intractable.

To estimate standard errors Diebolt and Ip recommend a conditional parametric boot-

strap method. We will discuss these interesting methods in a separate section on page

37.

The Data Augmentation Algorithm

Let�s start with a special case and predecessor of the data augmentation algorithm, the poor

mans data augmentation algorithm 1 (PMDA1). With this algorithm, we �rst estimate  

via the MCEM algorithm. Let�s call that estimate b . Next, we use our b to take n draws
of the unknown data vector u from f

�
u j y; b �; let�s call those draws u(1); :::; u(n). Then,

we get a quick discount "poor mans" entire posterior via the formula:

f (	 j y) = 1

n

nX
j=1

f
�
	 j y; u(n)

�

The data augmentation algorithm is an iterative generalization of the poor mans data

augmentation algorithm. And, some taxonomy, the data augmentation algorithm is a

special case of the gibbs sampler, which is a special case of markov chain monte carlo

methods.

The data augmentation algorithm may be desirable when the researcher wants the ad-

vantages of having an entire posterior, either in a workable analytic form, or an empirical

one, but alternative methods like the Gibbs sampler are very di¢ cult or intractable. And

interestingly, Gelfand and Smith (1990) found that the data augmentation outperformed

the Gibbs sampler with mixture models. Diebolt and Robert (1994) had similar �ndings

concluding, "Here data augmentation is clearly preferable to gibbs sampling. This shows

that the additional variability of this method is a drawback for small sample sizes. When
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the sample size increases, the two estimators are essentially the same." (pg. 373).

The Expectation Conditional Maximization (ECM) Algorithm

This is a very interesting and potentially useful extension of the EM algorithm. The stan-

dard EM algorithm is looked to when the maximization in maximum likelihood estimation

is very di¢ cult or intractable. EM by introducing latent data allows for an easier maxi-

mization, but in some cases it still may not be cut down to size. The maximization still

may be very di¢ cult or intractable. In such a case, we can make the maximization much

easier still, by essentially breaking the one big joint maximization for all of the elements of

the parameter vector  , into a number of lower dimensional conditional maximizations. For

example, we may conditionally maximize Q
�
 ; i�1

�
for  1 given  2;i�1;  3;i�1; ::: k;i�1.

Then, we would conditionally maximize Q
�
 ; i�1

�
for  2 given  1;i;  3;i�1; ::: k;i�1, and

so on. Conditional maximization could also be with respect to functions of parameters.

Although this algorithm will take more iterations to converge than standard EM, each

iteration may take less computing time, so the ECM does not necessarily take more com-

puting time than the EM. This is discussed in Meng (1994). The ECM algorithm was

developed by Meng and Rubin (1993). An extension of the ECM algorithm, the expected

conditional maximization either (ECME) algorithm (Liu and Rubin 1994), can have, in some

cases, substantially faster convergence than the ECM or the EM algorithms, measured in

either number of iterations or computing time.

Initial Value Choices and Multiple Runs in EM Type Algorithms

The starting point can be very important to the success of EM type algorithms. Discussion

and strategies can be found in Lange (1995), Meng and Van Dyk (1997), and Nityasuddhi

and Böhning (2003). The use of multiple runs can increase the speed and quality of

convergence. See Lange (1995), Meng and Van Dyk (1997).

Accelerated EM methods

There have been many methods proposed to accelerate convergence of the EM algorithm,

as the main criticism is that the algorithm is stable but often slow or unworkably slow.

A number of them are gradient based. A nice review of these potentially very useful

techniques is in chapter 4 of McLachlan and Krishnan (1997).
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Standard Errors

Because the EM algorithm converges to the MLE, or the bounded MLE, the same estimated

standard errors can be used, for example the negative inverse of an estimate of the Hessian,

or the BHHH estimator. However, in maximum likelihood estimation, often a Newton

or quasi-Newton method is used; such a method requires estimating the inverse Hessian

anyway, so it is no extra work to just use the inverse Hessian from the last iteration to

estimate the standard errors. We do not, however, have that luxury with the standard EM

algorithm. Plus, the EM algorithm is usually chosen because the observed logliklihood is

complicated and/or di¢ cult, so estimating its Hessian may be no walk in the park. Thus,

one of the criticisms of the EM algorithm is that it is more di¢ cult to estimate standard

errors than it is with MLE.

Methods to ease the computation have been proposed in the literature. Meng and

Rubin (1991) devised a variant of the EM algorithm called the supplemented EM (SEM)

algorithm that produces the standard error matrix along with the parameter vector estimate.

Meiljson (1989) uses a di¤erent approach, but also has an EM type algorithm that speeds

the calculation of standard errors. Louis (1982) derives a technique, in some ways analogous

to that of BHHH, which utilizes the EM algorithm�s latent data framework. This technique

can ease the calculation of standard errors greatly, and is widely cited.

As noted earlier, bootstrap methods have been recommended for estimating standard

errors with EM type algorithms. This will be discussed in detail in section III on page 37.

It is important to emphasize that the EM algorithm converges to the MLE, thus it

has the same variance covariance matrix. With maximum likelihood estimation, what

is used to estimate the variance-covariance matrix is an approximation of the asymptotic

varaince-covariance matrix. This asymptotic variance-covariance matrix depends on the

central limit theorem, so if the loglikelihood function is far from normal, the asymptotic

variance-covariance matrix may not approximate the true �nite sample varaince-covariance

matrix very well. This caveat is no more or less valid whether we are using an EM type

algorithm or standard MLE. What we can do, in some cases, to improve our standard error

estimates is transform some of our parameters to improve the normality of our loglikelihood

function. Meng and Rubin (1991) discuss this and give examples.
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E¤ectiveness and Appropriateness of the EM Algorithm for Estimation of
Mixture Models such as Jump Di¤usions

Concerns were raised by some of the faculty about whether the EM algorithm was ap-

propriate or adequate for the estimation of jump di¤usions, or whether this was a "good

technique". As you can see, I have done extensive reading in this area and have found

no clearly disqualifying problems. In fact, I have seen the EM algorithm and its exten-

sions referred to repeatedly as the method of choice when dealing with likelihood functions

that are the product of mixture densities. In McLachlan and Krishnan�s text, "The EM

Algorithm and Extensions" (1997), they state, "It is generally acknowledged that the EM

algorithm and its extensions are the most suitable for handling the kind of incomplete data

problems discussed in this book." (page 228), and earlier they indicate that they consider

mixture models an incomplete data problem:

The situations where the EM algorithm can be applied include not only evi-

dently incomplete-data situations, where there are missing data, truncated dis-

tributions, censored or grouped observations, but also a variety of situations

where the incompleteness of the data is not all that natural or evident. These

include statistical models such as random e¤ects, mixtures, convolutions, log lin-

ear models, and latent class and latent variable structures. Hitherto intractable

ML estimation problems for these situations have been solved or complicated

ML estimation procedures have been simpli�ed using the EM algorithm. The

EM algorithm has thus found applications in almost all statistical contexts and

in almost all �elds where statistical techniques have been applied � medical

imaging, dairy science, correcting census undercount, and AIDS epidemiology,

to mention a few.

(page 1). And, mixture models are covered extensively throughout the book. Interest-

ingly, they mention convolutions as well as mixtures. Our models joint likelihood actually

contains both. It is the product of terms that are mixtures of a normal and a convolution

of a normal and an exponential.

Computational Statistics and Data Analysis had a special issue in 2003 devoted entirely

to mixture models. In the opening article, Böhning and Siedel write, "The EM algorithm is

one of the most frequently used algorithms for determining maximum likelihood estimates

in mixture models because of its numerical stability and monotonicity property." (pg. 352).

Delyon, Lavielle, and Moulines (1999) state, "Problems where the EM algorithm has

proven to be useful include, among many others, maximum likelihood estimation of the
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parameters of mixture densities [see, e.g., Titterington, Smith and Makov (1985)]..."

In Jamshidian and Jennrich�s 1997 Journal of the Royal Statistical Society review of

accelerated EM type algorithms, they tested the major variants of the EM algorithm aimed

at speeding convergence. The tests were in three areas, two of which involved mixture

densities: multivariate normal mixtures and Poisson mixtures.

Berkely economist Paul Ruud, in his 1991 Journal of Econometrics survey of EM type

algorithms writes, "Statistical models with mixtures are a natural setting for the EM algo-

rithm...".

Diebolt and Ip (1996) state, "The widespread use of EM since Dempster et al. (1977)

is phenomenal."

And, I could go on. In general, the top statistics journals are full of theoretical research

on the EM algorithm and extensions of it, and applications of these techniques to a wide

range of important problems. Some of the worlds top statisticians have worked extensively

with this family of algorithms, including Donald Rubin, the chairman of the department

of statistics at Harvard, Andrew Gelman of the Berkely statistics department, and Xiao Li

Meng of the Chicago statistics department.

There are, however, potentially, two signi�cant problems with EM type algorithms

pointed out in the literature. Convergence can be slow, or extremely slow, and there

can be more work involved in obtaining standard errors than with standard maximum like-

lihood estimation. However, as we will discuss, variations of the EM algorithm have been

developed to deal with these problems. In part, due to these variations, as I have noted,

EM type algorithms are still widely used in statistics and the physical sciences, and are one

of the most popular, or the most popular, types of methods for estimating mixture models.

So, it appears there is ample evidence to show that EM type algorithms are appropriate,

or even preferred, techniques for estimating mixture models such as jump di¤usions, but I

do still wonder why neither I, nor any of the faculty I have spoken with, have seen them

used to estimate jump di¤usions in the �nance literature to date, although Honoré (1998)

suggests their use, so I will have to investigate this further. Any feedback is most welcome.
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II Mixture Models

It is important to note that the estimation of mixture models �and jump di¤usions clearly

are mixture models �is a huge topic in the statistics literature of the last 30 years. This

is largely because in many �elds mixture models are a natural choice, as they arise when

there are two or more distinct groups, with distinct associated distributions, where group

membership is unobserved. With jump di¤usions, it is jump observations and non-jump

observations. In medicine there may be two or more types of subjects, and it cannot be, or

is not, directly observed which type a given subject is. As Böhning and Siedel (2003) put

it, "The importance of mixture distributions, their enormous developments and frequent

applications over recent years is due to the fact that mixture models o¤er natural models

for unobserved population heterogeneity." (pg. 350). As I have noted, the most common

way of estimating these models is with a member of the EM family, which for some reason I

haven�t seen used with jump di¤usions. I have also not seen some of the important results

and techniques from the statistics literature mentioned in the �nance literature that involves

jump di¤usion estimation. Along this line, when Philippe Jorion came in recently, I talked

about my work and mentioned Honoré (1998) and Kiefer (1978). He was not familiar

with either and did not know about the singularity problem, even today in 2004, and even

though he, as pointed out by Honoré, improperly estimated a jump di¤usion by standard

MLE in 1988, completely unaware of the singularity problem, and this paper was published

in RFS, so the referee and editors may not have caught it either (I might not mention a

story like this in a paper going out to the public. I would be careful about o¤ending or

embarrassing someone). so, my question to the faculty is, are contributions in statistics

and mathematics sometimes slow, or very slow, in making their way into �nance? Another

example is Alex Paseka used to say that a lot of the top �nance publications with "new"

or "original" techniques, actually use techniques that have been implemented in math and

physics for decades.

An interesting miscellaneous note on mixture densities: they can be multimodal or

unimodal. Hamilton (1994 pg. 687) provides examples of each. It seems, however,

considering Hamilton�s examples, that usually in �nancial cases they will be multimodal.

III Bootstrap Methods

The name bootstrap was given because these methods can seem, at least at �rst glance, like

an outlandish trick, that wouldn�t actually work, a trick analogous to the one told of by

the �ctional character Baron Munchausen. A spinner of tall tales, he boasted of how once

37



upon falling to the bottom of a lake, he got out grabbing his bootstraps and pulling himself

up until he was out (according to Alex Paseka, the Russian version has him pulling himself

up by his mustache, so in Russia do they call them mustache methods?). The analogy to

these methods is both that they seem fanciful and that they are resourceful. They make

use of the sample to draw more samples. But before we think about that too much, let�s

get to some speci�cs, so we can see exactly what is meant and why these techniques do

actually make sense and have been formally proven in a rich literature extending back at

least to Efron�s seminal article of 1979, and in fact, a similar procedure, the jacknife goes

back to Quenouille (1949).

Let�s start with the basic bootstrap of Efron (1979). Suppose we have a model with

parameter 	, and this model generated an i.i.d. random sample of observed data y. Sup-

pose also that we have an estimator of 	i, 	i(y). If it is di¢ cult to analytically calculate

the �nite sampling distribution of 	i(y), or its asymptotic distribution, then we might try

approximating it via this bootstrap method. Also, we may be concerned that we cannot

rely on asymptotic arguments, that given our sample size, the �nite sample distribution of

	i(y) (that is to say the true and actual distribution of 	i(y)) might be very di¤erent from

its asymptotic distribution. Again, we may use bootstrap methods. There are many cases

where bootstrap methods have been shown to provide better small sample approximations

than asymptotic methods.

The basic bootstrap goes like this: First we draw B bootstrap samples. What is a

bootstrap sample? We start with our regular observed sample, y = [y1; :::yT ], and we

sample from this set, from [y1; :::yT ] ; with replacement, T times. So, we would have the

computer draw T times from a discrete uniform[1,T ]. The numbers drawn would correspond

to the y�s in that bootstrap sample, so if we drew: 274,15,87,..,31 then our bootstrap sample

would be y274; y15; y87; :::y31.

Then, for each of the B bootstrap samples, let�s call them y1:::yB, we would calculate the

estimator 	i(y). Suppose B = 50,000, then we would have 	i(y1);	i(y2); :::;	i(y50;000).

So, we would have an empirical density for the estimator 	i(y). From this we could �nd out

anything we wanted to know about 	i(y). For example, we could estimate the standard

error of 	i(y) as:

ds:e: [	 (y)] =
vuut 1

50; 000

50;000X
b=1

h
	i(yb)�	i(y)

i2
(30)
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And now its time to step back and get some intuition. What�s going on here and

why does this make sense? We generated B = 50,000 samples, from our regular observed

sample. The idea behind doing that is this: our observed sample is i.i.d, so it comes from

observing T actual generations that came from the model. We observed T actual draws

that really came from our model2. Suppose T = 100; 000; suppose we had a huge sample.

What that means is that we had 100,000 draws from the DGP. That, in most cases, gives

us a really accurate empirical density! If we graph those 100,000 draws in a histogram,

they�ll probably �t the shape of the true density extremely closely. Suppose T = 1 million,

or 1 billion, eventually the �t will be, for all practical purposes, perfect. So, our regular

old i.i.d. random sample is actually an empirical density, and the bigger our sample is, the

closer an approximation our empirical density will be to the true density.

Let�s look at an example. Davidson and MacKinnon (1993) took 100 draws from a

standard normal, so it�s like they have an observed i.i.d. random sample from this data

generating process, from this model. This sample of size 100, as we have said, actu-

ally comprises an empirical density, and once you have a density, you have a distribution.

Speci�cally, the empirical distribution is this:

F eX (x) =
Number of observations whose value is less than x

Total number of observations

The graph of this is a step function, and is displayed below, along with the true distri-

bution. Note that even with just 100 observations, it turned out to be a fairly close �t, so

if we generated a random sample that was drawn from this empirical distribution it would

not be that much di¤erent from generating a random sample drawn from the actual true

distribution. And, that is when our sample size is 100. As the sample size get�s bigger

and bigger, the di¤erence between drawing from the true density and from our empirical

one, will tend to get smaller and smaller, and in the limit there will be no di¤erence at all.

2 In frequentist statistics, the �rst step is to select a model that we have reason to believe is reasonably close
to the true, and probably very messy, complicated, real data generating process. Then, for mathematical
tests and analysis, we assume that the data actually came from this model. But, in the end, when we get
the results from our mathematical tests and analyses, we balance them with how, and how much, we think
our model did, in fact, di¤er from the reality that actually generated the data. Then, taking all of this into
account, we make our conclusions and decisions.
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From Davidson and MacKinnon (1993, pg. 764)

Thus, our plain old i.i.d. random sample of data is actually an approximation of the

true density, and we can draw from this approximation of the true density just like we

draw from our posterior in Bayesian inference, and to achieve the same goals. In fact,

the analogy is really very close; the Bayesian posterior is the probability density � given

all that we currently know, which includes our observed sample of data. If we have bad

luck, the observed sample of data may be very unrepresentative of the true underlying

data generating process, then our posterior may not be well concentrated around the true

value of the parameter. But, that�s statistics; there�s always a chance we�re o¤. We can

have bad luck and a very unlikely, unrepresentative, sample can end up occurring. But,

if our sample is "large", it is unlikely that we�ll be too far o¤, and this is re�ected in the

narrowing variance of our posterior. The key is we don�t know ex-ante if we had good or

bad luck, so the posterior is our best guess, given all of the information that we do have.

It encompasses all of that information and with complete precision �given the assumptions

of the model, the choice of prior, no errors in data gathering, no algebra errors, etc. The

EDF is analogous. It encompasses all of the information available in the data, whether

that�s a lot or a little, with complete precision.
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It�s interesting to think of it this way. This is my own analysis, and I�m pressed for

time, so I can�t fully think this out, but looking at it this way makes Bootstrapping seem

very e¢ cient, or even completely e¢ cient (although certain assumptions may be necessary.

Here for example, remember, we are making the i.i.d. assumption, which for certain things

may be necessary.). It does seem as though by generating standard errors of parameter

estimates, con�dence intervals of parameter estimates, etc., from bootstrap samples we are

fully utilizing all of the information that the sample contains, nothing less and nothing more.

It�s like utilizing a Bayesian empirical posterior, with a non-informative prior. It would

be interesting to see if mathematical equivalence could be proven. One note, however, for

bootstrapping to really be "completely" e¢ cient, to fully utilize all of the information that

the sample contains, at least it would be necessary that the number of bootstrap samples, B,

be in�nite. So, "complete" e¢ ciency could never be fully achieved, but we can look at how

many bootstrap samples we need to achieve a "good" level of precision, or one that is better

than the alternative techniques. This has been done in the literature; there are simulation

studies determining reasonable levels of B in various cases. A very good discussion of this

and of bootstrap methods in general can be found in Davison and Hinkley (1997).

Now getting back to the implementation, what we do in a basic bootstrap is this. We

have some estimate of a model parameter, 	i(y). As the notation emphasizes, an estimate

of a parameter is just some function of the sample data, and the sample data is i.i.d.. So,

the estimator 	i(Y) is just some function of the random variable Y . So, to generate draws

of 	i(Y), we just generate size T sets of draws of Y from our empirical density for Y , that

is from our observed sample. We do this B times, and then we have an empirical density

for 	i(Y).

As we know from Bayesian/Monte Carlo theory, once we have the empirical density we

have the empirical everything. So, for example, as stated earlier, the standard error can

be estimated by equation (30).

Some terminology: the empirical distribution is also called the bootstrap distribution.

Another note: To really be e¢ cient, prior information must be fully and accurately

utilized also. Bayesians introduce at least some prior information in a formal mathemat-

ically structured and invariably simpli�ed way. Frequentists consider prior information

informally �and by their choice of parametric model. Bootstrapping works with paramet-

ric models, but does it fully utilize the information in the parametric assumptions? Time
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does not permit analyzing this now, but it is something I plan on thinking about in the

future. Post script: I later found out that there are non-parametric bootstrap methods,

the one I described above is an example, and parametric bootstrap methods, which incor-

porate the information in the parametric assumptions at least to some extent, and perhaps

fully. When assuming a parametric model it does seem like it will at least usually, if not

always, be more e¢ cient and appropriate to use a parametric bootstrap. McLachen and

Krishnan (1997) give a parametric bootstrap method for obtaining standard errors with the

EM algorithm. It is as follows:

Our empirical density will now re�ect the parametric structure that we have assumed the

data generating process has, by the model that we have chosen to represent, or approximate,

the process of interest:

� Step 1: Estimate 	 via the EM type algorithm that you decide to use to estimate

the model. Let�s call the resulting estimate b .
� Step 2: We now make our empirical density f

�
Y j b � , or in other notation fb (Y).

The actual density is f (Y j  ) where  is

unknown. The empirical density is f
�
Y j b �, where b is the estimate we obtain

from implementing our EM type algorithm.

� Step 3: Next, we take B bootstrap samples of size T from the empirical density

f
�
Y j b �. Let�s call those bootstrap samples Y1; :::;YB.

� Step 4: For each of the bootstrap samples we re-estimate via our EM type algorithm

	. So, that we obtain B bootstrap estimates of b , b 1; :::; b B. That is our empirical
density for b . From that we can estimate the standard errors of b as:

ccov �b � = 1

B � 1

BX
b=1

�b b � b ��b b � b �0
According to McLachlan and Krishnan, "It has been shown that 50 to 100 bootstrap repli-

cations are generally su¢ cient for standard error estimation (Efron and Tibshirani 1993)."

As we can see, bootstrap methods can be highly computationally intensive, and for the

most part have only become feasible in recent decades. In some cases, they will still exceed

the practical limits of current PCs. For such instances, it has been point out the natural �t

of these methods to parallel processing, and that in many cases it will be worth the e¤ort

learn and do such programming in order to obtain the increased accuracy that bootstrap

methods can provide.
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It should be noted that time series characteristics must be taken into account in boot-

strapping. If the model says that observations are correlated, then bootstrap samples

cannot be drawn i.i.d. They must be drawn in a way that re�ects the covariation implied

by the model, and for this Markov chain Monte Carlo methods can be used. A good

discussion of these issues can be found in Davison and Hinkley (1997) chapter 8.

Now, I present some evidence that bootstrap methods are highly regarded and considered

to have great potential.

According to Kennedy (2003), "This procedure which estimates sampling distributions

by using only the original data (and so �pulls itself up by its own bootstraps�) has proved

to be remarkably successful. In e¤ect it substitutes computing power, the price of which

has dramatically decreased, for theorem proving, whose price has held constant or even

increased as we have adopted more complicated procedures (pg. 69).

And, Chernick (1999) states, "Since the publication of The Jackknife, the Bootstrap,

and Other Resampling Plans by Bradly Efron (1982), research activity on the bootstrap has

grown exponentially. There have been many theoretical developments on the asymptotic

consistency of bootstrap estimates and some counterexamples." (pg. 1). Chernick, in

fact, was at Stanford with Efron in 1977 when he was working on his seminal paper, he

comments, "At the time, the bootstrap seemed so simple and straightforward. many of

us did not see it as part of a revolution in statistical methods that many of its advocates

now see it as. Also, key results on the asymptotic properties of the bootstrap appeared to

be di¢ cult. The key papers by Bickel and Freedman (1981) and Singh (1981) had not yet

appeared and Edgeworth and cornish-Fisher expansions were not yet recognized as useful

tools." (pg. 3)

Bootstrap Methods have been prominently featured in prestigious statistics journals and

compendiums. See Chernick (1999, pg. 4).

Julian Simon and Peter Bruce, two of the pioneers in bootstrap methods, created a

software package called Resampling Stats, that can greatly facilitate the implementation of

Bootstrap and other resampling methods. Information can be found at: www.resample.com.

This website is also an excellent resource for resampling information in general, with links

to books, research, and even teaching materials.

There are many variations of bootstrap, and other resampling methods, so it would take
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a substantial amount of study to become really expert, but if the �nancial �eld will reward

this expertise (in excess of how much they penalize one for taking the time to attain it),

then I would be interested in further study. These techniques are very interesting, and

look like they have the potential to, at least in some cases, improve substantially on current

practice.

IV Bayesian Methods

Bayesian techniques have the powerful advantage of providing an entire joint posterior

density for the parameter vector, usually in an easy to use emperical form, which makes tests

of, and con�dence intervals for, even complicated non-linear functions of the parameters

easy. This is in stark contrast to frequentist methods. They also have the advantage

of providing the option of incorporating in a mathematically formal, although invariably

substantially simpli�ied way, prior information. The value of this advantage is less clear.

Although, essentially, since it is an option, it shouldn�t decrease the value of the techniques.

My personal opinion is that it can sometimes be a nice useful way to help analyze and make

sense of a complicated set of prior and sample data, but it should rarely, if ever, completely

replace informal analysis of prior data, it should just aid and supplement it. One speci�c

way that it can be nice is in doing a kind of sensitivity, or "what if", analysis, with increasing

levels of priors with regard to characteristics of interest.

Also, speaking more precisely, a proper prior may not always be optional. Sometimes

results cannot be obtained without utilizing a proper prior. But, even there I don�t know

if frequentists can criticise. The priors required may be exactly equivelent to identi�cation

and other restrictions that they would require in the same cases (sorry, this is just an

intuition. I have no time to even think about trying to prove this!). One example is the

estimation of mixture models. A proper prior is always neccessary when using a Gibbs

sampler with mixture models (see Diebolt and Robert 1994 and Eraker, Johannes, and

Polson 2003).

Wei and Tanner (1990) give a very nice assesment of the advantage of posterior gener-

ating methods over standard frequentist ones, "The EM and MCEM algorithms provide a

minimal amount of information to the data analyst. These algorithms yield the location

of the normal approximation to the posterior distribution <but so does standard MLE,

so this is not an argument for standard MLE in preference to EM type algorithms>...At

the upper end are the data augmentation algorithm and the Gibbs sampler [Regarding the

Gibbs sampler, see Geman and Geman (1984), Li (1988), and Gelfand and Smith (1990).]
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The latter two algorithms are iterative and can be shown to converge to the true posterior

distribution under mild regularity conditions." (pg. 703). That�s a nice observation that

EM type algorithms (and MLE) essentially give an assymptotically normal approximation

of the posterior, as they use for standard errors, an assymptotic approximation based on

the central limit theorem.

Bayesian techniques, as opposed to frequentist likelihood based methods do not typically

require global optimization, per se. However, we don�t escape the problems of complicated

multi-modal likelihoods. We typically need to draw an emperical posterior via Markov

chain Monte Carlo algorithms, and if it�s complicated and multimodal the algorithm may

never leave the vicinity of a local maximum, and we may not realize this. Visually, it may

look as though the burn-in has been achieved once the algorithm settles around this local

mode. This problem is quite analagous to the frequintist problem of identifying a global

maximum among local ones, and perhaps just as serious. As far as di¢ culty, this can be

a very challenging problem, but it may be solved easier than global optimization, easier

in part because, at least in the limit, Markov chain Monte Carlo algorithms will usually

roam over the entire posterior, no matter where we start, and converge to the stationary

distribution, although to get close to this convergence, which we never completely reach,

may take an inordiante amount of time, and it can be hard to determine when to stop,

especially if we want to do it right. Most of the popular optimization routines, by contrast,

will never converge to the global maximum if they are started too close to a local one.

It should be noted that although Bayesian Methods have some very attractive features,

they do not make frequentist methods obselete. In some cases frequentist methods are

more tractable and practical, but it�s not just that. Another reason is that frequentist

techniques can be combined with Bayesian techniques to produce a better result, that

is a result with better ex-ante statistical properties. For example, Gelman and Rubin

(1992) emphasize the value of �nding the MLE, or maximum a posteriori (MAP), before

using iterative simulations, because of the di¢ culties in assessing convergence of iterative

simulation methods, especially when the regions of high density are not well known before

hand (we will discuss Gelman and rubin at length in the next section).

As another example of how frequentist methods may sometimes be preferable, consider

the MCEM algorithm. This algorithm involves taking draws from Q( ; i) as opposed to

taking draws from the likelihood function, as is common in Bayesian methods. Sometimes

it may be very di¢ cult or intractable to obtain adequate draws from the likelihood function,

but it may be tractable and much easier to obtain adequate draws from Q( ; i):
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Examples of the use of Bayesian methods in estimating jump-di¤usions are Eraker,

Johannes, and Polson (2003) and Eraker (2004). Both use the Gibbs sampler in combination

with Metropolis-Hastings algorithms. Therefore, they had to use proper priors, although

they claimed that they were relatively �at, and o¤ered simulation based evidence that

they made little di¤erence. Still, perhaps this does o¤er an opportunity to publish a

paper which estimates jump-di¤usions with the data augmentation algorithm. This would

have the advantage of still generating an emperical posterior, but without having to use a

proper prior. And, I mentioned earlier, two studies in top journals have shown the data

augmentation model to be superior to the Gibbs in estimating mixture models, at least in

certain cases. (Gelfand and Smith1990 and Diebolt and Robert1994).

V Generalized Method of Moments (GMM)

With this technique, moment conditions are established, that are analogous to those that

are assumed to hold in the model. Normally, it will not be possible to satisfy all moment

conditions completely, so the errors, the amounts o¤ from achieving the moment conditions,

are weighted in importance in a variance based way. Parameter estimates are chosen so as

to minimize the weighted sum of squared errors. So, a global optimization is involved, but

it should be an easier one than the one required for maximum likelihood estimation, and

�a very important point �with GMM if a local optimum is mistaken for the global one,

the estimator is still consistent. It�s just less e¢ cient. With MLE, if a local optimum is

mistaken for the global one, the estimator is no longer consistent, and it may be way o¤.

Because the likelihood function encompasses the information in every moment, its e¢ -

ciency can�t be beat �if it�s done right �but as discussed, what an author is claiming is the

global maximum, or the bounded global maximum, may not be. For global optimization,

in many meaningful situations, it can take a lot of time to learn to do it right, and/or to

implement doing it right, and in the meantime there could be an attitude of "Why is this

taking so long. I could have done this much quicker", or "This is not a very important

part of the paper or of getting a publication. Why are you spending so much time on it".

Although, perhaps the �eld isn�t that much like this. That�s something I�m going to have to

�nd out. For now I just throw it out there, in hopes of getting some informative feedback.

Anyway, the bottom line is MLE is more e¢ cient but harder to implement, and maybe

not tractable, and if a researcher presents MLE results, there can and probably should be

some skepticism about whether they are consistent. There�s much less of that kind of worry
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with GMM. GMM can also be used as a starting point and/or ball park check for MLE,

as well as for EM type and Bayesian methods.

An important recent discovery by Aït-Sahalia (2004) is new moment conditions that

he uses on a Merton (1976) model, which he shows achieve an asymptotic variance of the

same order as MLE, although, of course, with a higher constant. If this kind of e¢ ciency

can be shown to hold in jump di¤usions in general, this may be very important. GMM

may then be a technique with very similar e¢ ciency to MLE, but much more tractable and

trustworthy.

VI Unlike the Physical Sciences, Does our Field Penalize

Accuracy and Quality?

This is a question I have as a researcher starting out; perhaps the more experienced faculty

can give me their opinions. A researcher can, for example, do simulated annealing in a

very careful thoughtful way, or he can use a canned quasi Newton algorithm, and just keep

trying di¤erent starting points until the algorithm gives him a point that looks economically

sensible and/or interesting, especially since it appears that technical work is rarely ever

looked at by referees and editors (see Veall 1990, McCullough and Vinod 1999, and Vinod

2001).

Or, a researcher using iterative simulation can use the elaborate multistage procedures

outlined in Gelman and Rubin (1992), or he can just pick a sensible looking starting point

and run the algorithm for 50,000 draws and cut it o¤ where, on a plot, it looks relatively

stable. If the results look economically sensible and/or interesting he keeps them and

quickly moves on. If not, he just keeps trying di¤erent starting points until he gets a

visual convergence that�s economically reasonable looking and interesting; never mind its

robustness; never mind that it�s likely just clustered around one local mode of the posterior

and hasn�t touched most of the posterior. Perhaps he thinks it doesn�t matter because this

kind of thing won�t be looked at anyway (please let me stress, I�m just asking. I�m just

asking those with experience whether this happens, and if so how much).

If doing technical work reliably, precisely, and accurately, a la Gelman and Rubin (1992),

means that a researcher will produce 50% less papers, or worse in his early years, when he

will have to spend a lot of time to learn how to do things a la Gelman and Rubin (1992),

yet he will receive no bonus for having done them technically precisely and accurately, then

he takes a big risk of not getting tenure to provide this quality. So, I ask the faculty how
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true they think this is, because if this is essentially the case, wouldn�t the �eld be more

useful if it produced less, but more careful and more accurate papers, and, along the same

lines, if it produced less new papers, but more reproductions of existing papers to test, at

least qualitatively, their accuracy, so we could get more accurate and credible research?

And, a speci�c question I have is, can you give any examples of researchers who have

followed Gelman and Rubin�s 1992 procedure, or one as elaborate as that (although once

one has very extensive knowledge and experience in this area, such a procedure might not

take that much longer than guessing a starting point, getting x-thousand draws, and looking

at plots to guess the burn-in).

VII Numerical Issues

Brie�y, with the kind of work we do, and given how computers store reals, there is constant

round o¤. If the algorithm is stable, the round o¤ will not build to unreasonable levels.

However, an algorithm can be perfect analytically, with no coding errors, and still produce

results that are substantially o¤, or even nonsense, because it is numerically unstable,

because round o¤ error grows too fast, or even exponentially. This is an issue that is

taken very seriously in some of the sciences, although I am not sure how much in �nance.

Discussion can be found in Vinod (1999). The �eld that specializes in this is called numerical

analysis. I have done a good deal of reading and learned some important caveats, rules,

and techniques. Texts I recommend are Cheney and Kincaid (2003), Press, et. al. (1996),

and Higham (2002). I know of one �nance professor who has a Ph.D. in numerical analysis

from Berkely, as well as a Ph.D. in �nance from UCLA, Nai-Fu Chen, currently at The

University of California Irvine. It would be great if we could have him out here.

VIII Conclusion

Estimating jump di¤usions is a thorny problem, but perhaps solvable with reasonable e¤ort,

with the advances of the last 15 years in theory and computer power. I am going to try

to see with my paper with Shu Yan and Pedro Santa Clara. Tentatively, for a frequentist

estimation, the �rst technique I might recommend is the MCEM algorithm, possibly in a

LIML framework, but possibly in a FIML. With this algorithm FIML may not be that

much harder than LIML. For standard errors I might recommend a bootstrap method.

For a Bayesian estimation, I might recommend a Gibbs sampler, or data augmentation

algorithm.
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