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Modeling the Effect of Alzheimer’s Disease on
Mortality∗

Elizabeth Johnson, Ron Brookmeyer, and Kathryn Ziegler-Graham

Abstract

Mortality rate ratios and the associated proportional hazards models have been used to sum-
marize the effect of Alzheimer’s disease on longevity. However, the mortality rate ratios vary by
age and therefore do not provide a simple parsimonious summary of the effect of the disease on
lifespan. Instead, we propose a new parameter that is defined by an additive multistate model. The
proposed multistate model accounts for different stages of disease progression. The underlying
assumption of the model is that the effect of disease on mortality is to add a constant amount to
death rates once the disease progresses from an early to late stage. We explored the properties
of the proposed model; in particular the behavior of the mortality rate ratio and median survival
that is induced by the model. We combined information from several data sources to estimate the
parameter in our model. We found that the effect of Alzheimer’s disease on longevity is to increase
the absolute annual risk of death by about 8% once a person progressed to late stage disease. Most
importantly, we find that this additive effect is the same regardless of the patients’ age or gender.
Thus, the proposed additive multi-state model provides a parsimonious and clinically interpretable
description of the effects of Alzheimer’s disease on mortality.

KEYWORDS: Alzheimer’s, mortality, multi-state, survival
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1.    Introduction 
 
Alzheimer’s disease is a critical global public health problem.  Some projections 
have suggested that the prevalence of Alzheimer’s disease will quadruple in the 
next 50 years (Brookmeyer et al, 2007).  These projections depend on models that 
rely on two critical input factors: the incidence of disease, and mortality from the 
disease.  The focus of this paper is on models that describe the impact of 
Alzheimer’s disease on mortality.   An understanding of the effect of Alzheimer’s 
disease on mortality is important for health care planners in assessing the global 
burden of disease and for caregivers in evaluating the resources that will be 
needed to care for patients.   
 The lethality of Alzheimer’s disease has been a topic of confusion in the 
scientific literature.  The lethality of the disease has typically been described by 
the mortality rate ratio, which is the mortality rate among Alzheimer’s cases 
divided by the mortality rate of healthy persons of the same gender and age as the 
cases.  Some studies have suggested that mortality rates for Alzheimer’s patients 
are 1.5  times that of the general population of the same age and gender while 
other studies have suggested rates over 10 times that of the general population 
(see Guehne et al, 2005).  Furthermore, studies have reported that the mortality 
rate ratio is not a constant for Alzheimer’s disease but decreases with advancing 
age (Tshanz et al, 2004 and Ostbye et al, 1999).     
  The variation in the mortality rate ratios for Alzheimer’s disease by age 
would seem to suggest that there is no simple characterization of the lethality of 
Alzheimer’s disease. We wondered if we could identify a model that 
characterized the lethality of Alzheimer’s by a single parameter which was 
applicable at all ages..  If such a parameter could be found it would provide a 
simple parsimonious description of the lethality of Alzheimer’s disease that would 
be useful for communicating to both the scientific community and the general 
public. We also wondered if such a parameter could apply equally to both males 
and females.  Studies of the mortality rate ratios do not yield consistent findings 
with respect to the question of whether Alzheimer’s disease is any more or less 
lethal in men than women (Helmer et al, 2001, Aguero-Torres et al, 1999, 
Fitzpatrick et al, 2005, Aevarrson et al, 1998). 
 Several studies have demonstrated the utility of the illness-death model or 
three-state Markov model for modeling incidence and mortality for dementia and 
Alzheimer’s (Commenges et al, 2004 and Joly et al, 2002).  These models allow 
healthy persons to transition to Alzheimer’s disease or death with probabilities 
that may depend on age and calendar year.    Mortality rate ratios arise naturally 
in these models if proportional hazards are assumed; that is, an Alzheimer’s 
diagnosis acts multiplicatively on the hazard of death among healthy persons or 
the baseline hazard.   
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 In this paper, we extend the illness-death model to allow for early and late 
stages of disease and we propose an additive model for the lethality of 
Alzheimer’s.  This approach is motivated by the clinical features of the disease. 
Alzheimer’s disease is a progressively debilitating disease.   In the earliest stage 
of disease, patients may need only modest assistance, but in the late stage of 
disease, patients require very intensive care equivalent to that of a nursing home.  
Generally, death from Alzheimer’s disease occurs only once patients have 
progressed to the late stage of disease, by which point they are no longer able to 
feed or dress themselves, and ultimately become bedridden. As Alzheimer’s is a 
disease of the elderly, death from other competing causes (such as cancer) 
becomes increasingly more significant as patients age, yet Alzheimer’s disease 
itself is not thought to confer higher risks of death from these competing causes.   
 From these clinical considerations, we propose the following model to 
describe the lethality of Alzheimer’s disease.   The disease consists of two stages, 
the early stage followed by the late stage.  Persons in the early stage of disease 
have mortality rates similar to persons without disease.  However, once persons 
progress to the late stage, the baseline hazard of death is increased by an additive 
constant representing the incremental effect of Alzheimer’s disease on mortality 
rates.  As we will show, this additive constant does not appear to vary either by 
age or gender for Alzheimer’s disease, and thus the model provides a simple way 
to characterize the effect of the disease on mortality.  
 Excess hazards models have been considered by a number of authors in 
the illness-death model, as for example, the work of Sasieni (1996) and Anderson 
and Vaeth (1989) on continuous time models.  However, this appears to be the 
first attempt to consider an excess additive hazards model in the setting of 
multiple stages of disease progression.  We formally describe the model in section 
2.  The behavior of the mortality rate ratio induced by the model is considered in 
section 3.  We combine information from several data sources to estimate the 
additive constant in section 4.  The model and its implications are discussed in 
section 5.  
 
2. Two Stage Additive Mortality Model  
 
2.1 Model Formulation 
 
We consider a progressive disease model in which persons progress from early 
stage to late stage disease.  The underlying model is a multi-state discrete time 
Markov model.  Individuals may transition from the healthy state (state 0), to 
early stage Alzheimer’s disease (state 1) and then to late stage disease (state 2).  
Persons are at risk of death in each state.  The model is illustrated in Figure 1. We 
use a discrete time model for two reasons.  First, there is uncertainty in resolving 
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the exact age at which persons cross the threshold to meet the criteria for an 
Alzheimer’s diagnosis.  Second, as we will discuss, our model incorporates 
background death rates of the general population obtained from vital statistics 
which are generally only available on a yearly basis.  The unit of time we use for 
the steps in the discrete time model is year. 
 

 
 
Figure 1:   Multi-state model of progression of Alzheimer’s disease showing the 
annual transition probabilities between states. 
 
 The transition rates are the conditional probabilities of moving between 
states in a given year and are shown in Figure 1.  We define the death rates to be 
the conditional probabilities that a person who is age t dies during the year and 
these depend on the person’s current age t, gender g (male or female),  stage of 
disease (early or late) , and calendar year.  While background death rates of the 
general population obtained from vital statistics do depend on calendar year, we 
shall suppress notation for calendar year to simplify notation (although our 
numerical results in this paper do in fact account for calendar year).  The death 
rates for persons in the healthy state at age t and gender group g are called  d0,t,g 
which we refer to as the background death rates;  d1,t,g are the death rates for 
persons with early stage disease; and d2,t,g are the death rates for persons with late 
stage disease.     
 The model that we propose is that the effect of Alzheimer’s disease is to 
increase the background death rates by an additive constant once persons progress 
to the late stage of disease.  Persons with early stage disease are subject only to 
the background death rates.  That is, 
 

Healthy Early Stage Late Stage 

Death 

d0,t,g d1,t,g d2,t,g 

rt γ
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1, , 0, ,

2, , 0, , 2

t g t g

t g t g

d d
d d k

=

= +
           (2.1) 

 
The parameter k2 represents the additive effect of Alzheimer’s disease on the 
background death rates for persons with late stage disease.  This model assumes 
that Alzheimer’s disease acts to increase background mortality rates only when 
persons have late stage disease, while persons with early stage disease have 
mortality rates equivalent to those in the healthy state.  As we shall see this 
relatively simple parsimonious one parameter model (with parameter k2) explains 
across all ages and gender,  1) the complex patterns of mortality rate ratios 
observed in Alzheimer’s disease and 2) the observed patterns in the median 
survival among persons with Alzheimer’s . 
 A more general model can relax the assumption of model 2.1 so that the 
disease impacts mortality rates during both the early and late stage rather than 
only during late stage disease.  Specifically, in our generalized two stage additive 
model, the stage specific mortality rates are set to the background death rates plus 
an additive constant which may be different for the two stages.  That is, 
 

1, , 0, , 1

2, , 0, , 2

t g t g

t g t g

d d k

d d k

= +

= +
                                                    (2.2) 

 
The parameters k1 and k2 represent the additive effect of Alzheimer’s disease on 
the background mortality rates for persons with early and late stage disease 
respectively.  However, as we discuss below, the simpler model (2.1) with k1=0 
turns out to be an adequate and parsimonious description for Alzheimer’s disease.  
 
2.2 Survival Function   
 
In this section, we will explore patterns in median survival by age and gender 
induced by the two-stage model assuming the additive effect of Alzheimer’s 
disease only in the late stage (equation 2.1). The survival function S(t; a, g) is the 
probability that an individual with gender g who has disease onset at age a 
survives to age t.  To avoid ambiguity, we assume all transitions occur in the 
beginning of each year, with transitions to early stage disease occurring first, 
followed by transitions to late stage disease, and finally death.  Thus, an 
individual could experience multiple transitions in a year.  Here, we define the 
survival function to be the probability of being at risk of death at age t (and it 
includes the possibility that death occurs at age t.) 
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 The survival function S(t; a, g) is the sum of two components 
corresponding to the events of being in  either the  early or late stages at age t.   
Let p1,t,a,g    represent  the probability  that an individual  who had  disease onset at 
age a is at risk of death  at age t with early stage disease. Similarly, let  p2,t,a,g    
represent  the probability  that an individual  who had  disease onset at age a is at 
risk of death  at age t with late stage disease.  The transition probability that a 
person with early stage disease progresses to late stage disease during a year is γ 
which is assumed constant and depends neither on age nor gender.  Then, 
 

     
1, , , 2 , , ,( ; , ) t a g t a gS t a g p p= +                                 (2.3) 

 
Where 
 

)1()1)(1(
1

,,1,,,1 γγ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∏

−

=

t

ak
gkgat dp                                 (2.4)                  

 
and  
 

( )( ) [ ] ( ){ }1 1

2, , , 1, , 2, ,1 1 1
l tt

t a g k g k g
l a k a k l

p d dγ γ
− −

= = =
∑ ∏ ∏⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦

     (2.5) 

 
Expression 2.4 is derived by noting that in order for a person to have early stage 
disease at age t, the patient must not have had disease progression in any year up 
to and including age t. Expression 2.5 is derived from the following 
considerations.   In order to have late stage disease at age t, an individual must 
have progressed to late stage disease at an earlier age, say age l (where l varies 
between a and t).  Then, p2,t,a,g   is the product of three factors.  The first factor 
(shown in the first set of brackets in equation 2.5) refers to the probability of 
remaining in early stage disease until age l (we set this term to 1 when l= a); the 
second factor is the probability (γ) of progressing to late stage disease at age l; 
and the third factor in brackets refers to the probability of remaining in late stage 
until age t (we set this term to 1 when l=t.) 
 We explored how the median survival time that is predicted from the 
model for S(t;a,g) given by equation 2.3 depends on the additive lethality 
parameter k2 and the progression rate γ.  Figure 2 shows the predicted median 
survival based on equation 2.3 for different values of k2 and γ-1 (note that γ-1 

shown in the figure is approximately the mean duration of early stage disease in 
the absence of competing causes of death).  The figure is based on U.S. vital 
statistics for the background death rates (d0,t,g) that were age-gender specific 
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(Human Mortality Database, 2005); we assumed persons were diagnosed in 2006.    
The predicted median survival relies on future annual mortality rates by age and 
gender.  To project mortality rates, we fit the following linear model: 
log(mortality rate year i / mortality rate in 1988) = β (i -1988) for the years i = 
1988 to 2002.  This model was fit for all ages 60 to 100 and separately by gender 
and used to project future mortality for the years 2003 to 2050.   
 In figure 2, we observe that the median survival estimates decrease with 
age and are approximately similar by gender (assuming k2 does not vary by 
gender).  The figure shows how the predicted median survival decreases as k2 
increases.  The median survival also decreases as γ increases because persons 
enter the late stage more quickly at which point they are exposed to higher death 
rates.  In section 5, we will demonstrate that the two-stage model replicates 
median survival estimates from a cohort study of Alzheimer’s disease completed 
in Baltimore, Maryland. 
 
 

 
Figure 2: Sensitivity of predicted median survival to the lethality parameter k2 in 
the two stage additive model and the disease progression rate γ.  Background 
death rates are based on U.S. vital statistics assuming diagnosis in 2006.   
 
3. Mortality Rate Ratio Function 
 
The mortality rate ratio is an often cited statistic in the literature to describe the 
lethality of Alzheimer’s disease.  Here we define the mortality rate ratio at age t, 
called m(t), as the ratio of the death rates at age t among persons with Alzheimer’s 
disease to that versus persons without disease.  Here, age t refers to the current 
age of the person as opposed to age of disease onset. As we indicated in section 1, 
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previous studies in the literature have suggested empirical evidence that m(t) 
declines with age for Alzheimer’s disease. We investigated the behavior of m(t) 
induced by the two stage model (equation 2.1) described in section 2 in order to 
assess if the model could explain the pattern of mortality rate ratios reported in the 
literature.  
 The overall mortality rate at age t for a person with gender g is called dt,g  
which is a weighted average of the mortality rates for early and late stage disease.  
Specifically, we have 
 

    2 , ,

, 1, , 2 , ,

1, , 2 , ,

1, ,

1, , 2, ,

t g

t g t g t g

t g t g

t g

t g t g

p
d d

p p

p
d

p p
= +

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

    (3.1) 

 
where  p1,t,g    and   p2,t,g   are the probabilities that an individual with gender g who 
was born t years ago is alive at age t with early and late stage disease, 
respectively.  The mortality rate given by equation 3.1, and the probabilities p1,t,g  
and  p2,t,g   are  marginalized (or averaged) over the ages of onset (a).  Thus, we 
will need to introduce rt which is the conditional probability that a healthy 
individual who is age t has onset of disease during the year, that is rt is the 
transition probability from the healthy state to early stage disease (see Figure 1).  
We shall make the simplifying assumption rt depends on age but not gender 
(Brookmeyer et al, 1998).   Then, we have  
 

( )( ) [ ]

( )( )

1 , , 0 , ,
1 1 1

1 , ,

1 1

1 1

t

t g j j g a
a j a

t

k g
k a

p r d r

x dγ

= ≤ ≤ −

≥

⎡ ⎤= − −∑ ∏⎢ ⎥⎣ ⎦
⎡ ⎤− −∏⎢ ⎥⎣ ⎦

               (3.2) 

 
Equation 3.2 arises from the following considerations.  The first term in brackets 
refers to the probability of remaining in the healthy state until onset at age a; the 
second term in brackets refers to the probability of disease onset at age a; and the 
third term refers to the probability of remaining in the early stage of disease from 
age a through age t.  Similarly, p2,t,g, is  the probability that an individual in 
gender group g who was born in t years ago is alive at age t  and living with late 
stage disease, and  is : 
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        (3.3) 

 
The mortality rate ratio at age t (for gender group g) is the death rate among 
persons with Alzheimer’s disease (equation 3.1) divided by the background 
mortality rate: 
 

,

0, ,

( ) t g

t g

d
m t

d
=         (3.4) 

 
We studied the behavior of m(t) under different conditions. We used vital 
statistics for the background mortality rates (Human Mortality Database).  We 
used an exponential growth model for the age specific incidence of disease onset 
rt based on a review and analysis of published incidence studies of Alzheimer’s 
disease (Brookmeyer et al, 2007) given by rt = 0.00117 e(0.127 (t-60)) , with rt=0 for 
t<60. 
 Figure 3 is a graph of m(t) for males and females observed in calendar 
year 2006 with   γ= 0.167 and k2 = 0.10.  The model predicts that the mortality 
ratio briefly rises at the youngest ages (60-65), but after about age 65 it declines.  
This age pattern makes intuitive sense.  The small increase in the mortality ratio 
in the age 60-65 age group reflects the progression of disease in these young 
patients to late stage disease at which point they are subjected to mortality rates 
higher than the background rates.  But eventually as persons age, death from 
causes other than Alzheimer’s disease explain an increasing fraction of the total 
deaths. The mortality rate ratio then declines as the percentage of deaths from 
causes other than Alzheimer’s increase.  The increasing risk of death from causes 
other than Alzheimer’s explains intuitively why the mortality rate ratio associated 
with Alzheimer’s disease declines with advancing age.   
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Figure 3:  Mortality rate ratio m(t) for males and females versus age, in calendar 
year 2006. The parameter k2 was set to 0.10 and γ-1 was set to 6 years. 
 
 An interesting observation from Figure 3, is that the mortality rate ratios 
are lower for males than females although k2 was set to 0.10 for both genders.  
This behavior may be intuitively explained by the fact that background death rates 
are higher for males than females and thus Alzheimer’s disease explains a smaller 
fraction of total male deaths than female deaths. 
  Figure 4 shows the sensitivity of m(t) to different assumptions about the 
disease progression rate (γ).  The figure shows the mortality rate ratio curves for 
various values of γ-1 in calendar year 2006 with k2 = 0.10.  We find that as the 
disease progression rate increases (and the mean duration of early stage disease 
decreases), the mortality rate ratio increases.  Intuitively, the reason for this 
behavior is that as the disease progression rate increases, disease cases transition 
more quickly to late stage disease at which point they are exposed to higher death 
rates.  The non-constancy of the mortality rate ratio with age is most pronounced 
when γ is larger.  At the oldest ages, each of the curves converge toward 1, which 
occurs because of the greatly increasing risks from all other causes of death. 
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Figure 4: Sensitivity of mortality rate ratio m(t) to the disease progression rate γ  
in calendar year 2006. The parameter k2 was set to 0.10. 
 
4. Parameter Estimation 
 
To estimate the additive constant from equation 2.1, we utilized historic mortality 
data, published literature on the disease progression rate and a study of survival 
among Alzheimer’s cases.  Specifically, we applied the model to Alzheimer’s 
cases enrolled in the Baltimore Longitudinal Study of Aging (BLSA) (Kawas et 
al, 2000, Brookmeyer et al, 2002). The study evaluated participants biennially and 
identified 108 incident cases of Alzheimer’s disease (51 females and 57 males) 
via consensus diagnostic conferences.  These cases were then followed until death 
or last follow-up.  There were 71 deaths (30 females and 41 males) among the 108 
incident cases.  Stage of disease data was not available.  Thus, the available data 
was the age of disease onset (a), age at last follow-up (t) and a censoring indicator 
that indicates whether the patient died at age t or was still alive.  
 Previously published analyses of this data have fit very flexible parametric 
models to the mortality data with up to 5 parameters (Brookmeyer et al, 2002). 
The predicted median survival by age of diagnosis and gender from that analysis  
are shown in column 1 of Table 1 and ranged from about 10 years for a newly 
diagnosed case at age 60, to about 3 years for a newly diagnosed case at age 90.  
These results were concordant with nonparametric Kaplan-Meier curves.   
 We derived the likelihood function for the model described by equation 
2.1.  The likelihood function for the data is the product of two factors.  The factor 
contributed by persons censored (δ = 0) at age t is the survival function given by 
equation 2.3.  The factor contributed by persons who die (δ = 1) at age t is given 
by: 
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Then, the likelihood function for the data is: 
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=

− +=
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i
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1),;( δδ

          (4.2) 

 
We specified the background death rates and disease progression rates in the 
likelihood.  We used U.S. vital statistics for the background death rates (d0,t,g) that 
were age-gender specific that also accounted for the year of diagnosis of each 
case (Human Mortality Database).  The Consortium to Establish a Registry for 
Alzheimer’s disease suggested that 6 years is the mean time from mild to severe 
disease using the Clinical Dementia Rating scale (Neumann et al, 2002).  
Accordingly, we used an annual transition probability from early to late stage 
disease of γ = 0.167 in our model which corresponds to a mean duration of early 
stage disease of approximately 6 years. However, we also preformed and report a 
sensitivity analysis to this parameter. 
 The likelihood given by equation 4.2 involves one unknown parameter 
(k2).  Figure 5 displays the log-likelihood function for k2.  The maximum 
likelihood estimate was 0.078.  We inverted a likelihood ratio test to obtain a 95% 
confidence interval for k2 of (0.016, 0.162).  The interpretation is that Alzheimer’s 
disease acts to increase background death rates by about 8% per year once 
patients progress to late stage disease.  We also estimated k2 separately by gender 
(male vs female) and age of onset (< 75 vs ≥ 75).  We estimated that the additive 
constant was 0.068 (95% confidence interval: -0.013 to 0.192) for males and 
0.088 (0.004 to 0.230) for females.  Among persons diagnosed under the age of 
75 and 75 or older, the additive constant was estimated to be 0.168 (0.034 to 
0.358) and 0.038 (-0.032 to 0.134), respectively. We found no significant 
differences either by age of onset (p=0.15) or by gender (p=.79). 
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Figure 5: Log-likelihood function for k2 in the two stage additive model fit to 
survival times of Alzheimer’s disease patients. 
 
 Table 1 shows the predicted median survival times by age of onset and 
gender (from equation 2.4) with k2 = 0.078.  The predictions based on our one 
parameter model (column 2) were in close agreement with the estimates of 
median survival from the flexible parametric model.   
 As a point of comparison, we also fit a multiplicative model with a single 
parameter that assumed that Alzheimer’s disease multiplied background death 
rates by a constant θ.  The model, as in the standard proportional hazards model, 
assumed that there was only a single stage of disease.  We obtained a 
multiplicative constant of θ = 2.05, suggesting that Alzheimer’s disease mortality 
rates were about twice that of the general population.  Table 1 (column 3) shows 
the predicted median survival from the one parameter multiplicative model.   The 
model appears to overestimate the median survival at younger ages of 
Alzheimer’s disease onset.  For example, this simple naïve multiplicative model 
suggests that females who have disease onset at age 60 have a predicted median 
survival of nearly 20 years.  In contrast the analyses given in columns 1 and 2 of 
Table 1 suggest that the median survival for a female with onset at age 60 is 
closer to 11 years. 
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Table 1: Predicted median survival times based on several models of Alzheimer’s 
survival data by age of disease onset and gender  
 

Males Females  
 

Age 
of 

onset 

 
Parametric1 

Two 
stage 

additive 
model2 

One stage 
multiplicative 

model3 

 
Parametric1 

Two 
stage 

additive 
model2 

One stage 
multiplicative 

model3 

60 9.3 10.5 13.8 10.6 11.5 17.9 
65 7.8 9.3 10.2 8.9 10.6 13.9 
70 6.5 8.0 7.4 7.5 9.4 10.4 
75 5.5 6.5 5.1 6.3 8.0 7.4 
80 4.6 5.2 3.4 5.2 6.4 5.0 
85 3.8 3.7 2.1 4.4 4.8 3.1 
90 3.2 2.5 1.3 3.7 3.3 1.8 
95 2.7 1.7 0.8 3.1 2.1 1.0 

1 Based on a 5 parameter Weibull regression model to Alzheimer’s disease cases that included 
linear and quadratic  terms for age of disease onset, gender, an intercept term and shape parameter 
(see Brookmeyer et al, 2002) 
2. Based on two stage disease model with additive effect of Alzheimer’s disease on mortality in the 
late stage of disease. Maximum likelihood estimate of parameter k2 was .078.  Median survivals 
shown are for persons diagnosed in calendar year 1993 which was the approximate year of 
diagnosis of the cases.  
3 Based on a one stage disease model where Alzheimer’s disease acts to multiply background 
mortality rates by a constant θ estimated to be 2.05. 
 
 A key assumption of our model given by equation 2.1 is that persons with 
early stage Alzheimer’s disease have mortality rates equivalent to the general 
population, while those with late stage disease have elevated rates.  It is 
reasonable to wonder whether mortality rates are also elevated during the early 
stage of disease.  We investigated the validity of the assumption by considering 
the more general model 2.2.  The parameters k1 and k2 represent the additive effect 
of Alzheimer’s disease on the background mortality rates for persons with early 
and late stage disease respectively.  We added the parameter constraint that 0≤ k1 
< k2   because of difficulties in obtaining separate estimates for k1 and k2 without 
this constraint.  We believe it is very reasonable based on clinical considerations 
to assume that the increase in mortality rates is greater during late stage than early 
stage disease.  We tested the null hypothesis that k1=0 to assess the validity of our 
simpler model given by equation 2.1.  Our estimates were k1 = 0.0 and k2 = 0.078 
and we did not reject H0 that k1 = 0 (p ≥ 0.50 based on the MLE test of Self and 
Liang (1987) when the parameter is on the boundary).  Thus, the simplifying 
assumption of model 2.1 that excess mortality from Alzheimer’s disease occurs 
principally after persons progress to late stage disease appears supported by the 
data.  We investigated the sensitivity of this conclusion to different assumptions 
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about the underlying disease progression rate γ, and reached similar conclusions.  
For example, when γ is decreased to 0.11 (corresponding to a mean duration of 
early stage disease of about 9 years), we obtain k1 = 0.0 and k2 = 0.11, in which 
case we would still not reject H0: k1 = 0 (p ≥ .5). 
 
5.  Discussion 
 
Our model suggests that Alzheimer’s disease acts to increase background 
mortality rates by about 8% per year once a patient progresses to the late stage of 
disease.  These conclusions were the same regardless of the age of onset or the 
gender of the patient.  Our model had only one parameter (k2), yet we were able to 
obtain predicted median survival times that were in excellent agreement with semi 
and nonparametric analyses across all ages of disease onset and for both males 
and females.  Our model induces patterns in mortality rate ratios that are 
consistent with the literature.  The advantage of our model is it provides a 
convenient summary of the lethality of Alzheimer’s disease that applies across all 
ages and gender groups.   Software to estimate the survival function induced by 
the two stage model is available from the authors at 
www.biostat.jhsph.edu/project/globalAD/index.htm. 
  As shown in section 3, our model predicts that mortality rate ratios 
decline with age, as has been empirically reported.  That decline may suggest the 
naïve and incorrect interpretation that the lethality of Alzheimer’s disease 
decreases with age, or that Alzheimer’s disease is more aggressive in younger 
victims than older victims.  In fact, our model makes clear that the lethality of 
Alzheimer’s disease does not diminish with age.  Regardless of age, late stage 
Alzheimer’s disease adds about 8% to annual background death rates.  Why then 
does the mortality rate ratio decline with age?  The explanation lies in the fact that 
as persons’ age they are at increasing risk from many competing causes of death 
including cancer and cardiovascular disease.  Alzheimer’s disease represents an 
increasingly smaller fraction of the all-cause mortality rate. 
 An underlying assumption of our model is that Alzheimer’s disease does 
not increase mortality risks during the early stage of disease. While the model can 
be generalized to allow for increased risk during both stages, our analysis 
indicates that the assumption is supported by the data. 
 We utilized several sources of data to estimate the effect of mortality on 
Alzheimer’s disease.  Death rates among healthy persons and Alzheimer’s disease 
incidence rates were available on a yearly basis; therefore we utilized a discrete 
time Markov model.  Within the Baltimore Longitudinal Study of Aging, 
diagnosis of Alzheimer’s disease was determined by a consensus diagnostic 
conference where the clinicians assessed subject medical records and information 
from the biennial follow-up visits.  Date of diagnosis was assigned to be the year 
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during which subjects first met the DSM-III-R criteria for dementia.  We 
acknowledge that there is error in the date of diagnosis based on this diagnostic 
procedure which is in part why we used a discrete time model.  
 The data from the Baltimore Longitudinal Study on Aging  did not have 
the transition times from early to late stage disease.  We assumed a transition rate 
of γ = .167 per year.  We performed sensitivity analyses to that parameter.  An 
alternative approach would be to specify a prior distribution on that parameter.  
Of course, if data was available on the exact transition time to late stage disease 
that data could be incorporated into the analysis by modifying the likelihood 
function.  
 Characterizing the lethality of Alzheimer’s disease in elderly populations 
is challenging because of the very significant risks of competing causes of deaths, 
and the fact that the disease slowly becomes progressively more debilitating.  We 
have addressed these issues by a two stage model for disease progression together 
with an additive model for the effect of Alzheimer’s disease over and above the 
background mortality rates.  It provides a simple parsimonious description of the 
lethality of the disease.  The approach may also be useful for characterizing the 
lethality of other diseases in elderly populations. 
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