
Michigan Technological University

From the SelectedWorks of Ramy El-Ganainy

October 30, 2012

Enhanced Optical Anderson Localization Effects
in Modulated Bloch Lattices
Ramy El-Ganainy, University of Toronto
Mohammad-Ali Miri, University of Central Florida
Demetrios N. Christodoulides, University of Central Florida

Available at: https://works.bepress.com/ramy_el-ganainy/13/

http://www.mtu.edu
https://works.bepress.com/ramy_el-ganainy/
https://works.bepress.com/ramy_el-ganainy/13/


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 141.219.44.120

This content was downloaded on 19/06/2015 at 16:51

Please note that terms and conditions apply.

Enhanced optical Anderson localization effects in modulated Bloch lattices

View the table of contents for this issue, or go to the journal homepage for more

2012 EPL 99 64004

(http://iopscience.iop.org/0295-5075/99/6/64004)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/99/6
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


September 2012

EPL, 99 (2012) 64004 www.epljournal.org

doi: 10.1209/0295-5075/99/64004

Enhanced optical Anderson localization effects in modulated
Bloch lattices

Ramy El-Ganainy
1,2(a)

, Mohammad-Ali Miri
3 and Demetrios Christodoulides3

1Department of Physics, University of Toronto - 60 St. George Street, Toronto, Ontario, Canada
2Max Planck Institute for the Physics of Complex Systems - Nöthnitzer Straße 38, 01187 Dresden, Germany, EU
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Abstract – We study Anderson localization dynamics in periodically modulated optical Bloch
arrays. Using an effective model, we show that, in such arrangements, even a weak disorder may
play an important role and can lead to enhanced Anderson localization effects.

Copyright c© EPLA, 2012

Introduction. – Anderson localization (AL) is an
important quantum-mechanical process that describes the
absence of diffusive electronic behavior in random lattices
arising from destructive quantum interference effects [1].
In fact, AL can explain the absence of conductivity in
certain highly disordered systems [1–3]. Since the semi-
nal paper by Anderson, work in this field has been inten-
sive. However, experimental observation of such effects
remained very much elusive due to many-body interac-
tions that naturally arise in solid-state physics. In order to
circumvent this difficulty, optical realizations of AL were
proposed [2]. Recently AL has been observed in both 1D
and 2D systems of coupled waveguide arrays [4,5]. These
structures offer considerably more control over the experi-
mental parameters and are also immune to the presence of
weak optical losses that happen to be detrimental to AL
in other settings [1].
On the other hand there has been considerable effort

in understanding the dynamical behavior of quantum
systems with time-dependent parameters. For example,
time-dependent Hamiltonians are used to describe the
corresponding quantum evolution under the action of an
applied time-varying force [6]. Most often, the effect of
such a force is to mix the system’s initial state into a
quantum-mechanical superposition and depending on the
nature of the time variation, the system may eventually
evolve into a new final state. The ability to utilize such
external control parameters to create certain desired final
states has been a subject of intense research investigation

(a)E-mail: ganainy@physics.utoronto.ca

in the past decades [7]. A profound example of such
processes is coherent control of chemical reactions where
laser pulses are synthesized and used in order to steer
reactions to favor certain possible outcomes over others [7].
A closely relavant example is the use of engineered laser
pulses to induce coherent population transfer between
energy levels [8] and its related Landau-Zener problem [9].
Another important class of time-dependent systems is that
of quantum kicked rotors which in the classical limit are
known to exhibit chaotic behavior [10]. It is also worth
noting that the intriguing effects of geometric phase arise
as a result of adiabatic evolution of Hamiltonians having
time-dependent parameter space with dimensions larger
than one [11].
Given the variety of physical phenomena associated

with time-dependent Hamiltonians, it is interesting to note
that most studies on Anderson localization are carried out
for time-independent systems. It would be of interest to
bridge this gap and investigate localization effects when
the Hamiltonian varies with time.
Along these lines, the process of Anderson localization

in one dimension dimer model under the influence of ac
(alternating current) electric field was previously inves-
tigated and it was shown that it can lead to enhanced
localization effects, even for relatively weak disorder [12].
The explanation of this phenomenon is closely related
to another process known as dynamic localization (DL)
[13,14]. Under DL conditions, an applied ac field (super-
imposed on a periodic potential) will result in a localiza-
tion of the electronic wave function. For certain conditions
however, this localization ceases to exist and the electron
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Fig. 1: (Colour on-line) Possible realization of a periodically
modulated Bloch lattice. The periodic coupling is obtained by
periodic modulation of the waveguides’ width while random-
ness is also introduced by changing the waveguides’ width
(diagonal disorder).

wavepacket spreads all over the lattice sites. If the applied
field parameters are adjusted so that the diffraction is
weak, it follows that even a weak disorder may lead to
AL effects. Dynamic localization has recently been exper-
imentally realized in the context of optics, e.g. in coupled
curved optical arrays where the curvature effectively trans-
lates into periodic tilting of the array index [15–17].
Another interesting process in dynamic Bloch oscillator
arrays is that of resonant delocalization (RD) [18]. In this
case, because of resonance effects, a beam continuously
undergoes diffraction in spite of the fact that it propa-
gates in a Bloch array.
In this letter we study a closely related problem,

namely AL in conjunction with resonant delocalization.
We show that in such configurations even a weak disorder
could lead to enhanced Anderson localization effects.
Before we proceed, we note that observing these effects
in solid-state physics is problematic due to many-body
effects. A possible experimental route towards such an
observation would be to investigate similar effects in
linear photonic systems where photon-photon interactions
are absent. In general, RD can be realized in optics by
periodically modulating the coupling constants between
adjacent sites in a waveguide array while also linearly
ramping the effective refractive index —see fig. 1. Different
configurations with modulated coupling constants have
been also considered in previous works [19].

Localization effects: analysis and results. – To
analyze the aforementioned system we consider an optical
array configuration that is described by the following
coupled mode equation:

i
dφn
dz
+κ (z) (φn+1+φn−1)+ (nf0+ δn)φn = 0. (1)

In eq. (1), φn represents the optical modal field amplitude
at waveguide site n, and κ (z) is the z periodic coupling
constant between any two adjacent channels. On the other
hand f0 is the ramping strength of this Bloch oscillator

array. In addition, δn represents a lattice site dependent
random perturbation, added to the original value of the
ramping function, and here it accounts for the disorder
(on-diagonal disorder). It is important to note that if the
coupling constant is periodic, κ (z) = κ (z+Λ), eq. (1) will
be invariant under the translation z→ z+Λ . Hence one
can always look for solutions to eq. (1) in the form of
Floquet-Bloch modes. In other words, the solution can
take the form φn (z) = exp (iµz)Hn (z) where the system’s
eigenmode obeys Hn (z) =Hn (z+Λ) and µ is the quasi-
eigenvalue (analogous to quasi-momentum in solid-state
periodic potentials). Also note that the configuration
described by eq. (1) is periodic in the transverse direction
only when f0 = δn = 0. Clearly any non-zero refractive
index ramping destroys this periodicity. Thus, in general
the stationary or the Bloch modes of the system (when
f0 �= 0) are not necessarily extended all over the lattice. In
fact, for a constant coupling κ, these modes correspond to
the so-called Wannier-Stark ladder spectrum and they are
indeed localized [20]. Using the transformation

ϕn (z) = un (z) exp (i nf0 z) ,

the above equation reduces to

i
dun
dz
+κ (z)

(
eif0zun+1+un−1e−if0z

)
+ δnun = 0. (2)

Here we first consider the case of a perfect lattice with-
out any disorder, i.e. δn = 0. Under these conditions,
eq. (2) is now periodic in the transverse direction and
hence one might be tempted to look for extended states.
However the analysis is now complicated by the fact
that the lattice is no longer invariant under longitudi-
nal translations z→ z+Λ. It is only under the reso-
nant condition Λ= 2πm/f0, with m being an integer,
that the lattice invariance under discrete z translations is
restored. For concreteness, let us consider the case where
κ(z) = κ0+ ε cos(Γz). The above resonance condition then
translates into f0 =mΓ. For m= 1, this becomes exactly
the resonant delocalization condition derived in [18] and
under this latter condition, the impulse response (single
channel excitation) was shown to diffract unboundedly
upon propagation. In what follows, we investigate the
system under this physical condition of m= 1. Using the

ansatz un (z) = exp

(
i
z∫
0

λ (z′) dz′
)
exp (iqn) in eq. (2)

when δn = 0, we find that λ (z) = 2κ (z) cos(q+ f0z). If we
substitute in this latter expression the particular choice of
κ(z) = κ0+ ε cos(Γz), we finally obtain

λ (z) = 2κ0 cos(q+ f0z)+ ε cos(q)+ ε cos(q+2f0z) .

In other words, the solution for (2) takes the form

un (z) = exp (iqn) exp (iε cos(q) z) G (z) , (3)

where

G (z) = exp


i
z∫
0

{2κ0 cos(q+ f0z′)+ ε cos(q+2f0z′)}dz′

 .
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Note that, in the transverse direction, the above solution
behaves in the same way as if the lattice was uniform,
namely it varies like exp (iqn). In the longitudinal dimen-
sion however, it is of the form of Floquet-Bloch modes,
i.e. exp (iε cos(q) z) G (z), where G (z) =G (z+2π/f0). It
thus follows that under this resonant condition, ε cos(q)
can be considered as the quasi-eigenvalue characteriz-
ing light propagation in such geometries. The solutions
presented in eq. (3) are also known as Houston modes [21]
and under the above-mentioned resonant condition of
f0 =Γ coincide with the Bloch modes of eq. (1) [21,22]. An
immediate consequence of the above analysis is that the
system’s eigenvalue is renormalized to a smaller value. In
other words it was reduced from 2κ0 cos(q), as in the case
of a uniform array, to ε cos(q). This mathematical state-
ment translates into a weaker effective hopping constant
and hence weaker diffraction. This renormalization of the
coupling between adjacent sites has been also predicted for
different systems in solid-state physics involving periodic
potentials superimposed with both dc and ac applied elec-
tric fields [12,13]. The reduction in the effective coupling
renders the structure more sensitive to any disorder and
hence enhanced localization effects are expected under
these conditions.
At this point, in order to demonstrate this enhancement

of localization effects, we insert back the random disorder
parameter δn and carry out numerical simulations for
eq. (1) for two different scenarios. In the first case, we take
ε= f0 = 0, corresponding to a disordered uniform array
and we compare these results with those of a modulated
Bloch structure with κ0 = f0 =Γ= 1 and ε= 0.2. In both
cases, the random disorder is selected from a uniform
distribution δ ∈ [−∆, ∆] and will be characterized by the
disorder parameter η=∆/κ0.
Figure 2 shows simulation results for two different

disordered uniform waveguide arrays. Figures 2(a) and (b)
illustrate the dynamics for a relatively small disordered
parameter of η= 1.
A top view of single input propagation is depicted in

(a) while (b) shows the output intensity in log scale.
The blue line represents the output for one array while
the red line is the average intensity over 40 different
realizations of the random lattice. Similarly, figs. 2(c)
and (d) depict the same set of data for a stronger
randomized lattice of η= 2. Clearly, linear variations of
intensity (in log scale) with waveguide site are observed in
both figs. 2(b) and (d) —indicating Anderson localization.
The slope in (d) is clearly steeper than that of (b),
indicating tighter localization effects as anticipated for
larger disorder parameter.
Figure 3 shows numerical results for a modulated

Bloch lattice using the previously mentioned parameters.
Discrete diffraction under resonant delocalization condi-
tions is shown in fig. 3(a) while localization effects for
single channel input when η= 0.4 and η= 0.6 are depicted
in figs. 3(b) and (c), respectively. Finally, fig. 3(d) illus-
trates the output intensity as well as the ensemble average

Fig. 2: (Colour on-line) (a) and (b): Localization dynamics in
uniform waveguide arrays when the disorder parameter is η= 1.
A top view of the propagation in one of the lattice realizations
is depicted in (a) while (b) shows the output intensity in log
scale (log to the base e). Panels (c) and (d) depict similar
information for an array with disorder parameter η= 2. Note
the linear slope of the intensities in the log scale graph —a sign
of Anderson-type localization.

Fig. 3: (Colour on-line) (a) Diffraction under resonant delocal-
ization conditions when no disorder is present. Panels (b) and
(c) depict localization effects for single channel input when
η= 0.4 and η= 0.6, respectively. (d) Output intensity (blue
steeper curve) and average output over 100 lattice realizations
(red line). Linear slopes can still be observed.

output intensity in log scales. Few comments are in place
here. First, in fig. 3(d), a linear slope indicating Anderson-
like localization is observed. However, in general, when the
numerical experiment was repeated several times, it was
found that in occasions, the best fit was polynomial rather
than linear. Second, the average intensity curve is consid-
erably less steeper than the single output curve shown
in fig. 3(d). In some sense, this can be observed also in

64004-p3



Ramy El-Ganainy et al.

Fig. 4: (Colour on-line) (a) Diffraction of Gaussian beam in a
Bloch array in the absence of any disorder. (b) Localization of
the same input when η= 0.2.

fig. 2(d) for uniform lattices; however it is more profound
in modulated Bloch arrays.
The above two observations can be roughly understood

by noting that eq. (2) indicates that the structure has
a different localization length scale at each propagation
distance z. Thus, in contrast with the uniform lattice
case, the input beam in the modulated Bloch lattice is
expected to experience some breathing and bending upon
propagation. For example, see fig. 3(b).
Note that in Bloch arrays, strong localization effects

can be observed for disorder parameters almost 2–5
times lower than that used for the uniform array, thus
confirming our previous analysis and remarks concerning
the renormalization of coupling constant.
Finally, we explore how these localization effects will be

manifested when the input beam is Gaussian as opposed to
a single channel excitation. Again, as before, the examined
array has the parameters κ0 = f0 =Γ= 1 and ε= 0.2.
For the sake of comparison, fig. 4(a) shows propagation
dynamics of a Gaussian beam input in the absence of
any disorder. On the other hand, fig. 4(b) depicts the
Gaussian beam evolution under a disorder parameter
of η= 0.2. Evidently, strong localization effects can be
observed, even for such weak randomness. This can be
understood by noting that Gaussian inputs are wider than
single waveguide excitations, hence they experience slower
diffraction which makes them more susceptible to an even
weaker disorder. Similar effects to those in fig. 4(b) can be
also observed in uniform lattices for η= 0.5.

Comparison with localization effects in Hamilto-
nians exhibiting dynamic localization. – Finally, it
is also instructive to compare the above-discussed scenar-
ios with localization effects due to random changes in
Hamiltonians having the form

i
dφn
dz
+κ0 (φn+1+φn−1)+ (nf0 cos(Ω z)+ δn)φn = 0.

(4)
As has been shown, under certain conditions, this system
(in the absence of any random variations) gives rise to the
phenomenon of dynamic localization [14]. By using the

transformation [12] ϕn (z) = un (z) exp
(
i n f0Ω sin (Ωz)

)
,

we obtain

i
dun
dz
+κ0

(
ei
f0
Ω sin(Ωz)un+1+un−1e−i

f0
Ω sin(Ωz)

)

+δnun = 0. (5)

As we did before, in order to gain insight into the
renormalization of the tunnelling rate from one channel to
another, we consider the case where δn = 0. By assuming
a solution of the form un(z) = exp (i

∫ z
0
λ(z′)dz′)exp (iqn)

for eq. (5), we find that λ(z) = 2κ0 cos(q+
f0
Ω sin(Ωz)).

The periodic term in the previous expression can be
expanded using Fourier series: cos(q+ f0Ω sin(Ωz)) =
a0+

∑∞
1 [an cos(nΩz)+ bn sin(nΩz)]. The first term

in such an expansion is the dc component while the
rest of the summation is a periodic function with
period equal to 2π/Ω. In order to proceed, we note
that the dc term can be calculated analytically: a0 =
Ω
2π

∫ π/Ω
−π/Ω cos(q+

f0
Ω sin(Ωz)) dz = J0(

f0
Ω ) cos (q), where

J0 is the Bessel function of the first kind and
zero order. Substituting back, we finally find that
un(z) = exp(iqn)exp(i 2κ0J0(

f0
Ω ) cos(q) z)Q(z), where

in this case the function Q (z) takes the form Q(z) =

exp (i
∫ z
0
{ 2κ0

∞∑
1
[an cos(nΩz

′)+ bn sin(nΩz′) ] }dz′ ). We
note here that Q(z) =Q

(
z+ 2πΩ

)
. In other words,

the solutions take the form of Houston modes with
a quasi-eigenvalue 2κ0J0

(
f0
Ω

)
cos(q). Similar to the

resonant delocalization case, and by comparing this
quasi-eigenvalue to the corresponding eigenvalue for
uniform lattice 2κ0 cos(q), we find that here also the
coupling constant is effectively normalized to its new

value of κeff = κ0J0

(
f0
Ω

)
[12,14]. It is interesting to

note that when the quantity f0Ω coincides with one of the
zeros of the Bessel function J0 (x), the coupling constant
effectively vanishes and localization effects take place,
even without introducing any disorder —thus leading to
the so-called dynamic localization effect [14]. We also
remark that as opposed to the resonant delocalization
situation, where the effective hopping depends only on the
coupling constant modulation depth ε, here the tunneling
between adjacent waveguide channels is a function of the
modulation period and the refractive index ramping as
well. Thus, when random effects are included, the degree
of localization enhancement will be determined by the
interplay between these two parameters. Depending on
the ratio f0/Ω, Anderson-like localization in waveguide
arrays (or their analogous quantum systems) described
by eq. (4) can supersede or precede localization effects
obtained for optical lattices obeying eq. (1) when both
exhibit the same degree of randomness.

Conclusions. – In conclusion, we have studied the
effect of disorder on wave propagation in modulated Bloch
arrays. These configurations may provide better under-
standing to similar dynamics occuring in time-dependent
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quantum systems. We derived the quasi-stationary Hous-
ton modes of the structure under resonant delocalization
conditions, and showed that the hopping constant between
two adjacent channels is renormalized, and for the specific
case under investigation, to weaker values. By investigat-
ing single channel excitation in such geometries under
random uniform disorder, we demonstrated localization
dynamics, occurring for much weaker disorder parameters,
compared with those needed to observe similar effects in
uniform lattices. We have also studied localization effects
in modulated Bloch arrays under Gaussian beam exci-
tation conditions. In this latter scenario, we found that
even weaker disorder is enough to observe beam localiza-
tion effects. Finally, we have compared our results with
those obtained for Bloch waveguide arrays having a peri-
odic modulation in their propagation constants. In this
case, we have demonstrated that enhancing Anderson-like
localization effects is still possible and we have highlighted
the difference between this process and localization effects
associated with resonant delocalization regimes described
by eq. (1).
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