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Abstract—Keyword spotting refers to the process of retrieving
all instances of a given keyword from a document. In the
present paper, a novel keyword spotting method for handwritten
documents is described. It is derived from a neural network
based system for unconstrained handwriting recognition. As such
it performs template-free spotting, i.e. it is not necessary for a
keyword to appear in the training set. The keyword spotting is
done using a modification of the CTC Token Passing algorithm
in conjunction with a recurrent neural network. We demonstrate
that the proposed systems outperforms not only a classical
dynamic time warping based approach but also a modern
keyword spotting system, based on hidden Markov models.
Furthermore, we analyze the performance of the underlying
neural networks when using them in a recognition task followed
by keyword spotting on the produced transcription. We point out
the advantages of keyword spotting when compared to classic text
line recognition.

I. INTRODUCTION

The automatic recognition of handwritten text – such as
letters, manuscripts or entire books – has been a focus of in-
tensive research for several decades [1], [2]. Yet the problem is
far from being solved. Particularly in the field of unconstrained
handwriting recognition where the writing styles of various
writers must be dealt with, severe difficulties are encountered.

Making handwritten texts available for searching and brows-
ing is of tremendous value. For example, one might be
interested in finding all occurrences of the word “complain”
in the letters sent to a company [3]. As another example,
libraries all over the world store huge numbers of handwritten
books that are of crucial importance for preserving the world’s
cultural heritage. Making these books available for searching
and browsing would greatly help researchers and the public
alike. Certain efforts have already been put into word spotting
for historical data [4], [5]. Another related application is the
segmentation of images of historical documents into mean-
ingful regions, which can be improved with keyword spotting.
In [6] the keyword “Fig.” is spotted in the images to help
identifying figures and their corresponding captions. Finally,
it is worth mentioning that Google and Yahoo have announced
their intention to make handwritten books accessible through
their search engines [7]. In this context, keyword spotting will
be a valuable tool for users browsing the contents of these
books.

Transcribing the entire text of a handwritten document for
searching is not only inefficient as far as computational costs
are concerned, but it may also result in poor performance,
since mis-recognized words cannot be found. Therefore, tech-
niques especially designed for the task of keyword spotting
have been developed. Next, we review related work from this
area.

A. Related Work

1) Word based Keyword Spotting: The task of keyword
spotting as detecting a word or a phrase in an image has been
initially proposed in [8] for printed text and a few years later
in [9] for handwritten text. The first methods consider single
word images and adopted approaches common in optical
character recognition (OCR). They make use of pixel wise
comparison of the query and the test image (or selected parts of
it, called zones of interest (ZOI)) or evaluate a global distance
value between the two pixel sets. Notable works in this domain
include XOR comparison [10], Euclidean distance [11], Scott
and Longuet-Higgins distance [9], Hausdorff distance of con-
nected components [12] and the sum of Euclidean distances
of corresponding key points (corner features) [13].

More complex, holistic features are the moments of the
black pixels, investigated in [14]. In [15] and [16], several
binary ’Gradient, Structural and Convexity’ (GSC) features
are explored. In [17] different pixel-wise gradient matchings
are compared and the authors propose an elastic matching
procedure. The authors in [18] discuss discrete cosine trans-
formation of the contour to obtain a feature vector, while
the use of Gabor features is investigated in [19]. Holistic
word features in conjunction with a probabilistic annotation
model are proposed in [20]. This system allows one to spot
arbitrary words. However, problems are reported for keywords
not occurring in the training set.

The most common local approach is to represent a word as
a sequence of features, extracted via a sliding window. Com-
paring such sequences using dynamic time warping (DTW) is
one of the most commonly used word spotting methods [21],
[22] and still widely used [4]. A comparison of DTW with
pixel-wise comparisons is given in [11] and a comparison of
(GSC) based spotting with DTW in [15], [23]. A proposal of
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using sequential data in conjunction with a holistic approach
for keyword spotting in the speech recognition domain is made
in [24] where a sequence is transformed into a vector space
and then classified using kernel machines.

2) Line based Keyword Spotting: All former approaches
require the text in an image to be segmented into individ-
ual words before keyword spotting takes place. A different
scenario is given if the document is segmented into lines
only. A DTW based system that automatically selects keyword
candidates in a handwritten text line is described in [25]. For
general systems that rely on an automatic segmentation, a
method is proposed in [26] that also takes the probability of
a correct segmentation into account.

Using a handwritten text line recognition system for key-
word spotting circumvents the segmentation problem. Tech-
niques based on handwriting recognition (HWR) have become
fairly popular recently, especially using Hidden Markov Mod-
els (HMM) [27], [28], [29], [30]. In [8] pseudo-2D HMMs
have been investigated and [31] proposes generalized HMMs
where more than one emission in each hidden state is allowed.
Unsupervised adaptation of whole word HMMs to a specific
writer is proposed in [32] and [33] discusses the usage of
the Fisher Kernel of the HMM to estimate a good confidence
measure.

Not only HMMs but also Neural Networks (NN) have found
their way into keyword spotting with so called bidirectional
long short-term memory (BLSTM) NN [34], [35], similarly
to the system we propose in this paper. The mentioned work,
however, deals only with keyword spotting in speech. Fur-
thermore, one node in the output layer of the neural network
symbolizes one keyword and is triggered when the word
occurs in the input data. Therefore, the number of keywords to
be spotted are limited, the word has to be known beforehand,
and the keyword must occur in the training set.

3) Document based Keyword Spotting: To work on com-
pletely unsegmented pages of text, a system can either include
a segmentation step [14] or take a segmentation-free approach.
In [36] a codebook of shapes is used to create a compressed
version of each document. A keyword search is then done
using the stored shape codebook entries. Finally, a common
approach to segmentation-free word spotting is to consider the
task as an image retrieval tasks for an input shape representing
the word image [37], [38], [39].

B. Contribution

In this paper we present a keyword spotting method for
handwritten text based on BLSTM Neural Networks. The
application of these networks in conjunction with the so-
called CTC Token Passing algorithm to produce a transcription
of handwritten text was presented in [40]. In this paper, we
propose a new version of the CTC Token Passing algorithm
and apply it to a different task, namely keyword spotting. To
the knowledge of the authors, this is the first time that neural
networks and CTC Token Passing algorithm are used for this
task. With our system, fast and reliable keyword spotting can
be performed without the need of neither transcribing the text
line nor segmenting it into individual words.

The imposed changes and the different underlying task have
further implications on selecting single neural networks. The
network having the lowest word error rate when performing
recognition is not necessarily the best network for keyword
spotting. A system which optimizes word error rates has to
do well at recognizing the most frequent words but may do
poorly at recognizing function words which are less frequent.
According to Zipf’s Law, the capability of recognizing stop
words has a huge impact on the word error rate, while in
keyword spotting stop words do not matter. In fact, they are
excluded in most experiments. A keyword spotting system
must perform equally well on every search term, even rare
words and names that might or might not occur in a dictionary
or language model. Thus, a system optimized on the word error
rate may not be as good for search as one build directly for
this task [41]. In text retrieval it has been shown that training
a model by maximizing the likelihood of the training data
according to the model does not lead to the best results [42].

A preliminary version of the system described in this paper
has been presented in [43], [44]. The current paper provides
significant extensions with respect to the underlying method-
ology and the experimental evaluation. Firstly, we demonstrate
the system’s applicability to historical data as well as modern
handwriting. We use two different historical data sets. One data
set consists of letters written by George Washington associates,
a well known database for the task of keyword spotting [10],
[13], [17], [18], [22], [38]. Since the writing is done in cursive
early modern English, we investigated the performance of the
proposed system when it is trained on modern handwriting.
The second historical data set is an epic poem in middle high
German, written in the 13th century [45].

As the second extension over [43], [44], an extensive
comparison with several reference systems is presented. On
the one hand, a common DTW algorithm as well as a modern
HMM-based algorithm is used for comparison. On the other
hand, a handwriting recognition system is used that produces
an ASCII output on which the keyword search is done.

Finally, a brief discussion is given about keyword spotting
as a research area independent of handwriting recognition,
backed up with empirical arguments about the correlation
of the recognition performance versus the keyword spotting
performance of individual systems. The question whether
keyword spotting is easier and faster is answered in Section
IV-E in the affirmative.

The rest of the paper is structured as follows. In Section
II, the proposed keyword spotting system is introduced in
detail. The reference systems are presented in Section III.
The experimental evaluation is described in Section IV and
conclusions are drawn in Section V.

II. WORD SPOTTING USING BLSTM

Keyword spotting refers to the process of retrieving all
instances of a given word from a document. In this paper,
we focus on handwritten documents, such as letters, memo-
randums, or manuscripts. Without transcribing the data, a user
should still be able to search for any possible word, just like
using a search engine. How the result of such a search may
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(a) Returned log Likelihood: -1.7125

(b) Returned log Likelihood: -8.4097

(c) Returned log Likelihood: -9.0727

(d) Returned log Likelihood: -11.0900

(e) Returned log Likelihood: -11.6082

Fig. 1. Search results for the word “found”.

look like can be seen in Fig. 1. Note that the base system just
returns a likelihood of the word being found. If the likelihood
of a keyword occurring in the text line is above a given
threshold, the text line is returned as a positive match along
with the position of the keyword.

A. Preprocessing

In the database used for the experiments described in Sec-
tion IV, all documents are already segmented into individual
text lines. From each line, a sequence of feature vectors is
extracted, which is then submitted to the neural network.

For algorithmic processing, a normalized text line image is
represented by a sequence of N feature vectors x1, . . . , xN

with xi ∈ Rn. This sequence is extracted by a sliding window
moving from the left to the right over the image. At each of the
N positions of the sliding window, n features are extracted.
The sliding window has a width of one pixel. It is moved in
steps of one pixel, i.e., N equals the width of the text line.
From each window n = 9 geometric features are extracted,
three global and six local ones. The global features are the 0th,
1st and 2nd moment of the black pixels’ distribution within
the window. The local features are the position of the top-most
and that of the bottom-most black pixel, the inclination of the
top and bottom contour of the word at the actual window
position, the number of vertical black/white transitions, and
the average gray scale value between the top-most and bottom-
most black pixel. To compute the inclination of the top and
bottom contour, the sliding window to the left of the actual
one is considered. For further details on the feature extraction
step, we refer to [46]. The extracted features are local and
each feature vector represents the data of the text line image
at one position only. There is, however, an indirect influence
between all words of a text line. The preprocessing steps
which are explained in IV-A are globally applied to the entire
text line. Therefore, the way a word is written influences the

modifications applied to the entire text line prior to the feature
extraction.

B. The Proposed System

The keyword spotting system proposed in this paper is based
upon previous work where BLSTM Neural Networks have
been used for the handwriting recognition task [40]. Applying
BLSTM NN to handwriting recognition consists of two parts.
The first part is a preprocessing phase, performed by the neural
network. It maps each position of an input sequence to a vec-
tor, indicating the probability of each character possibly being
written at that position. The second part, called CTC Token
Passing algorithm, takes this sequence of letter probabilities
as well as a dictionary and a language model as its input
and computes a likely sequence of words. For the keyword
spotting task, we leave the first part unchanged but developed
a different postprocessing algorithm specifically for keyword
spotting.

Since the BLSTM NN preprocessing is already explained in
[40] we treat it as a black box in the current paper. We only
give a brief explanation in Section II-C below and refer to
[40] for further details. Understanding the CTC Token Passing
postprocessing upon which our algorithm is founded, however,
is essential. Therefore, we describe the algorithm in full length
in Section II-D.

C. BLSTM Neural Networks

The underlying neural network is a recurrent neural network
with a special architecture. To overcome the vanishing gradient
problem that describes the exponential increase or decay of
information in recurrent connections in a neural network, the
nodes in the hidden layer are replaced by long short-term
memory (LSTM) cells, displayed in Fig. 2. The gates of these
cell are normal nodes and control the flow of information into
and out of each cell. When the input gate is open, the central
node’s value is replaced by the output activation of the net
input node. When the output gate is open, information flows
out into the network and when the forget gate is open, the
cell’s memory is reset to zero.

The network is bidirectional, meaning the text line is
processed from both left-to-right and right-to-left. This is done
because context from both sides of a character is useful to
improve the recognition. The information from two separate
input layers is collected in two separate LSTM layers, respec-
tively, and finally joined in the output layer. This is illustrated
in Fig. 3. The output layer contains one node for each possible
character as well as one additional node, called ε node, which
is activated when no evidence about the presence of any
character can be inferred. The normalization of the output
activations to sum up to 1 results in a vector that can be
interpreted as a character probability vector (Fig. 4).

D. CTC Token Passing Algorithm

The CTC Token Passing algorithm for single words expects
a sequence of letter probabilities of length t as input from
the neural network, together with a word w as a sequence
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Fig. 2. Gates control the information flow into and out of each LSTM Node.

LSTM Layer LSTM Layer

Output Layer

Fig. 3. An illustration of the mode of operation of the BLSTM Neural
Network. For each position, the output layer sums up the values of the two
hidden LSTM layers.

of ASCII characters. In a dynamic programming fashion, the
best path through the letter probability sequence is computed
that correspond with the letters from the input word w. The
value of that path is then returned as a matching score, i.e. the
probability that the input to the neural network was indeed the
given word.

The pseudo code of the CTC Token Passing algorithm for
single word recognition is given in Algorithm 1. To introduce
the formal notation, let the sequence of letter probabilities be
n and let n(l, k) denote the probability of the letter l to occur
at position k. Furthermore let the word w to be matched be a
sequence of letter w = l1l2 . . . ln.

Fig. 4. The activation level for all nodes in the output layer. The activation
is close to 0 most of the time for normal letters and peaks only at distinct
position. In contrast, the activation level of the ε node is nearly constantly 1.

In a first step, the word w is expanded into a sequence

w′ = εl1εl2 . . . εlnε = c1c2c3 . . . c2n+1 .

Additionally, for every character ci (i = 1, . . . , 2n + 1) and
every position j = 1, . . . , t in the text line, a token ϑ(i, j)
is created. This token holds the probability for character ci

to be present at position j together with the probability of
the best path from the beginning to position j. All tokens are
initialized to 0 except for the tokens for c1 and c2, which
correspond to the first ε symbol and the first character of the
word l1. These are initialized to the value of ε respectively c1

at the first position of the sequence (Lines 3–4).
During the following loop over all input sequence positions

j, the tokens ϑ(·, j) are updated, so that a) the token’s
corresponding letter l occurs at position j, b) in the best path,
all letters of the word occur in the given order, c) between
two subsequent letters of the word, only ε-node activations are
considered and d) if two subsequent letters of a given word
are the same (e.g. positions 3 and 4 in “Hello”), at least one
ε node must lie between them. To compute the value of the
token ϑ(i, j), a set Tbest is created in which all valid tokens are
stored that can act as predecessor to the token ϑ(i, j) according
to the constraints mentioned above. If at sequence position j
the letter ci is considered (which might be a real letter or ε), the
token corresponding to the same letter ci at sequence position
j − 1 is valid (Line 8). The token corresponding to letter ci−1

(ε if ci is a real letter and a real letter if ci = ε) at sequence
position j − 1 is valid for each but the first letter (Line 9 and
10). Since two different letters might follow each other without
an ε-node activation, the token corresponding to letter ci−2

is valid for these cases, too (Line 11 to 15). Afterwards, the
probability of the best token in Tbest is multiplied with n(i, j)
to obtain the probability of ϑ(i, j). Algorithm 1 is a slightly
simplification of the one given in [40] which was designed for
full sequence transcription, but it is sufficient for our task of
keyword spotting.

E. Modification to perform Keyword Spotting

Algorithm 1 can now be adopted to spot any given word
in a text line s of arbitrary length. The idea is to consider
only the product of the output probabilities of the keyword
letters at the positions where they would fit best. Therefore,
a virtual node is added to the output nodes, called the any-
or ∗-node. The keyword to be spotted is then preceded and
succeeded by ∗ to symbolize the any-node. A path through
the output activation matrix of a text line will be on the any-
node until the most likely position of the keyword in the text
line, then traverse through the letters of the expanded word and
eventually finish on the any-node again. The value of the any-
node is n(∗, j) = 1 for all values of j so that the ∗-segments
of the path do not influence the product.

In order to find entire words but no sub-words contained
within longer words, we add a ′ ′ (white space) character to
the front and the end of the keyword:

w′ = ∗ l1l2 . . . ln ∗

This, however, might lead to problems since keywords occur-



5

Algorithm 1 The CTC Token Passing Algorithm for single
word recognition
Require: input word w = l1l2 . . . ln
Require: sequence of letter probabilities, accessible via n(·, ·)

1: Initialization:
2: expand w to w′ = εl1εl2ε . . . εlnε = c1c2 . . . c2n+1

3: ϑ(1, 1) = n(ε, 1)
4: ϑ(2, 1) = n(l1, 1)

5: Main Loop:
6: for all sequence positions 2 ≤ j ≤ t do
7: for all positions i of the extended word 1 ≤ i ≤ 2n + 1 do
8: Tbest = {ϑ(i, j − 1)}
9: if i > 1 then

10: Tbest = Tbest ∪ ϑ(i − 1, j − 1)
11: if i > 2 then
12: if ci 6= ε and ci 6= ci−2 then
13: Tbest = Tbest ∪ ϑ(i − 2, j − 1)
14: end if
15: end if
16: end if
17: ϑ(i, j) = max(Tbest) · n(i, j) . multiply the best token’s

probability with the letter probability
18: end for
19: end for

return max {ϑ(2n + 1, t), ϑ(2n, t)} . The word can either
end on the last ε (c2n+1) or on the last regular letter (c2n)

ring at the beginning of a text line do not necessarily have a
white space preceding them. Similarly, a text line image can
end with the last pixels of the last word. Therefore, we add
sequence elements to the beginning and the end of each text
line that represent extra white space.

If we now use the CTC-Algorithm for single word recog-
nition to compute the probability of the word being w′, we
compute in fact the probability that the text line starts with
any possible character but at some point in the text line the
first letter of the word w occurs. It is followed by the second
letter, and so on until the word’s last letter, followed by a
whitespace and then, again, by the any character. Obviously,
the size and content of the text before and after the keyword
w′ is irrelevant, since n(∗, j) = 1. Yet, the returned probability
of a word still depends upon the word’s length. To receive a
normalized value which can then be thresholded, we take the
logarithm of the probability pCTC(w|s) and divide it by the
search word’s length

fCTC(w|s) =
log(pCTC(w|s))

|w|
.

An approximation of the keyword’s length that works very
well is to use the number of characters of the word. This
value is constant throughout the test set for each keyword. A
more refined procedure is to use the length of the part of the
text line that is assumed to be the keyword. In the rest of the
paper, however, we focus on using the number of letters in
the word for the purpose of normalization because it returned
better results.

III. REFERENCE SYSTEMS

In this section, we will describe the reference systems to
which we compared the approach proposed in this paper. The
first one is a Dynamic Time Warping (DTW) based keyword
spotting system, while the second one is a recently proposed

learning-based keyword spotting system using Hidden Markov
Models (HMM). Finally, we also use a state-of-the-art HWR
system to transcribe the text. On this result, a simple ASCII
search is performed.

Note that the DTW reference system is based on a prior
word segmentation of the text line image, much like other
popular word spotting techniques, e.g. holistic approaches
that model word images with HMMs [47]. For comparison
with our NN-based word spotting system, we have applied
DTW to perfectly segmented word images, i.e. we do not take
segmentation errors into account.

A. DTW Reference System

DTW is a dynamic programming approach that finds an
optimal alignment between two sequences by a pairwise
comparison of elements of the first sequence to elements of
the second sequence. Each element in the one sequence can be
assigned to several consecutive elements in the other sequence.
In [48], DTW was proposed for word spotting in speech
recognition, and also the first approaches to word spotting for
handwritten text used DTW representing text as a sequence of
features vectors (see Section II). While various features have
been proposed in conjunction with DTW [22], [29], [49], we
use the same set of features that is used for NN-based word
spotting to ensure an objective comparison.

Our DTW implementation, similarly to the one described
in [4], makes use of a Sakoe-Chiba band [50] to speed-up
the computation. The only pruning criterion we used was the
length of the word, i.e. one word image must not be more than
twice as long as the other.

In order to spot a certain keyword, all instances of that
word occurring in the training set are compared to all words
in each text line. In this paper, we consider a perfect, manually
corrected word segmentation in order to rule out the influence
of segmentation errors on the word spotting performance. This
results in a bias of the system evaluation in Section IV in favor
of the reference system. The minimum of all these DTW
distances serves as a distance function of the keyword’s word
class to the text line. If the DTW distance of a keyword to the
text line is below a given threshold, the text line and the word
having the minimum distance is returned as a positive match.

B. HMM Reference System

The second reference system was recently presented in [30].
It is based on Hidden Markov Models (HMMs). HMMs are
state-of-the-art for modeling handwritten text [51] and have
been widely used for keyword spotting [3], [28], [31], [33],
[47], [52], [53]. In [30], trained character models are used to
spot arbitrary keywords in complete text line images using an
efficient lexicon-free approach.

The same image preprocessing and feature extraction meth-
ods are applied as for the proposed system (see Section II).
In the training phase, character HMMs are trained based on
transcribed text line images. At the recognition stage, the score
of an unknown text line image is given by the likelihood
ratio R = LK

LF
between a keyword text line model K and

a filler text line model F . The keyword model K is shown in
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Fig. 5. Hidden Markov Models

Figure 5(a) for the keyword “word”. It is constrained to contain
the exact keyword character sequence at the beginning, in the
middle, or at the end of the text line, respectively, separated
with the space character “sp”. The general filler model F
is given by an arbitrary sequence of characters as shown in
Figure 5(b). It is used to normalize the likelihood score LK

obtained by the keyword model. In a final step, the likelihood
ratio R is normalized with respect to the length of the keyword
character sequence L and is compared to a threshold T for
keyword spotting R

L > T . For more details on the HMM-
based reference system, we refer to [30].

C. Transcription and ASCII Search

Most papers about word spotting claim that the task of
word spotting should not be done using a HWR system to
transcribe the text and search on the ASCII output. It is argued
that spotting single words is fundamentally easier and should
perform substantially better at a lower computational cost.
However, the authors of the current paper have not found
any formal proof nor any empirical evidence reported in the
literature to substantiate this claim. We are therefore interested
in such a transcription and a subsequent ASCII search (TAS).

The neural networks used for the word spotting approach
proposed in this paper can easily be used for handwriting
recognition as mentioned in Subsection II-D. The CTC token
passing algorithm described in [40] takes as its input the output
activations of the neural network and statistical information
about all recognizable words, which implies that a dictionary
dictates which words can be recognized at all. As a result of
the recognition process, we get the transcription of the given
text line, i.e. a likely sequence of words. The CTC Token
Passing algorithm, however, is unable to return any form of
lattice or n-best list. Furthermore, using the returned word
probabilities do not perform very well. Hence, we only use
one transcription for each text line with the binary information
whether the keyword occurs in that transcription or not.

As has been shown in the HWR domain [46], language
information can have a positive effect on the recognition rate.
Therefore we used two different reference systems in our
experiments. The first HWR-based reference system makes use
of additional language information, while the second one can
only access data that is available in the training and validation
set. The language information we use is given in form of a
bi-gram language model. Ideally, such a model contains, for
each pair of words (w1, w2), the probability p(w1|w2) that
word w1 is followed by word w2 in a text. Obviously, these
bi-gram probabilities are not known, but can be estimated
from a sufficiently large text collection. In our experiments,
the following two reference systems were used.

1) TAS with language model: This reference system makes
use of the London/Oslo/Bergen (LOB) corpus [54] as an
external sources to estimate the bi-gram probabilities of the
words. The LOB corpus is a large collection of more than a
million words (newspapers, etc.) and resembles a cross-section
of the English language at the time of its publication (1961).

2) TAS without language model: In case no additional
information is available, we set the list of words that can
possibly be recognized equal to all the words in the training
set. The bi-gram probabilities are estimated on the training set
using modified Kneser-Ney smoothing [55], [56].

IV. EXPERIMENTAL EVALUATION

A. The Data Sets

For testing the proposed keyword spotting method, we used
three different data sets, the IAM off-line database (IAM
DB)1 [57], the George Washington database2 (GW DB), and
medieval manuscripts of an epic poem (PARZIVAL DB) [45].
See Fig. 6 for samples of the data. The pages of all data sets
were scanned and interactively separated into individual text
lines.

The segmented text lines are normalized prior to recognition
in order to cope with different writing styles. First, the skew
angle is determined by a regression analysis based on the
bottom-most black pixel of each pixel column. Then, the
skew of the text line is removed by rotation. Afterwards
the slant is corrected in order to normalize the directions of
long vertical strokes found in characters like ’t’ or ’l’. After
estimating the slant angle based on a histogram analysis, a
shear transformation is applied to the image. Next, a vertical
scaling is applied to obtain three writing zones of the same
height, i.e., lower, middle, and upper zone, separated by the
lower and upper baseline. To determine the lower baseline,
the regression result from the skew correction is used, and
the upper baseline is found by vertical histogram analysis.
For more details on the text line normalization operations, we
refer to [46]. Finally the width of the text is normalized. For
this purpose, the average distance of black/white transitions
along a horizontal straight line through the middle zone is

1http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
2George Washington Papers at the Library of Congress, 1741-1799: Series

2, Letterbook 1, pages 270-279 & 300-309, http://memory.loc.gov/ammem/
gwhtml/gwseries2.html
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(a) IAM database (b) GW database (c) PARZIVAL database

Fig. 6. Samples from the databases used in the experiments.

(a) A word from the GW database.

(b) A word from the IAM database.

(c) A word from the PARZI-
VAL database.

Fig. 7. A visualization of the effects of the preprocessing steps.

determined and adjusted by horizontal scaling. The result of
the preprocessing steps can be seen in Fig. 7.

Additionally, the lines were separated into single words as
well. Note that only the DTW reference system requires the
words to be separated. By contrast, our approach works with
entire text lines. The two databases can be characterized as
follows.

IAM off-line DB: This database consists of 1,539 pages of
handwritten English text, written by 657 writers. It is split up
into a training set of 6161 text lines, a validation set of 920
text lines and a writer independent test set of 929 text lines.

GW DB: The GW Dataset consists of 20 pages of letters,
orders and instructions of George Washington from 1755.
The pages originate from a large collection with a variety
of images, the quality of which ranges from clean to very
difficult to read. The selected pages we use are relatively

clean. The text is part of a larger corpus, written not only
by George Washington but also by some of his associates. It
inhibits some variations in writing style. However, the writing
on the pages we consider is fairly similar. The considered
pages include 4,894 words on 675 text lines. The GW DB
contains the same pages as the one in [27], but we found
the automatically segmented and extracted words to be too
erroneous. Focusing on keyword spotting rather than document
image preprocessing in this paper, we manually segmented
the data set into individual words. Hence, there is a slight
difference in the number of words and word classes.

PARZIVAL DB: We also use the PARZIVAL database pre-
sented in [45] for our experimental evaluation. This database
contains digital images of medieval manuscripts originating in
the 13th century. Arranged in 16 books, the epic poem Parzival
by Wolfram von Eschenbach was written down in Middle
High German with ink on parchment. There exist multiple
manuscripts of the poem that differ in writing style and
dialect of the language. The manuscript used for experimental
evaluation is St. Gall, collegiate library, cod. 857 that is
written by multiple authors. Figure 6(c) shows an example
page.

B. Experimental Setup

Using the training set, we trained 50 randomly initialized
neural networks and used the validation set to stop the back
propagation iterations in the training process. See [40] for
details on the neural network training algorithm.

Part of the LOB corpus has been used to create a set of bi-
gram probabilities. Since the text written in the IAM database
is also a subset of the LOB corpus, the calculated bi-gram
probabilities are well suited for that task. For the GW database,
the situation is slightly different. Although the text is written
is English, the form of English, with respect to both spelling
and grammar, has changed since. Therefore, we mixed the bi-
gram probabilities computed on the LOB corpus with bi-gram
probabilities computed on the training and validation set of
the GW DB in order to create a language model that is both
general and similar to the language at hand. Mixing has been
done using the SRILM toolkit [56]. The same toolkit has been
used to create the language model for the PARZIVAL database.
The ground truth of both sets, training and validation, have
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been used to estimate the bi-gram probabilities and to create
the dictionary.

Each systems returns a value for every tested word w.
This value is a logarithmic probability fCTC(w|s) in case of
our proposed system, the nearest distance to the prototypes
mini(DTW (wi, ·)) when using the DTW approach, or just
a binary information whether the word has been found in
the transcription using an ASCII search. Note that our DTW
implementation returns a DTW distance of infinity if the
keyword does not occur in the training set, since no candidate
can be found to match the word. We perform a line retrieval
task to compare the proposed system with DTW. A text line
is considered a positive match if the keyword occurs in the
training set. Hence, the DTW system returns the smallest
distance of all prototype words to any word in the text line.

The word spotting algorithm compares this value against
a global threshold to decide whether or not it is a match.
In order to make the results as precise as possible, we used
all returned values fCTC(w|s) for the proposed approach and
all returned DTW distances for the DTW approach as global
thresholds. Each threshold produces one point in the recall-
precision plot which merge into a continuous curve for many
different thresholds. To compare different systems, we chose
to consider the average precision over all recall values since
it includes information about the entire curve.

IAM DB

We performed slightly different experiments on each of the
three datasets. The first experiment was done using the IAM
database. We tested 2,807 different keywords (all non stop
words among the 4,000 most frequent words3 that also occur
in the training set) in the IAM dataset. The average number
of occurrences in the training set of each keyword is 5.26 and
in the test set 0.53.

GW DB

The next two experiments were done using the GW
database. Due to the relatively small size of this database, we
performed a 4-fold cross validation. The 20 pages are split up
into four blocks, consisting of five pages each. Two blocks are
used for training, one block for validation and one for testing.
We selected all words occurring in the training set to perform
the word spotting. The average number of occurrences in the
training set of each keyword is 2.02 and in the test set 0.74.
Note that we also include stop words in this setup to make the
results more comparable to the existing literature [41], [59].

With the experiments on the GW data set we addressed also
another issue. Because DTW and other QBE systems do not
need to be trained on the data set, they can be used for any
new script or writing style. An interesting experiment would
therefore be to compare them to neural networks that have not
been trained on the actual data base. Consequently, we reused
the 50 neural networks from the experiments on the IAM DB
and evaluated their applicability on the GW data set.

3We used the stop word list from the SMART project [58],
which can be found at http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
a11-smart-stop-list/english.stop
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Fig. 8. The average label error rate of the adapted networks when used for
transcription.

Assuming a user is willing to transcribe a few pages of text,
the network can be retrained on the new data for adaptation.
In Fig. 8 the effect of the adaptation to the GW data set can
be seen as a reduction of the label error rate. This approach
with similar experiments has also been proposed in [44].

Two different adaptation experiments were conducted using
again a 4-fold cross validation and the same splitting of the 20
pages into 4 blocks as above. In the first adaptation experiment,
we used one page of one block for training and one page
of the same block for validation. One block was used for
testing, for the purpose of better comparability to the other
GW experiments. In the other adaptation experiment, we used
two pages of one block for training and the other three pages
for validation. Again, one block was used for testing.

In addition, we used the neural networks also for TAS word
spotting. Since we assume that we have none or only very little
transcribed text of the GW DB when adopting the networks,
we used the language model created on the LOB corpus
only. However, we added the keywords with a fixed uni-gram
probability (the average of all existing uni-gram probabilities).

PARZIVAL DB

The last experiments were done using the PARZIVAL
data set. We trained 10 neural networks on 2,237 lines of
transcribed text, and used 912 additional lines as a validation
set. The test set contained 1,329 lines. The text is written
in middle high German and the meaning of most words is
unknown to the authors of this paper. Hence we did not try to
distinguish between stop words and non-stop word. To avoid
an unfair comparison with the DTW reference system, we
used all 3,220 words occurring in the training set as possible
keywords. The average number of occurrences in the training
set of each keyword is 3.53 and in the test set 1.79. We also
performed TAS keyword spotting. As mentioned above, the
language model was created using the training and validation
set. This limits the TAS approach, since words not occurring
in the training or validation set cannot be recognized because
they are not contained in the language model.

C. Results

In the experiments, the single best neural network on the
validation set was chosen to spot the keywords on the test set.
Its performance was compared to the performance using DTW,
HMM, and TAS for all three databases. The proposed system
and the HMM and DTW reference systems use an adjustable
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Fig. 9. Recall-precision plots of all systems on the IAM database.

threshold which makes it possible to plot a continuous curve.
TAS, on the other hand, works with binary information of a
word being successfully spotted or not. It has therefore a fixed
precision and a fixed recall characteristic that corresponds to
a single point in the plot. Thus we did not select a single best
system on the validation set but present the performance of all
systems on the IAM and PARZIVAL database results. For the
GW database, we differentiate between comparing our system
to DTW and HMM, on the one hand, and analyzing the effect
of adapting the neural networks to the GW database, on the
other hand. For the sake of readability, we do not plot the
results of the TAS systems.

In this first experiment, we used the IAM DB to compare
DTW, HMM, TAS and the proposed BLSTM keyword spotting
system. The resulting recall-precision plot can is given in
Fig. 9. The recall-precision curve of the DTW system can be
seen in the lower left corner, indicating that this system might
not be well suited for this special task. The system based on
HMMs performs much better and can be seen in the middle
of the plot. The proposed system, however, works well with
diverse handwriting styles and words not encountered in the
training set. Transcription and ASCII search keyword spotting
result in distinct points even above that line. Clearly, the
external language information given in the large LOB corpus
has a positive effect on the precision, at he cost of a lower
recall value, when compared to using an internal language
model only.

In case of the GW database, the proposed BLSTM NN
keyword spotting technique outperforms both reference meth-
ods which can be seen in Fig. 10(a). The performance of the
adapted version are plotted in Fig. 10(b). The system with
the lowest performance is the neural network based keyword
spotting system trained only on the IAM DB, performing even
words than DTW. When the neural networks are adapted to
the GW data set, the performance substantially increases. The
best system, however, is the one that is trained entirely on
the GW DB. In Table I, the average precision of the keyword
spotting after the adaptation steps are given. The column mean
shows the mean of all 50 systems. The column selected shows
the average precision of the system that performed best on
the IAM validation set before adaptation. The last column,

GWDB
system mean selected best on valset

IAM NN 0.41 0.43 0.43
IAM NN (2 pages) 0.68 0.71 0.47
IAM NN (5 pages) 0.73 0.76 0.80

TABLE I
THE AVERAGE PRECISION OF THE ADAPTED SYSTEMS.
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Fig. 11. Recall-precision plots of all systems on the PARZIVAL database.

best on valset, shows the average precision of the system that
performed best on the corresponding validation sets, i.e. the
IAM validation set for the unadapted system, the 1 page GW
validation set for the 2 page adaptation, and the 3 page GW
validation set for the 5 page adaptation.

For the results of the TAS systems we refer to Table II.
One can see that the adaptation process leads to an increase
in precision and recall. The recall percentage, however, of the
system that is trained entirely on the GW DB is not met. It
also shows that the information derived from the larger LOB
corpus may still be useful, although the kind of texts and time
of origin are somewhat different.

Finally, the results from the PARZIVAL DB also show
the advantage of the proposed system over both reference
systems. The neat, regular writing style is advantageous to

language average best system
Database model prec. recall prec. recall

IAM DB external 0.77 0.79 0.78 0.79
internal 0.59 0.84 0.59 0.84

GW DB external 0.78 0.75 0.82 0.83
internal 0.66 0.79 0.69 0.85

language
Database Adaptation method model prec. recall

GW DB
unadapted extern

(LOB)

0.67 0.47
adapted (2 pages) 0.83 0.69
adapted (5 pages) 0.86 0.74

TABLE II
THE AVERAGE PRECISION AND RECALL VALUES OF THE TRANSCRIPTION

AND ASCII SEARCH APPROACH.
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Fig. 10. Recall-Precision plots of all systems on the GW database.

system IAM DB GW DB PARZIVAL DB
Average of NNs 0.76 0.71 0.92

NN best on val set 0.78 0.84 0.94
NN best on test set 0.79 0.84 0.94

HMM 0.36 0.60 0.83
DTW 0.02 0.48 0.37

TABLE III
AVERAGE PRECISION OF THE SPOTTING TASK ON THE IAM DB AND

PARZIVAL DB

all systems, and the ability to learn leads to a nearly perfect
recall-precision-curve (Fig. 11).

A consolidated view clearly indicates the superiority of
the proposed word-spotting system not only over the DTW
reference system but also over the HMM reference system. Ta-
ble III shows the average precision of the compared methods.
Note that restricting the keywords in the IAM DB experiment
to words occurring in the test set does not lead to such a
substantial improvement of the DTW performance as it does
on the GW DB, which is possibly due to the more diverse
writing style encountered in the IAM DB. Without a training
set at hand, QBE systems in general or DTW in particular
are the only systems applicable to perform word spotting.
However, if training data exists it can be exploited to further
improve the performance.

D. Comparison with related literature

The experiments presented in this paper, especially the ones
on the GW data set, are similar to already published results.
Although the task, the data set and the evaluation method
are not fully comparable, we will discuss some published
results, to put this paper in relation to existing work. The most
prominent works on this database have been published by Rath
et al [59], [4].

Most of the literature dealing with George Washington’s
data use automatically segmented words for testing. Addition-
ally, not always the same pages of the manuscript are used.
In [13], the authors focus on a subset of 10 selected pages
that have a good quality. They report an average precision

of 0.65 using a DTW system and 0.62 using corner feature
correspondences.

In [22] the authors propose a form of histogram of Ori-
ented Gradients (HOG) features and Continuous Dynamic
Programming as a line based approach. They report an average
precision of 0.79 for a 15 keywords. Exactly the same words
have been used as keywords with an R-precision of 0.6 in [17].
Both of these works use the same 20 pages as we do, although
the groud truth might be slightly different, due to rules on how
to handle hypthenated words. The authors in [17] use the same
database and ground truth as [59], while the authors of [22],
similarly to us, created a new ground thruth.

In [41] a decision tree is investigated and in [59] a statistical
model using holistic word features. While the authors of the
papers use the same 20 page dataset as we do, both references
use a different cross-validation set up. They perform a 10-fold
cross validation where 90% of the lines constitute the training
set while 10% of the lines where used for testing. When using
all words with at least one occurrence in the training and test
set, the authors report an average precision of 0.54 [59] and
0.79 [41]. This setup is the fairly close to the setup used in
our experiments on the GW data base where we have reached
an average precision of 0.84.

Word recognition has also been investigated using the GW
data set. In [27], the authors experimented with an HMM-
based system along with a statistical language model some-
what similar to ours. They experimented with several language
models, including an internal model derived from the 19
pages of their cross-validation training set and an extended
model using text written at around the same time. Note, that
holistic features from single word images are used. Hence their
HMM consists of one state per word. The paper reports an
accuracy of 0.470 with and 0.606 without out-of-vocabulary
(OOV) words when the HMM is trained on 10 pages, like in
ourexperiments. When using 19 pages for training and one for
testing, the accuracy is increased to 0.551 resp. 0.651. These
two figures of performance are used in [18] as a benchmark
and topped using a matching technique on the words’ contours.
This leads to an accuracy of 0.694 with and 0.826 without
OOV words. Further reported accuracies are 0.611 with and
0.723 without OOV words in [60] and 0.84 with and 0.71
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Fig. 12. The average precision of a word spotting system (on the test set)
compared to the word error rate when used as a handwriting recognition
system (on the validation set) for all 50 networks on the IAM database.

without OOV words in [61]. Both works use also a 20-fold
cross validation with a training set of 19 pages and manually
segmented words.

We can report on our data set an average precision of
0.84, which is not only significantly higher than the DTW
based system, but also the highest reported number among
the literature that covers learning based approaches. Although
these numbers can not be directly compared, they show that the
method proposed in this paper is very well suited for historical
data.

E. Correlation of Keyword Spotting and Recognition

As seen above, a neural network used for word spotting can
be used, without modification, for handwriting recognition as
well. The only change needed concerns the post-processing
algorithm (CTC). This makes it possible to compute the cor-
relation between the recognition accuracy of a neural network
and its performance when used for keyword spotting.

The scatter plot in Fig. 12 shows, on the IAM database,
the correlation between the word error rate when using the
neural network as a handwriting recognition system and the
average precision when using the neural network for the task
of word spotting. The complete list of correlation coefficients
can be found in Table IV. It can be seen that, although a
high correlation exists between the spotting and recognition
performance, this correlation is not perfect.

These results show that the underlying problems to be
solved, though similar, are not identical. A handwriting recog-
nition system decides on the best words among a set of
possible candidates. Our results show that this works very well
resulting in a high precision and a high recall value. Yet, it
has the disadvantage that, for a certain position in the text,
it can only return the word recognized. A keyword spotting
system on the other hand returns the keyword’s likelihood.
Therefore, keywords can even be found if the transcription
of an HWR system misrecognized a word. Another point
that distinguishes the two approaches is the capability to

decide whether recall or precision is more important in a
given retrieval task. However, the most important difference is
that keywords can obviously be spotted successfully without
a complex handwriting recognition system. E.g., DTW only
needs very few sample words and the proposed BLSTM neural
networks can be trained on a different database and achieves
a similar performance, although a transcription using these
neural networks would result in a text having a label error
rate of > 50%.

Furthermore, the proposed keyword spotting system needs
only a few milliseconds to process one text line, while a
transcription of a text line using a language model needs up to
several minutes. As long as time requirements do not play any
role, it might be beneficial to perform an off-line preprocessing
of the entire archive, for example in the form of a n-best
transcription of each text line on both word and character level
to preserve the possibility to find words that do not occur in
a dictionary. When this is not possible, our proposed system
seems to be the best choice. Examples of this are fast search
on newly scanned documents or large databases. Especially
for historical documents, databases can be rather large. The
entire George Washington collection contains 140’000 pages
and the historical document collection of the cabinet of the
Dutch Queen [62] contains approximately 300’000 pages. A
keyword spotting system based on text recognition does not
seem feasible for these databases. Assuming text is written
on three quarter of the collection, each page contains 20 lines
and a recognition system needs 5 minutes to recognize one
text line. Then it takes 28 respectively 40 years to do the
preprocessing of the databases. On the other hand, a keyword
can be spotted on one text line in one millisecond, leading to
a search time of 33, respectively 100 minutes.

For large corpora with this approach, the recognition task is
unrealistic while the word spotting task is potentially useful.
They are complementary and one could imagine doing word
spotting to locate the item of interest and then recognizing
only the page of interest.

As fas as time is concerned, all learning based systems
have the disadvantage of needing the time it takes to train
the system. However, once the system is trained, the keyword
spotting can be performed faster than example based systems.
While the number of words being checked in each text line is
the same, the words do not have to be compared to all suitable
training data but only to the model parameters.

V. CONCLUSION

In this paper we presented a novel keyword spotting ap-
proach using bidirectional long-short term neural networks
in combination with a modified version of the Connectionist
Token Passing algorithm. This system has several advantages
compared to existing techniques. First, it is a line based
approach and does not need any word segmentation. Secondly,
although the system needs to be trained, it does not require
bounding boxes around characters or words as often needed
in the keyword spotting literature. The only requirement is a
transcription of the text lines in the training set. Finally, being
derived from a general neural network based handwritten text
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Language Accuracy
Database Model valset testset

IAM DB external 70.90 65.43
internal 68.10 65.43

GW DB external 67.11 55.98
internal 76.3 52.92

Language Correlation
Database Model valset testset

IAM DB external -0.768 -0.850
internal -0.812 -0.806

GW DB external -0.914 -0.896
internal -0.961 -0.835

TABLE IV
THE RECOGNITION ACCURACY AND THE CORRELATION BETWEEN THE

AVERAGE WORD SPOTTING PRECISION AND THE HANDWRITING
RECOGNITION.

recognition system, any arbitrary string can be searched for,
not just the words appearing in the training set.

We compared this approach to the common dynamic time
warping approach on three data sets as well as a modern
HMM-based keyword spotting system, which include both
modern and historical handwritten data. Furthermore we com-
pared these methods with the results returned by recognizing
the text using a complete handwriting recognition system
followed by a plain search in the ASCII character output string.

We demonstrated that dynamic time warping, while appli-
cable with some success to historical data, has difficulties on
the modern handwriting data set to cope with the differences
in handwriting styles encountered between the training and
the test set. The same argument seems valid for all spotting
systems tried so far that treat word spotting as an image
retrieval problem where similar sub-images of a given pro-
totype are to be found. The HMM-based approach performs
better and is able to cope with diverse writing styles. Yet,
is is also constantly outperformed by the proposed system.
To do keyword spotting for words that do not occur in the
training set, it seems that more sophisticated methods or even
handwriting recognition are necessary, especially for arbitrary
and diverse writings.

The system proposed in this paper – a handwriting recogni-
tion system adjusted to the task of word-spotting – is flexible
enough to deal with a variety of diverse handwritten texts.
Due to the initialization of the neural networks using random
weights, a natural variance of several different neural networks
can be observed. However, this is not a problem because it is
possible to select high performing candidates on the validation
set.

We analyzed the performance of the neural networks when
using them in a recognition task followed by word spotting on
the output and investigated the influence of external informa-
tion in form of a language model. The increased precision
achieved gives rise to new research directions. A keyword
spotting system that, after finding a candidate, decodes the
word preceding it to include the bi-gram probability, merits
further investigation.

The combination of several systems, as it has been done
successfully with handwriting recognition systems, seems an
interesting option to be investigated in future research.
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