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ABSTRACT
This paper proposes a formal framework for image and video
retrieval using discrete Markov random fields (MRF). The
training dataset consists of images with keywords (regions
are not labeled). The model is built using a discrete vocab-
ulary of vector quantized region or point features generated
from the training images. Since performance is dependent
on the size of the vocabulary, a large vocabulary of a couple
of million visterms is used. Such large vocabularies cannot
be generated by conventional clustering algorithms so hierar-
chical k-means is used to generate it. Unlike many previous
techniques, our MRF based model doesn’t require an explicit
annotation step for retrieval. The model directly ranks all
test images according to the posterior probability of an im-
age given a query. Traditionally, most models are trained
by maximizing likelihood - instead this model is trained by
maximizing average precision. Image and video retrieval ex-
periments are performed on two standard datasets (a Corel
dataset and a TRECVID3 dataset) which consist of 4,500
images and about 44,100 keyframes respectively. The re-
sults show that based on a large visual vocabulary the model
runs extremely fast on even very large datasets while hav-
ing comparable retrieval performance to the best performing
(continuous feature) models.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models; I.5.1 [Models]: Statistical; I.4.9 [Image Process-
ing and Computer Vision]: Applications

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
In this paper we propose a discrete Markov Random Field

(MRF) model for directly retrieving un-annotated images
using text queries. The model is learned using a training
set of images labeled with annotations. Discrete implies
that image features are mapped to a discrete set of visterms
(or visual words). The advantage of discrete visterms (as
opposed to continuous features) is that both training and
testing are very fast - by several orders of magnitude. While
previous annotation based techniques have used discrete vis-
terms [12, 13] they have performed much more poorly than
versions based on continuous features [15, 8, 6]. It is shown
in this paper that by using a very large visual vocabulary one
can improve the retrieval precision to a level close to that of
the best continuous models while at the same time creating
a very fast algorithm. Our vocabularies have a couple of
million words. Traditional clustering algorithms cannot cre-
ate such large vocabularies. Recently, however, approaches
have been proposed for creating large vocabularies in the im-
age matching literature [22, 23]. In this paper hierarchical
k-means [22] is used to create a large vocabulary. Indexing
and querying are both speeded up using this algorithm. It
is also shown that performance is correlated with the size of
vocabulary. This demonstrates the need for large training
sets.

A larger vocabulary requires using both larger numbers of
training images and also using a larger number of features
per image. Typically, an optimal vocabulary size is some
fraction (say around 1/3) of the total number of features in
the training data. Using a large number of features per im-
age ensures that a model can learn relationships between fea-
tures rather than relying on an explicit segmentation which
is hard to do. However, one cannot use every pixel in the im-
age since there is often a minimum size required to required
to reliably compute the features. Using more features per
image also constrains the models that can be used. For ex-
ample, relevance models [12, 15, 8] fail when the number of
features per image or alternatively the number of visterms
per image is large 1. These models compute a joint proba-

1This problem also occurs with relevance models in text



bility over all visterms (or features) in an image. When the
number of these visterms (or features) is large, this product
cannot be estimated well. The Markov random field model
proposed here does not suffer from this limitation.

The model proposed here directly retrieves images with-
out an intermediate annotation step. Specifically, we do this
by directly optimizing mean average precision unlike anno-
tation techniques in the literature [7, 12, 2] which optimize
annotation accuracy by optimizing likelihood. Annotation
techniques do not optimize retrieval. Annotation accuracy
is usually measured in terms of how well the annotation
words are predicted for an image. Retrieval accuracy max-
imizes mean average precision for a query word. An ex-
ample will make this clearer. Assume we have a database
of images where grass or water is very frequent while pic-
tures depicting animals such as deer and bears are less fre-
quent. Good annotation performance requires that many
pictures will be annotated with grass and water. Label-
ing every image with grass and water may in fact improve
annotation performance. However, obtaining good retrieval
performance requires that one be able to retrieve images cor-
responding to a number of different queries including “rare
word queries”. In fact one can do very well at retrieval even
if the grass and water queries fail completely. In this respect,
good retrieval performance requires that the model do well
with many different kinds of“word”queries while annotation
requires one to do well at finding as many keywords as pos-
sible for images. This issue has also been observed in text
retrieval where it has been shown that the likelihood surface
is unlikely to correlate with the retrieval metric surface [21,
19].

We propose a Markov random field (MRF) model for di-
rect retrieval which is analogous to one proposed by Met-
zler and Croft [19] to capture dependencies in text retrieval.
MRF models have been used before in image processing and
computer vision for a wide variety of tasks ranging from the
low-level (edge detection and image segmentation) to the
high-level (matching) [25, 4]. The MRF model proposed
here is quite different from them in terms of the problems
tackled, topological structure and training strategy. Most
MRF models in computer vision are used to label image
sites with word labels. We propose a model to directly rank
images in response to a text query. The goal of our pro-
posed MRF model is to compute the joint probabilities of
images and queries. The graph consists of a set of region
nodes representing an image and a set of word nodes rep-
resenting a query, with edges determining the dependency
among these nodes. Unlike labeling problems, our proposed
model neither requires that every training image is labeled
region by region nor outputs annotations at the region level.
Instead, it calculates the joint probability of a query word
with the entire image in order to rank images. Finally, we
maximize mean average precision rather than the likelihood
to optimize the retrieval performance. This leads to a linear
form for the model simplifying computation and allowing us
to handle large numbers of visterms per image.

Experiments demonstrate that the model performs very
well with a mean average precision (MAP) of 0.28 on a stan-
dard 5K Corel set. For comparison the best published re-
trieval results we know of on the same data set are 0.31 (SML
[6]) and 0.30 (NCRM [14]). On a TRECVID3 dataset [11]
the corresponding numbers are 0.152 and 0.158 for the dis-

where they do not work well for long queries

crete MRF model and the NCRM model respectively. The
discrete MRF takes 90s for all queries while NCRM takes
6.8 hrs. Clearly, the discrete MRF model has comparable
precision with the best models while being very fast. Fur-
ther improvements may be possible to push up the precision
even further.

1.1 Related Work
There is a fair amount of literature on image annotation

models in the past few years. Barnard et al. [2, 1] dis-
cuss a number of models for image annotation and labeling
including machine translation, probabilistic latent seman-
tic indexing and latent Dirichlet allocation. Models were
based on both discrete visterms and continuous ones which
modeled features as mixtures of Gaussians. Carbonetto et
al. [5] proposed a shrinkage model which essentially al-
lows for continuous features in a translation model unlike
the discrete translation model used in [1]. Blei and Jor-
dan [3] proposed several hierarchical probabilistic models
based on latent Dirichlet allocation, which assumes a low-
dimensional topology with about 200“latent aspects”. Their
model again used a mixture of Gaussians to generate the fea-
tures. Carneiro et al. [6] used multiple instance learning and
hierarchical Gaussian mixture models for annotation and re-
trieval and claimed that their model worked best closely fol-
lowed by the MBRM in [8]. Jeon et al. [12] proposed a cross-
media relevance model which viewed the image annotation
problem as analogous to cross-lingual information retrieval.
The model used discrete visterms. Other discrete models
include one using maximum entropy [13] and inference nets
[20]. A number of models have been proposed which use hid-
den Markov models [26, 16, 9]. The model in [9] generates
the features using a mixture of Gaussians. Magahães and
Rüger [18] proposed using logistic regression to learn image
semantics from generic codebooks and key words. Shi et al.
[24] proposed a Bayesian hierarchical multinomial mixture
model for image annotation, which utilized the prior knowl-
edge of concept dependencies. They again modeled features
using a mixture of Gaussians.

Our direct retrieval model based on Markov random field
(MRF) is analogous to the Markov random field framework
proposed by Metzler and Croft [19] for text retrieval, which
explored different query term dependencies when retrieving
text documents. Compared with annotation based retrieval
models, our MRF model doesn’t involve an explicit annota-
tion step and is trained through directly maximizing mean
average precision.

Little previous work has been done on direct image re-
trieval based on text queries. Jeon et al. [12] directly ranked
images according to the K-L divergence of visterm distribu-
tions of the query model and the document model. Their
approach assumed that the query and a relevant image have
similar visterm distributions. However, in the real world
these distributions may be very different. Inspired by the
cross-language latent semantic indexing (LSI) in text re-
trieval, Hare et al. [10] proposed a singular value decompo-
sition (SVD) based approach to learn the semantic structure
of the visterms and annotation words from the training set
and retrieve images according to the positions of the text
images in the sematic space. Like the LSI techniques in text
retrieval, their approach assumed latent concepts linking the
visual terms and annotation words.

Our direct retrieval framework doesn’t make such assump-



tions. It estimates an underlying joint distribution of queries
and images PΛ(Q, I) through modeling the dependency of
annotation words and each image region among a test im-
age, and formulates this as a Markov random field with a set
of parameters Λ. Images are ranked according to the poste-
rior PΛ(I|Q). Given a set of query and image pairs, the pa-
rameters Λ are estimated by directly maximizing the mean
average precision rather than the likelihood of the training
data.

Our discrete MRF is based on a very large visual vocab-
ulary. Recent literature on object or image matching [22,
23] using discrete features has shown that 2 the size of vi-
sual vocabulary can substantially affect the matching per-
formance and good performance requires large visual vocab-
ularies. Nister and Stewenius [22] constructed a vocabulary
tree to index SIFT descriptors of images. Images of the same
object from a different viewpoint or under different lighting
conditions are retrieved based on tf-idf measures of the vi-
sual words. Philbin et al. [23] presented fast image match-
ing approaches using large visual vocabularies constructed
by an approximate k-means clustering method over SIFT
descriptors.

2. MARKOV RANDOM FIELD FOR IMAGE
RETRIEVAL

Markov random fields (MRFs) have been widely used to
model the joint distribution of a set of random variables.
In the computer vision domain MRFs have been applied to
image restoration, edge detection, texture analysis, image
segmentation and image matching [17]. In this section we
describe a Markov random field based model for text query
based image and video retrieval. Our MRF models the joint
distribution PΛ(Q, I) over text queries Q and images I, pa-
rameterized by Λ. Based on the joint distribution, images
are ranked according to the posterior probability of PΛ(I|Q)
without an explicit annotation step.

2.1 Framework Overview
A Markov Random Field is an undirected graph where the

nodes represent random variables and the edges encodes the
conditional independencies among those random variables.
Given its clique set (a neighborhood set), a random variable
in a MRF is conditionally independent of all other random
variables (this is the Markov property). We propose a model
similar to one proposed by Metzler and Croft [19] for text
retrieval. In our MRF G for image retrieval based on text
queries, the random variables are the key words {qi} in a
query Q and the image I which is represented by a set of
visterms {vi} . The joint distribution P (Q, I) of a query Q
and image I is given by:

P (Q, I) =
1

ZΛ

∏

c∈C(G)

φ(c; Λ) (1)

where Q = q1 . . . qn, the image I is represented by a set
of visterms {vi}, and φc;Λ is a set of non-negative potential
functions parameterized by Λ, one for each clique c in graph
G. The normalizing constant ZΛ is:

ZΛ =
∑

Q,I

∏

c∈C(G)

φ(c; Λ) (2)

2Jeon and Manmatha also noticed this in unpublished work

This quantity is expensive to compute due to the exponential
number of summations. We shall show later that in the case
where we are only interested in the ranking and not actual
probability values, we do not have to compute it.

For textual query based image retrieval, we rank images
according to the posteriors P (I|Q) of each image I given the
query Q:

P (I|Q) =
PΛ(Q, I)

PΛ(Q)
(3)

rank
= log PΛ(Q, I) − log PΛ(Q)

rank
=

∑

c∈C(G)

log φ(c; Λ)

where
rank
= implies rank equivalence. Note that the nor-

malizing factor has been eliminated and the result is a linear
sum over the logarithm of the potential functions.

The potential function is non-negative and often assumed
to be an exponential:

φ(c; Λ) = exp[λcf(c)] (4)

where f(c) is some feature function over clique c, and λc is
the weight of this particular feature function. The ranking
function may, therefore, be re-written as:

PΛ(I|Q)
rank
=

∑

c∈C(G)

λcf(c) (5)

This is linear in the feature functions. Later we show that
one feature function is computed for each visterm-word com-
bination. This means that there is no term involving a large
number of products. Hence, this probability can be com-
puted for a large number of visterms or features in each
image.

λc may depend on the kind of feature function. For exam-
ple, cliques containing one query term and one visterm may
be weighted differently than cliques containing one query
term and two visterms. In this paper we will only consider
cliques containing a query term and a visterm. Further, λc

will be assumed the same for all cliques containing a partic-
ular visterm. Specifically, λc will be set equal to the inverse
document frequency (idf) of the visterm.

3. VISTERM GENERATION
In this paper, an image I is represented as a set of visterms

{v1, v2, . . . , vm}. Each visterm vi corresponds to a region ri

either obtained through superimposing a rectangular grid or
automatic segmentation. Real-valued visual features (color,
texture) are first extracted from each region. Then a visual
vocabulary is built over those features and each region is
quantized into a discrete visterm (visual word). Note that
instead of regions we may use local interest descriptors or
augment regions with local interest descriptors. The model
proposed in this paper has no specific requirements on image
representation.

Since a discrete Markov random field is built on discrete
image features, the first step is to quantize image features
into discrete visterms. Unsupervised clustering methods are
usually employed for this purpose, e.g. K-means clustering
or hierarchical clustering. Most clustering methods require
that one pre-defines either the number of clusters or some
threshold controlling the number of clusters. Each cluster is



a visterm, so the size of the vocabulary is equal to the num-
ber of clusters. Using discrete features for image matching
[22, 23] has shown that the size of the visual vocabulary
can substantially affect the matching performance and good
performance requires large visual vocabularies. This is rea-
sonable since large visual vocabularies are better at distin-
guishing different visual features. However, too large a vi-
sual vocabulary can also segregate features originating from
the same objects. So selecting the appropriate size of the vi-
sual vocabulary is very important, but usually very difficult
without any domain knowledge. To test on different size of
visual vocabularies, one requires a fast clustering approach
which can deal with large-scale features in high dimension
space. A flat K-means clustering or a hierarchical agglomer-
ative clustering (also called single linkage clustering) doesn’t
meet this requirement. For this reason, we adopt the hier-
archical k-means for clustering in our work [22, 23].

Hierarchical k-means applies a tree structure for represen-
tation of the clustering results over a set of training features,
where k defines the branch factor of the tree rather than the
total number of the categories. Initially, the k-means algo-
rithm partitions the training features into k clusters, each of
which forms a node in the tree consisting of feature vectors
closest to a particular cluster center. The same k-means al-
gorithm is then recursively applied to each node and splits
each of them into k finer clusters. This process is recursively
performed until the depth of the tree reaches a pre-defined
level. So if the depth of the tree is d, the number of clus-
ters at the leaf level will be kd. The computational cost of
the hierarchical k-means is logarithmic in the number of leaf
nodes, which is much smaller than that of non-hierarchical
clustering methods.

The visual vocabulary tree is constructed by clustering all
the feature vectors in the training set using the hierarchical
k-means. Then the feature vectors of the test set will be
clustered through an efficient search procedure, which prop-
agates the vector down the tree till the leaf level by compar-
ing the vector with the k candidates cluster centers at each
level and selecting the closest one. This lookup only takes
O(log(n)) compared with the complexity O(n) of a flat K-
means for the same task, where n is the size of the visual
vocabulary. In the case of an extremely large training set,
the visual vocabulary tree may be constructed using a por-
tion of the training feature vectors sampled from the whole
training set. Then the corresponding visual words of the rest
of training vectors are obtained through searching over the
tree as for the test vectors. So finally, an image is represented
as a set of visual words (visterms) each of which corresponds
to one image region, noted as {v1, . . . , vm}, where m is the
number of the regions.

4. DISCRETE MARKOV RANDOM FIELDS
The MRF can model various dependencies among the

variables involved. This paper assumes that all image re-
gions are independent of each other given some query Q.
This assumption is also made by many annotation or re-
trieval models for images and videos, e.g. relevance models
and machine translation models. Under this assumption,
the likelihood of one image region is independent of others
given the query. It is straightforward to generalize the MRF
to model higher order dependencies but the computational
load becomes higher. Preliminary experiments show that
estimating bigrams for a large vocabulary is difficult (for

a vocabulary of size n there are potentially O(n2) bigrams
- in our case this is potentially O(1012) bigrams). Bigram
estimation may require much larger training sets or more
powerful estimation techniques. So higher order dependen-
cies are not explored in this paper. One can also easily
model other kinds of features such as point features. Figure
1 illustrates the configurations of our MRF.

4.1 Clique Potentials
Equation 5 shows that using MRF for image retrieval

may be reduced to a linear combination problem. Under
this framework we do not need to calculate the exact joint
probability P (Q, I). Instead, by choosing proper potential
functions we try to approximate the joint distribution in a
generalized exponential form. For example, the potential
function should give a higher value for a clique including
the query word ”zebra” and an image region with white and
black strips than a clique of the same query word and a plain
red image region. The proposed MRF explicitly models the
context information since each query word node is connected
to all image regions or region pairs. As an example, given
an image of a zebra in shrubbery and the query word ”ze-
bra”, each visual word (no matter from a zebra region or
shrubbery region) in this image will contribute to the en-
ergy function with a non-negative value depending on how
compatible that region is with the query word. This is quite
different from standard MRF based annotation or recogni-
tion methods which make hard decisions for each region by
labelling it with one word. For any clique which doesn’t in-
volve an image region node, the potential is assumed to be
1 since it does not have an impact on ranking. In our model
the simplest clique is a 2-clique consisting of a query node
w and an image region node r.

The potential function of the MRF model is defined over
an image region represented as a discrete visterm v and one
query word w. Since equation 4 expresses potential functions
in terms of sums of weighted feature functions λcf(c), all we
need to do is to estimate f(c) and λc. Formally,

f(c) = f(w, v) = P (w|v)P (v|I) (6)

It is not desirable to have a separate weight λc for each
word and visterm combination since the estimation would
require estimating size of word vocabulary × size of visterm
vocabulary weights. In text retrieval, the inverse document
frequency plays an important part in deciding how impor-
tant a word is for indexing purposes. Very frequent words
like “the” have no indexing value. Rare words are very use-
ful for retrieval. This analogy and intuition may be used
to guide the choice of the weight. Common visterms should
have smaller weight while rarer visterms are a better in-
dication of the relevance of the document. Thus, for any
clique containing a visterm v and a particular word w, λc is
directly calculated as the idf (inverse document frequency)
of the visterm. That is, all cliques containing the visterm
v have the same weight. To show this express dependence

we can write λc = λv = log |D|
](dj v∈dj)

which measures the

general importance of the discrete visterm v. Of course we
could have made other choices for λc. P (v|I) is the prob-
ability of a visual word v observed in the test image I and
P (w|v) is the posterior probability of a query word w given
a visual word v. So here the potential function basically
represents the possibility of predicting query word w from



Figure 1: The configuration of MRF models for image retrieval. The top line shows the original image and
its regional representation. The bottom line (left) shows the MRF model used here where all image regions
are independent of each other. This figure shows segmentation-based partitions. In experiments we use a
rectangular grid to generate a large number of regions per image based on which we can build large visual
vocabularies. The version on the right shows a bigram version of the MRF model where edges in red are
determined by nearest neighboring region pairs. This second model is not explored in this paper due to
estimation difficulties

the occurrences of visual word v in the test image I.
Estimating the probabilities P (w|v) and P (v|I) depends

on the distributions of the words and the visterms. Previous
work [8, 14] has demonstrated that the normalized multino-
mial or multiple Bernoulli model is more suitable than a
multinomial for annotation word distribution. So here, we
utilize a normalized multinomial distribution for word prob-
ability estimation - this is essentially a multinomial distribu-
tion over the words after the annotations for each training
set image have been padded to a constant length by using
null words if necessary. Without any prior knowledge of the
discrete visterm distribution, we investigate both multino-
mial and multiple Bernoulli models for P (v|I) (not that it
is not obvious that the distribution for words and visterms
should be the same).

4.2 Probability Estimation
The posterior probability P (w|v) is calculated under the

Bayesian framework:

P (w|v) =
P (w, v)

P (v)
=

P (w, v)∑
w P (w, v)

(7)

The joint probability of P (w, v) is calculated through an
expectation over all training images (alternatively, one may
view this as a mixture over the training set of images):

P (w, v) =
∑

J∈τ

P (J)P (w|J)P (v|J) (8)

where τ is the training set and J is an image in the training
set. The word probability P (w|J) is estimated based on the
relative frequency of the word w in the annotation of image

J which has been padded to a fixed length with a special
“null” word. Following the word probability estimation in
[14], P (w|J) is estimated using a normalized multinomial
distribution:

P (w|J) = λ
Nw,J

NJ

+ (1 − λ)
Nw

N
(9)

where NJ is the fixed length of annotations of training im-
ages, Nw,J the number of occurrence of word w in image
J , Nw the number of w in the whole training set and N
the total number of annotation words in the training set. λ
is a tuned weight to smooth the word probability given an
image using the prior probability estimated from the whole
training set. The value of λ is tuned over a validation set.

We investigated two different distributions – multinomial
distribution and multiple Bernoulli distribution – to esti-
mate the probability of a visterm v given a training image
J or a test image I.

4.2.1 Multinomial Visterm Model
Based on a multinomial distribution assumption of the

visterms from images, the probability of P (v|I) is calculated
as the frequency of the visterm v in image I:

P (v|I) =
](v, I)∑
v ](v, I)

(10)

where ](v, I) is the number of occurrences of the visterm v
in image I.

With a multinomial distribution the visterm probability
P (v|J) of a visterm v generated by a training image J is
estimated similarly.



4.2.2 Multiple Bernoulli Visterm Model
A multiple Bernoulli visterm model only considers if a par-

ticular discrete visterm occurs in the image or not and ig-
nores the number of occurrences of that visterm if it does ex-
ist in the image. Correspondingly, the probability of P (v|I)
is estimated as a discrete Kronecker delta function:

P (v|I) = δv,I (11)

where δv,I = 1 if the word v occurs in the annotation
of image I and zero otherwise.The Bernoulli visterm model
basically emphasizes the presence or absence of a particular
visterm rather than its frequency in an image, which implies
that a repeating visterm in an image may not be more im-
portant than a unique one. Taking an image of a zebra and
trees as an example, the visterms from the tree regions may
have higher frequencies than those from the zebra region in
that image. But it may not be reasonable for a visterm of
tree to contribute more to the probabilities of both word
”tree” and word ”zebra” than a visterm of zebra, without
knowing which visterm corresponds to which word.

As for the multinomial case, the probability P (w, v) is
calculated using Equation 8 but P (v|J) is computed based
on the multiple Bernoulli distribution: P (v|J) = δv,J .

5. EXPERIMENTAL RESULTS
We use two different datasets in our experiments for com-

parison between our model and other models. The first one
is a standard Corel image set which contains 5000 images
widely used for comparing results. The second one is the
large scale data set consisting of the entire TRECVID 2003
development dataset and feature set used by [11].

The 5K Corel dataset has been used in many papers [7,
15, 8, 6] for image annotation and retrieval. This dataset
consists of 5000 images from 50 Corel Stock Photo CD’s. 3

Each CD includes 100 images on the same topic, and each
image is also associated with 1-5 keywords. Overall there
are 371 keywords in the dataset. In experiments, we divided
this dataset into 3 parts: a training set of 4000 images, a
validation set of 500 images and a test set of 500 images. The
validation set is used to find model parameters. After finding
the parameters, we merged the 4000 training set and 500
validation set to form a new training set. This corresponds
to the training set of 4500 images and the test set of 500
images used by Duygulu et al. [7].

Other tests were run on NIST’s entire TRECVID3 devel-
opment dataset containing 58 mpegs of ABC World News
Tonight and 57 mpegs files of CNN Headline News as in
[11]. The set is divided into 45 hrs of training data and 15
hrs of test data. The mpeg files are segmented into video
shots, each of which is represented by a key frame. So by
retrieving key frames, one can retrieve corresponding video
shots. In total there are about 44100 key frames. Each
key frame in the TRECVID3 development dataset has been
manually annotated with key words from about 100 seman-
tic concepts, from which about 75 concepts are selected in
our experiments to guarantee that each of them has more
than 20 training examples in the development set. In the fi-
nal test of our algorithm, the training set and the test set are

3We thank Kobus Barnard for making the Corel dataset
available at
http://www.cs.arizona.edu/people/kobus/research/data/eccv 2002

Figure 2: Curves of performance vs visual vocabu-
lary size for multinomial visterm model and multiple
Bernoulli visterm model.

Figure 3: Performance vs branch factors with 1M
leaf nodes

also separated in time, with 34,880 key frames for training
and 9,220 key frames for test.

For both the 5K Corel set and the TRECVID dataset,
every image is partitioned using a rectangular grid and a
feature vector is then calculated for every grid region. The
features used include 18 color features and 12 texture fea-
tures. The color features for an image region include the
average, the standard deviation and the skewness of the
pixel values for each channel of the RGB color space and
L∗a∗b space. The texture features consist of Gabor energy
computed over 3 scales and 4 orientations.

5.1 Retrieval Results
In our experiments on discrete MRFs, images are first par-

titioned into rectangular regions and the discrete visterms
are built from those regions.

On the 5k Corel image set, we tested the effects of the size
of the visual vocabulary on the retrieval performance and
compared the multinomial visterm model and the multiple
Bernoulli visterm model. Figure 2 shows that the mean av-
erage precision dramatically increases with vocabulary size
and then flattens out. We can also see that the multiple
Bernoulli visterm model works better than the multinomial
visterm model by a small margin.

We also observed that with the same visual vocabulary



CMRM CRM N-CRM SML [6] Discrete MRF
mAP 0.14 0.26 0.30 0.31 0.28
RunningTime(secs) 10 660 660 - 16

Table 1: Retrieval performance comparison between discrete MRF and other models on the 5k Corel set.
The running time is measured for all the 371 words in the vocabulary.

N-CRM Discrete MRF
mAP 0.158 0.152
P@10 0.319 0.335
RunningTime 6.8(hrs) 90(secs)

Table 2: Retrieval performance comparison between
discrete MRF and N-CRM on the TRECVID03 set.
The running time is measured for all the 75 query
words.

size, the performance increases with the branching factor
(see Figure 3). We believe this is because of the property
of the hierarchical k-means clustering. Since the visual vo-
cabulary is constructed from a hierarchical k-means tree,
then any errors in clustering made at the higher level will
be propagated to the lower level and cannot be corrected. A
tree with a larger branch factor reduces the chances of prop-
agation of the clustering error. However, there is a tradeoff
since larger branching factors will slow down the algorithm.

In our experiments we also tested the discrete visterm
sets constructed from the multiple-scale space of the original
image via the image Gaussian pyramid. However, the results
did not show any apparent improvement over the single scale
setting.

The best results for the discrete MRF is obtained us-
ing the multiple Bernoulli visterm model with a 2085136
(384) vocabulary size over 16x16 overlapping rectangular
partitions (resulting in 308 rectangular regions per image),
which achieves a mean average precision (mAP) 0.28 and
precision@10 of 0.198. Table 1 shows the comparison with
other models, from which we can see that our discrete MRF
achieves better results than the cross-media relevance mod-
els(CMRM) and the continuous relevance model(CRM) and
is comparable to normalized-continuous relevance models
and Carneiro’s hierarchical Gaussian mixture model [6]. How-
ever our discrete MRF is much more efficient than continu-
ous models in terms of running time. The implementation
used sparse matrix techniques to accelerate the probability
calculation.

Finally, our discrete MRF model was tested on the TRECVID03
dataset. Each keyframe in this dataset is partitioned into
32x32 overlapping rectangular regions, which results in 300
partitions per keyframe. And then color and texture fea-
tures are extracted from each region. From the training fea-
tures we construct a visual vocabulary of size 2085136 (384).
Then all test features are determined by look up using the
tree to obtained their corresponding discrete visterms. Our
results are shown in table 2, from which we can see that
the mean average precision of our discrete models on this
dataset is very close to the NCRM and the precision@10 is
slightly better. Compared to the 6.8 hours of running time
measured for the NCRM, our discrete model only takes 1.5
minutes to complete the whole procedure once the discrete
visterms are computed.

Figure 4 shows the 5 top ranked images in the returned

rank list of the discrete MRF in response to the query word
”birds” over the 5k Corel set. Note the third image does
contains a bird (seagull) although it is quite small and the
ground-truth annotation of that image does have the word
”birds”. Although the ground-truth annotation of the first
image doesn’t contain the word ”birds” (instead it has ”alba-
tross”), our model correctly associates word ”birds” with it.
Figure 5 shows a retrieval example for the discrete MRF in
response to the query word ”sport event”over the TRECVID03
dataset.

6. CONCLUSIONS
This paper proposes a discrete MRF based models for im-

age and video retrieval. Unlike other automatic annotation
based retrieval models, our MRF models directly retrieve
images without involving an explicit annotation step and
are directly trained through maximizing the retrieval perfor-
mance - mean average precision. In our discrete MRF model,
large visual vocabularies are obtained by using hierarchical
K-means to cluster image features. We demonstrated that
the discrete MRF model runs much faster while having com-
parable retrieval performance with the continuous models.
Our future work will investigate incorporating different fea-
tures and the use of feature dependencies.

7. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelli-

gent Information Retrieval and in part by grant #NSF CNS-
0619337. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the author(s) and
do not necessarily reflect those of the sponsor.

8. REFERENCES
[1] K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth,

D. Blei, , and M. I. Jordan. Matching words and
pictures. Journal of Machine Learning Research, pages
1107–1135, 2003.

[2] K. Barnard and D. Forsyth. Learning the semantics of
words and pictures. In Proc. ICCV, volume 2, pages
408–415, 2001.

[3] D. M. Blei and M. I. Jordan. Modeling annotated
data. In Proc. of the 26th Annual Int’l ACM SIGIR
Conf., pages 127–134, Toronto, Canada, July
28-August 1 2003.

[4] Carbonetto, N. de Freitas, and K. Barnard. A
statistical model for general contextual object
recognition. In Proc. ECCV, 2004.

[5] Carbonetto, N. de Freitas, P. Gustafson, and
N. Thompson. Bayesian feature weighting for
unsupervised learning, with application to object
recognition. In Proceedings of the 9th International
Workshop on Artificial Intelligence and Statistics,
2003.



Figure 4: 5 top ranked images of the discrete MRF in the test set of the 5k Corel set in response to the
query word ”birds”

Figure 5: 5 top ranked images of the discrete MRF in the test set of the TRECVID03 set in response to the
query word ”sport event”

[6] G. Carneiro, A. B. Chan, P. J. Moreno, and
N. Vasconcelos. Supervised learning of semantic classes
for image annotation and retrieval. IEEE Trans.
Pattern Anal. Mach. Intell, 29(3):394–410, 2007.

[7] P. Duygulu, K. Barnard, N. de Freitas, and
D. Forsyth. Object recognition as machine translation:
Learning a lexicon for a fixed image vocabulary. In
Proceedings of the 7th European Conference on
Computer Vision., pages 97–112, 2002.

[8] S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple
bernoulli relevance models for image and video
annotation. In Proc. CVPR, pages 1002–1009, 2004.

[9] A. Ghoshal, P. Ircing, and S. Khudanpur. Hidden
markov models for automatic annotation and
content-based retrieval of images and video. In
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 544–551, 2005.

[10] J. S. Hare, P. H. Lewis, P. Enser, and C. J. Sandom.
A linear-algebraic technique with an application in
semantic image retrieval. In In CIVR06, 2006.

[11] G. Iyengar, P. Duygulu, S. Feng, P. Ircing,
S. Khudanpur, D. Klakow, M. Krause, R. Manmatha,
H. Nock, D. Petkova, B. Pytlik, and P. Virga. Joint
visual-text modeling for automatic retrieval of
multimedia documents. In Proc. ACM Multimedia,
2005.

[12] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic
image annotation and retrieval using cross-media
relevance models. In Proc. of the 26th Annual Int’l
ACM SIGIR Conf., pages 119–126, Toronto, Canada,
July 28-August 1 2003.

[13] J. Jeon and R. Manmatha. Using maximum entropy
for automatic image annotation. In Proceedings of the
3rd International Conference on Image and Video
Retrieval, pages 24–32, 2004.

[14] V. Lavrenko, S. L. Feng, and R. Manmatha.

Statistical models for automatic video annotation and
retrieval. In Proceedings of the International
Conference on Acoustics, Speech and Signal
Processing, pages 1044–1047, 2004.

[15] V. Lavrenko, R. Manmatha, and J. Jeon. A model for
learning the semantics of pictures. In Proceedings of
Advances in Neural Information Processing Systems
16, NIPS 2003., 2003.

[16] J. Li and J. Z. Wang. Automatic linguistic indexing of
pictures by a statistical modeling approach. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 25:1075–1088, 2003.

[17] S. Li. Markov Random Field Modeling in Image
Analysis. Springer-Verlag Telos, 2001. 2Rev Ed
edition.
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