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Abstract

This paper investigates different machine learning mod-
els to solve the historical handwritten manuscript recogni-
tion problem. In particular, we test and compare support
vector machines, conditional maximum entropy models and
Naive Bayes with kernel density estimates and explore their
behaviors and properties when solving this problem. We fo-
cus on a whole word problem to avoid having to do charac-
ter segmentation which is difficult with degraded handwrit-
ten documents. Our results on a publicly available standard
dataset of 20 pages of George Washington’s manuscripts
show that Naive Bayes with Gaussian kernel density esti-
mates significantly outperforms the other models and prior
work using hidden Markov models on this heavily unbal-
anced dataset.

1. Introduction

This paper investigates a number of different machine
learning models for the task of historical handwritten docu-
ment recognition, which include support vector machines,
conditional maximum entropy models, and Naive Bayes.
Our goal is to investigate the behaviors and properties of
these models when trying to solve this problem.

Although handwritten document recognition is a classi-
cal vision problem and has been researched for a long time,
it is far from being solved. Good results have been achieved
for online handwriting recognition, which takes full advan-
tages of the dynamic information in strokes obtained using
special input devices like tablets. However, dynamic infor-
mation is unavailable for huge volumes of precious hand-
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written documents, for example, George Washington’s let-
ters at the Library of Congress, Issac Newton’s papers at
Cambridge University and the collection of Joseph Grinnell
in the Museum of Vertebrate Zoology at U.C.Berkeley. Ef-
ficiently accessing and reading them requires advanced off-
line handwriting recognition techniques. Off-line handwrit-
ing recognition is a harder problem and only successful in
small-vocabulary and highly constrained domains such as
mail sorting and check processing. A lot of work in hand-
writing recognition is done at a character-level, which re-
quires to determine character boundaries - since character
boundaries are difficult to determine this is done by jointly
segmenting and recognizing the characters. In this paper,
we directly recognize the entire word without character seg-
mentation, as [4] did, and the recognition problem is for-
mulated as a multi-class classification problem on a large-
vocabulary. Classification models are investigated on how
to accommodate them to the specific task.

Results from information retrieval [1] show that for print
optical character recognition (OCR), the retrieval perfor-
mance doesn’t drop significantly even for high word error
rate. By analogy although the output will not satisfy the
standard for human reading, we believe it is useful for hand-
writing retrieval based on text queries.

1.1. Related Work

Although online handwriting recognition has advanced
to the level of commercial application, offline handwriting
recognition has only been successful in small-vocabulary
and highly constrained domains. Only very recently people
have started to look at offline recognition of large vocabu-
lary handwritten documents [3]. Marti et al [5] proposed to
use a Hidden Markov model (HMM) for handwritten mate-
rial recognition. Each character is represented using a Hid-
den Markov model with 14 states. Words and lines are mod-
elled as a concatenation of these Markov models. A statisti-
cal language model was used to compute word bigrams and



this improved the performance by 10%. Rath et al [4] fo-
cuses on recognizing historical handwritten manuscripts us-
ing simple HMMs one state for each word. By adding word
bigrams from similar historical corpora they showed that
the performance could approach an accuracy of 60%

2. Classification Models for Handwritten
Word Recognition

We now discuss a number of different classification mod-
els for handwriting recognition - both discriminative and
generative.

2.1. Support Vector Machines

Originally introduced as a binary linear classifier, sup-
port vector machines (SVMs) attempt to find an oriented
hyper-plane which separates the linear separable space de-
fined by the training data, while maximizing the margin.
The margin is the distance of each training instance to the
hyperplane.

To extend this to classifying nonlinear separable data,
SVM uses a kernel function K to map the training data to
a higher Euclidean space, in which the data may be linearly
separable. The kernel function is defined as : K (z;, ;) =<
é(z;), p(z;) >, where ¢(x) is some mapping. To dealing
with nonseparable data and avoid overfitting, SVM usually
use a soft margin which allows some instances to be mis-
classified. A SVM classifier solves the optimization prob-
lem:

N
min < w,w > +C ; 1
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such that y;(< w, ¢(z;) > +b) > 1—¢&;,and & > 0,

wherey; € {—1, 1} is the label of instance z;, slack vari-
able is &; and the capability C' determines the cost of margin
constraint violations.

2.2. Conditional Maximum Entropy Models

Maximum Entropy models have been recently widely
applied in domains involving sequential data learning, e.g.
natural languages [7, 8], biological sequence analysis [2],
and very promising results have been achieved. Since max-
imum entropy models utilize information based on the en-
tire history of a sequence, unlike HMM whose predications
are usually based only on a short fixed length of prior emis-
sions, we expect maximum entropy models to work well
for handwritten document recognition problems since in our
case each page may be taken as a long sequence of words,
each of which emits a set of observations represented as
word image features.

The goal of conditional maximum entropy models is to
estimate the conditional distribution of label y given data z,
say P(y|z). The framework is fairly straightforward. It ba-
sically specifies that the modeled distribution should be as
uniform as possible, while being consistent with the con-
straints that are given by the features of the training data.
Given a set of predicates. ' f;(z,y), which may be real
or binary values and represent some observation properties
(e.g. co-occurence) of the input z and output y, the con-
straints are that for each predicate its expectation value un-
der the model P(y|z) should be the same as its expectation
under the empirical joint distribution P(z, y), i.e.

> P(2)P(yle, N f(z,y) = > P(z,y)f(z,y) ()

With these constraints, the maximum conditional en-
tropy principle picks the model maximizing the conditional
entropy:

H(P)=— Y P(&)P(ylz,\logP(ylz,)) (3)
zeX,yeY

It has been shown [9] that there is always a unique distri-
bution that satisfies the constraints and maximize the condi-
tional entropy. This distribution has the exponential form:

1 i
P(ylz, )) = X i) ©)

where Z is a normalization constant such that
>, Plylz,A) = 1 and X; is the weight of predicate
fi in the model.

The maximum entropy model’s flexibility comes from
the ability to use arbitrary predicate definitions as con-
straints. These feature definitions represent knowledge
learned from the training set. So our test of condi-
tional maximum entropy modeling on our task focuses on
the aspect of feature definitions and their effects on perfor-
mance.

2.2.1. Predicates We do a linear vector quantization (VQ)
on the original continuous features measured from the im-
ages and discretize each of them into a fixed number of bins.
We define two types of binary predicate for the maximum
entropy model based on the discrete features extracted from
word images and the corresponding label sequence:

1. Unigram Predicates The frequency of a discrete fea-
ture z and the current word w:

) = {

1 if the feature set of w contains =
0 otherwise

&)

1 We use the term predicates rather than features to differentiate these
from image features.



2. Bigram Predicates We define two sets of bigram pred-
icates, which intuitively represent the statistical prop-
erties of a word and the features of this word’s neigh-
boring word images. For example, if in the training
set the word “’force” always follows word “’Fredericks-
burgh’s”, then in the test set it will increase the prob-
ability of current word being recognized as “force”
given that its previous word image is very long. One
set of bigram predicates we defined is the frequency of
word w and a discrete feature z which appears in the
feature set of the preceding word image of word w:

1 if the feature set of the previous
word image of w contains z
0 otherwise

2 (2, w) =

(6)

and the other set is the frequency of word w and a

discrete feature  which appears in the features set of
the following word image of word w:

1 if the feature set of the following
word image of w contains z
0 otherwise

¥z, w) =
@

2.3. NaiveBayeswith Gaussian Kernel Density Es-
timate

Since our dataset is from letters which use natural lan-
guage, it is unbalanced. That is, since word frequencies fol-
low a Zipfian-like distribution their frequencies vary widely.
On the other hand the dataset also provides us with reason-
able prior probabilities of words in the document corpus. So
instead of discriminative models like SVMs and maximum
entropy, we want to use some kind of generative probabil-
ity density model like Naive Bayes.

The Naive Bayes framework is pretty simple:

_ P(flw)P(w)
S, P(7lw)Plw)

We estimate the prior probability of word w directly as its
relative frequency in the training set. We calculate the prob-
ability of the visual features of a word image given a word
w, using a non-parametric Gaussian kernel density estimate:

P(wlf) ®

1 Aexp{—(f - £)TZ1(f - fi)}
PUW*meZ; s

This equation arises out of placing a Gaussian kernel over
the feature vector f; of every word image labelled as word
w. Each kernel is parametrized by the feature covariance
matrix X. We assumed ¥ = [ - I, where I is the iden-
tity matrix and 3 plays the role of kernel bandwidth, which
determines the smoothness of P(f|w) around the support
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Figure 1. A part of one segmented page in our
dataset.

points f;. The value of (3 is selected empirically on a vali-
dation set.

3. Experimental Results

Our evaluation dataset consists of 20 pages from a col-
lection of letters by George Washington. This is a publicly
available standard dataset provided by [4]). Each page is
accurately segmented into individual word images, each of
which has been manually transcribed. We don’t lowercase
transcribed words, so “’region” and ”Region” are taken as
two different words. There are 4865 words in the corpus in
total and 1187 of them are unique. Figure 1 shows a part of
a segmented page in our dataset.

27 features are extracted from each word image, which
consists of 6 scalar features(i.e. height, width, aspect ratio,
area, number of descenders in the word, and number of as-
cenders in the word) and 21 profile-based features which
obtained through a discrete Fourier Transform(DFT) over
three time series generated from the word image, which are
projection profile, upper word profile and lower word pro-
file. Please refer to [4] for the feature details.

We use word accuracy rate as our performance measure,
i.e. the proportion of the words that are recovered exactly as
they were in the manual transcript. 20-fold cross-validation
is used to get a stable performance evaluation for each
model. Each iteration leaves one page for test, and trains
the model over the other 19 pages. We use the mean accu-
racy rate as the final evaluation measure. Since our dataset is
relative small, many words in the test set don’t occur in any
training pages - these are called out-of-vocabulary(OOV)
terms as in [4] and cause errors of the recognition, we use
two types of mean accuracy rate — mean accuracy rate with
OOVs and mean accuracy rate without OOVs.

Since our data are from a collection of natural language
documents(letters), the frequency of words can be approx-
imated by a Zipf distribution, in which a few words have
very high frequencies, and most words occur very infre-



quently. Over our whole dataset, 681 words has only one
occurrence; 1008 words have less than 5 occurrences each
but 30 words have 1856 occurrences in total. The unbal-
ance and sparsity of training data for different words make
the multi-classification problem untractable for some stan-
dard classifiers such as decision trees, neural networks, as
shown in [6]. Here, we investigate the three models in 2
and their behaviors when dealing with this unbalanced data
problem.

3.1. Resultson Different Models

3.1.1. SVMs We use the MATLAB Support Vector Ma-
chine Toolbox developed by Gavin Cawley to build the
SVM model on the data. By using the *max wins’ algo-
rithm, we tried linear kernels and polynomial kernels of de-
gree 2 on the data.

| Accuracy [ with OOV | wb OOV |
Linear Kernel 0.3827 0.4642
Polynomial d-2 0.4463 0.5281

Table 1. Experimental results using SVMs

Table 1 shows the experimental results using support
vector machines, from which we see that the polynomial
kernel performances much better than the linear kernel. This
is unsurprising since the kernel function plays a crucial role
in SVMs. The kernel determines the mapping of instances
to a high dimensional space, whether the space is separable
or not. However, generally it is not easy to locate the proper
kernel. In other word, deciding to which space the original
data should be projected requires a deeper understanding
of the data, usually background knowledge needed. In our
case, both the linear kernel and the polynomial kernel of de-
gree 2 don’t work very well on the data. Other kernels that
project the data into higher dimension spaces might help in
this case but there is no simple way to determine these short
of trying all of them.

3.1.2. Conditional Maximum Entropy  Mod-
els We use the maximum entropy toolkit from
http://homepages.inf.ed.ac.uk/s0450736/maxent-
toolkit.ntml, which was developed in C++ based on
the java version maxent.sf.net. To extract unigram and bi-
gram discrete predicates in section 2.2, we linearly quan-
tize each of the 27 continuous features into 19 bins.
To test the influence of different numbers of bins into
which the raw features is quantized, we also gradually
change the number of bins and re-run the maximum en-
tropy model. The performance only varies slightly with the
change of the number of bins except at 100 bins the perfor-
mance drops sharply.

| Accuracy | with OOV | wb OOV |
Unigram 0.4164 0.4939
Unigram + Bigram 0.4432 0.5234

Table 2. Performance Comparisons for maxi-
mum entropy models and features

Table 2 shows the results of Maximum Entropy mod-
els using discrete predicates. These number shows using
both unigram and bigram information outperforms only us-
ing unigram information by a small margin. Further exper-
iment is needed to determine whether higher-order depen-
dency information(e.g. trigram) is helpful. Note the concept
of bigram here is defined between label states and features
unlike that in HMM which depicts the dependency between
label spaces. Since our dataset is relative small and the vo-
cabulary is huge, it is more difficult to capture useful bigram
information for maximum entropy.

3.1.3. NaiveBayeswith Gaussian Density Estimate Our
best results are achieved using the Naive Bayes model
with Gaussian kernel density estimates, a mean accuracy
of 0.542 with OOVs and 0.640 without OOVs. It is not sur-
prising that Naive Bayes achieves good results on our task
for at least two reasons. One is that the model provides
prior probabilities of the words - that is the frequency of
the words. This corresponds to unigram language model in-
formation used in [4] where it was shown to improve per-
formance. Another is that the Gaussian density emphasizes
the local information provided by each instance, which has
been shown to be very useful in multimedia data analysis.

3.2. Results Summary

Accuracy Rate with OOV | wb OOV
SVM 0.446 0.528
ME 0.443 0.523
Naive Bayes with GD 0.542 0.640*
HMM (in [4]) 0.497 0.586

Table 3. Results of comparing all the models

Table 3 shows the performance comparisons of all the
models we test. The numbers shown in this table are the best
accuracy rate we achieved for each kind of model. HMM re-
sults are from the recent paper [4]. To make the comparison
fair the results for the HMM model include word bigrams
obtained from the training set but not from the external cor-
pora (the Naive Bayes model as well as the other models
here do not use any bigrams). Using an external Thomas



Jefferson electronic text corpus boosts the HMM perfor-
mance to 0.52 and 0.61 respectively [4]. From this table,
we see that Naive Bayes model with a Gaussian density es-
timate achieved the best performance on our task. The t-
test shows it outperform HMM significantly by a P-value of
0.01.

The unbalance of our dataset is a disadvantageous condi-
tion for both SVM and maximum entropy models. For many
words the models starve for training data, while for some
other words abundant training samples are available. When
SVM dealing unbalanced data, even margins for negative
instances and positive instances may be inappropriate. Un-
even margins [10] for SVM may alleviate the effects of un-
balance of the dataset.

Kernel selection is the key to SVM once the feature
sets have been fixed. There still aren’t very good theoreti-
cal methods for automatic selection of kernel functions for
SVM. Although the upper bound on VC dimension is po-
tentially useful for comparing kernels, it is necessary to es-
timate the radius of a hypersphere enclosing the data in the
non-linear feature space, which is a very difficult task. So
cross-validation is still a preferred method for selecting ker-
nels. Kernels should accommodate to a specific task, and
the specific data. In our case, each manuscript page could
be considered as a sequence instance of word images. So
some kernels for structure learning, e.g. Fisher kernels, may
be more suitable for our task since these kernels can learn-
ing the dependency among the state space.

The performance of maximum entropy depends directly
on the predicates defined for this model, which determine
what information will be captured from the training data as
knowledge constraints for the model. Since it is easy for
maximum entropy to use information based upon of the
whole sequence through predicates definition, maximum
entropy is expected to perform well on sequence data. But
the models should have enough training data to capture ac-
curately high-order information. When only sparse train-
ing data available, high-order(n-gram) predicates may cause
very biased estimation.

The improved performance of naive Bayes over other
models in our experiments shows that, the prior probabil-
ities (unigram information) is important for analysis on nat-
ural language document corpus (especially heavily unbal-
anced datasets). In contrast, prior distribution information
is difficult to utilize in other discriminative models such as
maximum entropy and SVM. Gaussian density estimates
also show that localized models and local information are
preferable for handwriting recognition. Such local informa-
tion is suitable for many multimedia data problem in which
each category could be a mixture of different patterns.

4. Conclusions and Future Work

We investigate and compare a set of machine learn-
ing models for the historical manuscripts recognition prob-
lem, including support vector machines, conditional maxi-
mum entropy models and Naive Bayes with Gaussian ker-
nel density estimates. In the future, we will try other graph-
ical models, for example conditional random field models.
These models are more suitable for sequence data, in which
the transition information between labels are important. As
shown in [4], after they used bigram information, the per-
formance improved substantially.
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