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Abstract

This paper evaluates the bioeconomic performance of individual fishing quota (IFQ)
regulations in a multiple-species fishery. In our model, fisheries managers face uncertainty
over the population sizes and growth characteristics of multiple cohabiting fish species’.
Fishers control all aspects of harvest operations under full knowledge of the species-
specific productivities of their fishing gear. We derive a rational equilibrium mapping from
bioeconomic fundamentals and the IFQ regulation to the private profit maximizing mor-
tality and rent outcomes that are implemented by fishers. Conditional on this mapping, we
solve the second best problem of designing the regulation to maximize fishery value. Per-
formance of a design that allows discretion over the mix of harvested species is contrasted
against rules, via a discard ban. Both designs eliminate discards. Discretion diminishes
information asymmetry between the manager and fishers and raises fishery value. Incor-
porating discretion into regulatory designs provides new prospects for improving fisheries
management.
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1 Introduction

Individual fishing quotas (IFQs) have emerged as the predominant tool to address the tragedy of com-

mons in fisheries. Owners of an IFQ hold a right to harvest a specified quantity of fish during a

given calendar period, usually a year. Managers select the annual aggregate quotas, i.e., the sum of all

IFQs issued, to meet management goals and monitor harvesting operations to prevent over-quota fish-

ing. While management success would seem inevitable, in the assessments of many, IFQ regulations

continue to under-perform. Choosing the aggregate quotas across multiple fish species that interact

biologically and technologically in order to meet long term management goals remains a significant

challenge.1 A second problem is known as implementation uncertainty. Here, the species-specific

mortalities and economic rent outcomes that are implemented by resource users do not match the mor-

tality and rent outcomes that managers intended when the quotas were chosen (Branch and Hilborn,

2008; Fulton et al., 2011; Holland and HERRERA, 2009).

Both problems derive from the institutional features of fisheries. First, fish extraction processes are

decentralized: a management authority, e.g., government agency, international commission, commu-

nity organization, typically retains responsibility for choosing the aggregate quotas and designing and

enforcing regulations. Autonomous resource users, hereafter fishers, control harvesting operations. It

is therefore crucial that regulations provide incentives that implement mortality and rent outcome that

are intended.

Second, selecting annual aggregate quotas is complicated by uncertainty over the true state of

the bioeconomically-interdependent ecosystem that is under management. Formal stock assessments,

which are rarely up to date and almost never available for all managed species, provide some infor-

mation about the sizes and growth potentials of individual species stocks. Except in cases where very

costly census methods, e.g., underwater cameras strapped to unmanned submarines, are deployed, fish

in situ are unobservable.2 Managers regularly choose annual quotas under uncertainty over true pop-

ulation sizes, their growth potentials, the nature of intra-species ecological interactions, among other

factors.
1See for example, Batsleer et al. (2013); Briton et al. (2020); Hoff et al. (2010); Poos et al. (2010); Squires et al. (1998);

Ulrich et al. (2008).
2In practice population size is inferred indirectly with the help of (untestable) ecological theory and indirect data sources,

e.g., samples of sex and age distributions of a fish stock, past harvests, catch per unit of effort indices.
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Yet as harvesting operations proceed, i.e., as nets, hooks and/or traps are deployed and retrieved

from the water, fishers observe the productivity of their gear across the various species they pursue.3

Gear productivity provides a signal about true stock abundances that is unavailable to managers when

quotas are chosen (often well before harvesting operations begin although there are exceptions).4 The

question that is asked and answered in this paper is, can the IFQ regulation be modified to exploit

information that is revealed to fishers in real time, as harvesting operations proceed, but is unavailable

to managers when quotas are chosen? Our answer is a qualified yes; if managers are willing to grant

discretion to resource users to respond to productivity signals they receive, and if specific bioeconomic

conditions are met. We define these conditions formally below; in short, they are not overly restrictive.

We present a model of a decentralized, multiple-species fishery and contrast bioeconomic perfor-

mance across competing IFQ-based regulatory designs. In our model, a manager chooses an aggregate

annual quota for each fish species under uncertainty about its true population size and growth po-

tential. Fishers then choose factor inputs and harvests to maximize their private single season profit,

conditional on the regulation, technology constraints, the bioeconomic fundamentals in the fishery and,

importantly, the realized gear productivities across species. The mapping from regulations to the out-

comes that are implemented by fishers embeds rational ecological and economic equilibrium behavior

under market clearing for the IFQs (Singh and Weninger, 2022).5

In our model, the manager attends to the resource user cost that captures tradeoffs between current

and future resource extraction. A first best regulation would prescribe a gear-productivity-contingent

harvest and factor input allocation plan that maximizes long term fishery value. We contrast bioeco-

nomic performance in the second best setting of our model, with quotas chosen prior to the commence-

ment of harvesting operations and before gear productivity is revealed.

We show how an IFQ regulation that grants fishers some discretion to adjust the mix of species that

they can legally harvest will implement mortality and rent outcomes that are closer to the first best.

We hereafter refer to this form of discretion as cross-species flexibility (CSF). An IFQ with CSF sets

annual quotas for individual species but allows a specified portion the each quota to be used to land
3Catch per unit of gear deployed, or catch per unit effort indices, remain a core data element in stock assessment modeling

(Hilborn and Walters, 2013).
4Managers of the British Columbia groundfish fishery regularly adjust groundfish quotas, mid season, in response to

industry feedback regarding stock abundance and market conditions (Jonathan Gonzalez 2019, personal communication).
5Derivation of this mapping are often conditioned on ad hoc fisher behavior and restrictive assumptions for fishing tech-

nologies e.g. Ulrich et al. (2008, 2017); Briton et al. (2020, 2021).
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other species. We derive bioeconomic conditions under which adding CSF to a standard IFQ design

improves performance.6

Under CSF, short term gains in bioeconomic performance arise from the partial resolution of stock

information asymmetry. Profit maximizing fishers allocate discretionary quota toward capture and land-

ing of higher-profit species. Higher profits correlate with stock abundances. Thus, fisher-implemented

mortality under CSF better aligns with mortality the manager would choose under full information

about stock abundances. More generally, and relative to a standard IFQ design that does not allow dis-

cretion, CSF implements mortality outcomes that raise current use value, but not necessarily the long

run total value of the resource. We show that across a range of bioeconomic fundamentals, long run

fishery value is higher under moderate levels of fisher discretion.7

A second result, which is known in the literature, is that CSF reduces incentives to discard over-

quota catch at sea, a problem that is considered severe in multiple-species fisheries (Sanchirico et al.,

2006; Squires et al., 1998; Borges and Penas Lado, 2019). Discretion under CSF allows fishers to

avoid costs that are otherwise required to precisely match harvests with quotas. Over-quota discarding

reduces fishery value, i.e., the harvest costs that are expended to capture the fish are sunk, discarded

fish generate no revenue at the dock, and due to low survival rates,8 discards do not contribute to future

abundance. CSF increases fishery value through this second channel as well.

Allowing too much discretion over the mix of harvested species can reduce fishery value. When

fishers are granted discretion, the mortality outcomes that they implement respond to current profit

motives only. Managers of course can foresee and incorporate this behavior into the regulatory design.

However, differences between short- and long-term profits act to constrain the set of outcomes that can

be implemented under second-best management. Excessive discretion, which we define formally, can
6CSF is used in IFQ-regulated fisheries throughout the world, although with explicit goal of reducing over-quota discards

(Sanchirico et al., 2006). Over-quota discarding is considered problematic where catch and quotas must match across an array
of harvested Squires et al. (1998); Borges and Penas Lado (2019). From 2010-15, the U.S. Gulf of Mexico Grouper-Tilefish
IFQ program allowed between 8% - 70% of the aggregate gag grouper quota to be used to legally land red grouper, In 2010,
4% and in 2015, 4.8% of red grouper quota could be used to land gag grouper (Gulf of Mexico Fishery Management Council,
2008). Icelandic fisheries allow quotas to be used to land different species at specified quota exchange rates that are set in
advance of each fishing season (Woods et al., 2016).

7This advantage shares features of a price-based regulation, but takes a different form. Weitzman (2002) shows how a
landings tax instrument provides incentives to stop fishing when the true stock abundances in a single species fishery is drawn
down to a particular threshold level. Price-based regulations provide an insurance against overexploitation of the stock. A
quota regulation does not offer the same protections.

8Estimates of discard mortality that hover around 100% are common Suuronen (2005).
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limit the managers’ ability to steer mortality rates toward long-term value maximizing levels.9 We show

how IFQ regulations must be designed when, for example, prices paid for individual species differ, and

derive the price differential at which the bioeconomic performance of an IFQ with CSF regulation

declines. We derive similar results in the case where resource user costs differ across species.

We contrast bioeconomic performance of an IFQ with CSF design against: (i) a standard IFQ that

is vulnerable to discarding (because discarding is allowed or unpreventable), and (ii) an IFQ regulation

that counts the entire catch, i.e., all fish captured and retrieved to the deck of the boat, against available

quota. This latter regulation is hereafter referred to as an IFQ with discard ban design. Our results

show that under fairly general conditions, the outcomes of management interest that are implementable

under an IFQ with CSF regulation mostly includes the set of outcomes that are implementable under

an IFQ with discard ban. As a result, the bioeconomic performance (the expected value) of a fishery

that is managed with an IFQ with CSF regulation almost always dominates.

The role of discretion as a means of reducing discards is not new (Borges and Lado, 2019; Woods

et al., 2015). European Common Fisheries policy regulations allow what is termed inter-stock flexibility

wherein up to 9% of a member state’s target species quota can be used to harvest a non-target species, as

long as the non-target stock is deemed to be within safe biological limits. While the Common Fisheries

Policy offers discretion is also prohibits at-sea discarding of captured fish. The landings obligation,

or discard ban policy requires, with few exceptions, that all captured fish be counted against quota

and landed at port. What we add is a formal analysis of the discard-reducing effects of CSF and the

long term tradeoff between discretion and rules-based behavioral control in multiple-species fisheries

management.

Our paper contributes to the literature on fisheries management under uncertainty. Researchers

have studied regulation under stock, price, cost and other uncertainties (Clark and Kirkwood, 1986;

Weitzman, 2002; Hannesson and Kennedy, 2005; Reed, 1979; Sethi et al., 2005; Singh et al., 2006;

Pizarro and Schwartz, 2021). Fewer studies have considered information asymmetry. An important

exception is Weitzman (2002) who contrasts a tax against a quota regulatory instrument. Like in our
9Fisheries managers recognize that granting discretion over the mix of harvested species can result in excessive mortality

of vulnerable fish stocks. Two conditions required under the EU Common Fisheries Policy are, “(a) that the stocks from
which the catches are attributed to other stocks would be inside safe biological limits - to prevent the mechanism to result in
higher catches of weak stocks and (b) that real catches by species would be recorded, to avoid catch data being misleading”
(Borges and Penas Lado, 2019). To our knowledge, the role of CSF in exploiting asymmetric information about true stock
abundances has not been previously recognized.
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paper, the regulator is uncertain about the true abundance of the population while resource users observe

and respond to the productivity of factor inputs during harvesting operations. Weitzman (2002) shows

that the tax instrument provides an insurance against over-depletion of the uncertain fish stock. A

quota regulatory instrument on the other hand can result in overfishing.10 These results are derived in

the context of the canonical single species fishery model.

Our paper expands the understanding of discretion or flexibility in the design of resource and en-

vironmental regulations. Temporal flexibility in cap-and-trade pollution emissions regulations has em-

phasized the advantages of banking or borrowing permits as a means of responding to unanticipated

productivity shocks (Innes, 2003; Leard, 2013; Yates and Cronshaw, 2001). Studies of flexibility in

quota regulated fisheries that include CSF are primarily descriptive (Woods et al., 2015,?). Simulation

models have been used to evaluate outcomes and performance of quota regulations in multiple-species

fisheries. Simulations rely on simplified and restrictive assumptions for fishing technologies (fixed out-

put proportions) and fishing behaviors, e.g., behavior is ad hoc and/or follows naive updating rules, i.e.,

future behaviors track past behavior. Behavioral responses to prices of IFQs, changing bioeconomic

conditions, and the regulations are typically ignored (e.g., Ulrich et al. (2017); Batsleer et al. (2013);

Hoff et al. (2010); Poos et al. (2010).

The rest of the paper is organized as follows. The next section presents our model in the context of

a two species fishery. Section 3 presents result under a multiple-species technology that exhibits fixed

output proportions. This assumption, while restrictive, helps to fix ideas in a simple setting. Section 4

derives our main results under a technology that exhibits endogenous output substitutions, or endoge-

nous targeting of individual fish species. This indisputable characteristic of multiple-species fishing

behavior is central to the implementation uncertainty problem under regulatory discretion. Tradeoffs

between short and long run management goals and an evaluation of IFQs with CSF and IFQs with

a discard ban in meeting long term management goals is presented in section 5. Section 6 provides

conclusions, a summary of the policy implications, and some directions for future research. Additional

supporting material and proposition proofs are collected in an appendix.
10Hannesson and Kennedy (2005) extends the analysis to consider alternative sources of uncertainty, arguing that the

manager must have detailed information about the fishing costa for the Weitzman (2002) results to hold.
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2 Model

We consider a two-species fishery under a quantity-based regulation. Annual aggregate quotas, one

for each species, are operationalized through a system of individual fishing quotas IFQs. The IFQ is a

freely tradable permit to harvest and land a specified quantity of fish during the regulatory cycle, which

we take to be a single year.

We use the term harvests to denote the quantity of fish that is captured by fishing gear and retrieved

to the deck of a fishing vessel. Landings will refer to the quantities of fish that are transported from the

fishing ground to a port for sale. The difference between the two, harvests minus landings, are discards.

The manager’s objective is to design the regulation to maximize the long run value of the fishery.

Our model is easily modified to consider alternate management goals such as maximization of sustain-

able physical yield. What is relevant for our results is that the regulator internalizes the effect of current

mortality on future abundance and future profit. Fishers on the other hand are assumed to maximize

profit earned during the current regulatory cycle.11

We simplify the manager’s problem and assume existence of a fixed resource user cost parameters,

one for each species, which informs the tradeoff as perceived by the regulator between current and

future extraction of fish stocks. The manager is uncertain about the true species’ stock abundances that

cohabitate the fishing ground. We formalize these assumptions shortly.

The decentralized regulatory-extraction environment suggests the following timing of actions: the

regulator announces species-specific quotas and, any accompanying provisions, under uncertainty about

true stock abundances that will prevail during the regulatory cycle. Harvest operations then begin under

full information about the relative productivity of gear across species.

To further simplify the model, we assume stock abundances are fixed during a harvesting phase of

the regulatory cycle. Growth of the fish stock occurs after harvesting is completed and before the start

of the subsequent regulatory cycle. There is no within-harvesting-phase depletion of the fish stock.12

We use x ≡ {x1, x2} to denote true stock abundances. We use h ≡ {h1, h2}, l ≡ {l1, l2} and,

11Owners of IFQs in perpetuity, who may or may not be fishers, will surely care about future profit opportunities, which
will be capitalized into the price of perpetual quota (Arnason, 1990). It is unlikely however that unilateral conservation
efforts, which may increase shared fishery value, will dominate the short-term profit motive in an IFQ-regulated fishery. We
feel the assumption of single-period profit maximization is reasonable.

12Incorporating harvests and stock growth concurrently complicates the model and adds few additional insights. Within-
season harvesting and stock growth is considered in Singh and Weninger (2022).
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d ≡ {d1, d2} to denote the harvest, landings, and discards, respectively, of a representative fishing

operation. The technology employs a scalar factor input z, which is purchased at constant unit price,

w.13

To ease notation we assume that all discarded fish die. Harvests and fishing mortality are therefore

synonymous.14

We assume there is a unit mass of fishers who conduct harvesting operations. We focus on the profit

maximizing behavior of a representative fisher.

2.1 Management objectives and information

We write fishery value as perceived by the manager as,

W ≡ Π (h1, h2)− κ1

2
h2

1 −
κ2

2
h2

2 (1)

where

Π (h1, h2) ≡ p1h1 + p2h2 − wz. (2)

pi denotes the unit landings price for species i and κi are parameters that measure the manager’s

subjective user cost for the species i stock.

The management objective in equation (1) differs from the canonical dynamic fisheries manage-

ment model and warrants comment. Appendix 7.1 explains equation (1) further and its relation to

bioeconomic fishery management models.

Equation (1) exactly matches a class of management objective functions that maximize the present

economic value of the fishery resource and are quadratic in harvests. Current period fishing mortal-

ity reduces escapement (post harvest-phase surviving fish), which may linearly or non-linearly impact

subsequent period’s stock abundances. Escapement is valued in terms of its contribution to the harvest

benefits/costs over subsequent regulatory cycles. If one assumes that stock growth is linear in escape-
13Randomness in harvesting is often cited as a cause of over-quota discards (Squires et al., 1998). The law of large numbers

and the ability of fishers to trade quotas (over an entire regulatory cycle) in response to unanticipated harvest shocks suggests
that harvesting uncertainty is not important cause of over-quota discarding. Adding harvesting randomness to our model
complicates the analysis while leaving the results unaffected, qualitatively.

14Including positive discard survival adds notation with few additional insights. Note that discard mortality rates approach
100% for some species and gear types (Suuronen, 2005).
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ment, and that the next period’s fishery value is concave in stocks, a convex in harvest specification

is justified. Moreover, the quadratic form delivers analytical solutions that sharpen the presentation of

trade-offs between discretion and rules in fisher-implemented mortality and rent outcomes.

Alternatively equation (1) will be valid for a management objective for which individual species

inter-annual resource user cost are linear in current harvests. In our model the resource users costs take

the form, κihi for species i fish. What is important for our analysis and results is that the manager

internalizes the cost of current harvest on future fishery value.15

The analysis that follows requires an explicit form for the beliefs of the fishery manager over

possible true stock abundance realizations. In lieu of empirical evidence for specifying beliefs, we

opt for specifications that facilitate the presentation of key results. We assume throughout that the

manager believes true stock abundances are perfectly negatively correlated. As will become clear, a

key channel through which regulations affect fishing outcomes is the relative profitability of harvests

for each species, which derives from differences in individual species’ abundance, among other factors.

Positively correlated stock abundances by species are discussed informally in the concluding section 6.

Finally, the analysis in the next section maintains the assumption of a fixed output proportions

technology. The fixed output proportions assumption expounds the role of IFQ regulations in fish-

ing behavior and serves to introduce the features of alternate regulatory designs. The results under

endogenous targeting are presented in section 4.

3 Regulation with fixed output proportions

This section assumes that, with equal probability, xi takes one of two values, {ϕ, 1− ϕ}; hence, when

x1 = ϕ, x2 = 1 − ϕ, and vice versa. To build intuition, we first assume that ϕ ∈
[

1
2 , 1
]

is a known

constant.

We consider two provisions that are specific to the IFQ regulation. The first, and the main focus of

our paper, is cross-species flexibility (CSF). This provision allows a specified portion of each species

quota to be used to land the other species. The second provision is a discard ban. Under a discard ban,
15Interdependencies across multiple fish species may operate through three channels: (i) ecological dependence wherein

the growth of the species i stock depends on other species stocks; (ii) complementarity/substitutability in consumer demand
with attendant cross-species price effects, and (iii) cost interdependence under joint-in-inputs harvesting. Our model features
cost interdependence only. The model can be extended to include other interdependencies, although doing so obscures
insights for regulatory design. These extensions are therefore reserved for future work.
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all harvested fish is counted against IFQs. Importantly, with the exception of the discard ban provision,

at-sea discarding is either allowed or, because it is unobserved by the regulator, is unchecked. Thus

under a standard IFQ regulation with or without CSF only the quantity of fish that is landed is counted

against available IFQ. All regulations are fully enforced.

We will evaluate bioeconomic performance of competing regulations. This evaluation will assume

that fishing profit, equal to the sum of landings revenues less total harvesting costs, is the single source

of fishery value. We do not consider the costs of administering and/or enforcing any of the regulations

we evaluate, although these costs are discussed in the concluding section.

Suppose multiple-species harvests are determined as,

h ≡

 h1

h2

 =

 c1x
µ1
1

c2x
µ2
2

 zγ ; (3)

c1 and c2 are scaling parameters (analogues to the catchability coefficient in Ulrich et al. (2008));

γ < 1 ensures harvests exhibit diminishing returns to inputs; µ1 > 0, µ2 > 0 imply harvests increase

with stock abundances, a standard assumption. For analytical tractability and without much loss of

generality, we assume γ = 1
2 , c1 = c2 = 1, µ1 = µ2 = 1 in the rest of this section.

For any input allocation, one species’ harvests will exceed the other’s (except when ϕ = 1
2 ). When

ϕ = 1
2 , species’ stock abundances are equal and there is no uncertainty. In this regard, ϕ = 1

2 represents

certainty in stock abundances and we refer to it as such.

Consider a case with symmetric shadow prices where κ1 = κ2 = κ is sufficiently large such that

limits on current mortality of each species stocks is warranted to meet management goals.16

We next contrast equilibrium outcomes under the first best i.e., the outcome that would be imple-

mented by a sole-owner of the fishery who controls harvesting operations in observation of realized

true stock abundances. Results under the three regulatory forms discussed above follow. Appendix 7.3

derives all analytical results. We summarize the findings here.
16Appendix 7.4 derives the conditions that ensure binding quotas in a standard IFQ program.
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First best

The first best is the mortality and resource rent outcome that would be implemented by a sole owner

of the fishery who chooses z to maximizes value, equation (1), under the technology (3) and fully

observed stock abundances, i.e., the first best harvests are stock abundance contingent.

Harvest of the higher abundance stock isϕ
√
z and harvest of the low abundance species is (1− ϕ)

√
z.

Irrespective of realized abundances, the sole owner’s optimization problem is:

max
z

{∑
i

pixi
√
z − wz − κ

2

(∑
i

x2
i

)
z
}
, (4)

The harvest of the high and the low abundance stocks are given as (with xi ∈ {ϕ, 1− ϕ});

hi =
xi
2

∑
pixi

w + κ
2

(
(1− ϕ)2 + ϕ2

) . (5)

The solution balances marginal cost with marginal benefit. The denominator of (5) reflects that the sole

owner, in addition to considering the marginal input cost w, accounts for the shadow price of the stock.

Fishery value evaluated at the optimal harvests is

W =
1

4

(
∑
pixi)

2

w + κ
2

(
(1− ϕ)2 + ϕ2

) .
Thus, due to the convex in harvest objective function (equation 1), fishery value declines when stock

abundance are more disparate.

There is no information asymmetry in the first best scenario. The solution approach is therefore

straightforward. Outcomes under decentralized harvesting are solved in stages. First, for a given regu-

lation, we derive fishers’ privately optimal input choice. We then solve the regulation design problem

by inserting fishers privately optimal behavior into the manager’s objective function and solving for the

quotas and, in the case of CSF, the flexibility parameter, that maximizes expected fishery value.

To simplify the analysis further, we impose an additional symmetry and assume that the two fish

species have equal market value, i.e., p1 = p2 = p.17 Details of the derivations that follow are presented
17Results with p1 6= p2 are available on request.
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in Appendix 7.3.

In what follows, an asterisk superscript will distinguish first best outcomes; superscripts S, F and

DB, will distinguish outcomes under a standard IFQ, an IFQ with CSF, and an IFQ with a discard ban,

respectively.

IFQ regulation

Consider the design of a standard IFQ regulation. Since in the current example, the two species are

symmetric, quotas for each species will be equal. Denote the common quota as q = q1 = q2. Recall

that κi’s are assumed sufficiently large that the harvests of both species is profitable. Fishers will

therefore land li = q units of each species. The low abundance species’ harvest will equal q, and the

higher species harvest will be ϕ
1−ϕq, of which q with be landed and 2ϕ−1

1−ϕ q, will be discarded. The

equilibrium input choice achieves full utilization of the low species’ quota with q = (1− ϕ)
√
z, and

therefore fishers will choose z = (q/(1− ϕ))2.

Foreseeing these choices, the regulator maximizes fishery value by choosing q = arg maxq π
S (q)

with:

πS (q) = 2pq − w
(

q

1− ϕ

)2

− κ

2

(
1 +

(
ϕ

1− ϕ

)2
)
q2. (6)

IFQ with discard ban

Suppose a discard ban is included with the standard IFQ regulation. Now fishing must stop when one

species’ quota binds. This occurs at hi = ϕz
1
2 . Solving for z obtains z =

(
q
ϕ

)2
, and thus hj = 1−ϕ

ϕ z
1
2 .

Regulators objective is then to choose q = arg maxq π
DB (q) with:

πDB (q) = p
q

ϕ
− w

(
q

ϕ

)2

− κ

2

(
1 +

(
1− ϕ
ϕ

)2
)
q2. (7)
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IFQ with CSF

Consider next an IFQ with CSF regulation. This regulation allows fraction α of the quota of either

species to be used to land the other species.18 The landing constraint becomes:

li ≤ (1 + α) q subject to li + lj ≤ 2q,

The regulator’s optimal choice of α ≥ 2ϕ − 1 ensures that neither species is discarded and the total

quota is utilized, i.e., h1 + h2 = 2q =
√
z. Conditional on fishers’ input choices, the regulator chooses

q = arg maxq π
F (q) with:

πF (q) = 2pq − w (2q)2 − κ

2

(
(1− ϕ)2 + ϕ2

)
(2q)2 . (8)

3.1 First-best vis à vis IFQ regulation

It is worth noting that all regulations that we consider will replicate the sole-owner’s outcome when

ϕ = 1
2 , i.e., the no stock uncertainty case. For example, a standard IFQ regulation simply sets q =

q∗ = p
4w+κ ; a discard ban and CSF are trivially redundant.

For ϕ > 1
2 , comparison of the first best outcome with outcomes under the three regulatory regimes

is summarized by the following proposition.

Proposition 1. An IFQ with a discard ban and an IFQ with CSF of α = 2ϕ−1 replicates the first best

fishing mortality and rent outcome (WF = WDB = W ∗). An IFQ regulation obtains fishery value

WS = 4 (1− ϕ)2W ∗,

where W ∗ = 1
4

p2

w+κ
2 ((1−ϕ)2+ϕ2)

, and 4 (1− ϕ)2 < 1. Quotas under the three regulatory regimes rank

as qDB > qF > qS . Specifically:

qDB = 2ϕqF =
ϕ

2 (1− ϕ)2 q
S ,

18The choice of a common flexibility parameter in case of bioeconomically symmetric species is obvious. When species
differ in terms of their bioeconomic characteristics a case arises for setting two flexibility parameters instead of one. In this
case, the rate at which species-specific quota can be exchanged for other species quota differs from unity. See Woods et al.
(2015) for an application in Icelandic fisheries. An analysis of this variation in design is reserved for future work.
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with qS = p(1−ϕ)2

w+κ
2 ((1−ϕ)2+ϕ2)

.

Proof: See Appendix 7.3.

A corollary of the above is that for ϕ > 1
2 , quotas under an IFQ with or without CSF are declining

in ϕ and therefore fall below the quota that corresponds to the first best harvest, q∗ = p
4w+κ . Under a

discard ban, in contrast, quotas rise with ϕ for all ϕ ≤
√

1
2 + κ

w , and then decline to p
2w+κ for ϕ = 1.

These results are understood in the context of an example.

Figure 1: Quota setting under fixed output proportions and degenerate stock uncertainty.

Figure 1 depicts a fully symmetric fishery. The figure includes, as examples, two quota choices q̃

and q̂; each has the same individual species quotas, as consistent with symmetry of the example. The

harvest technology is fixed output proportions. The regulator believes two stock abundance realizations

are possible.

How should quotas be chosen? If species 1 is the high abundance stock, harvests must lie along ray

0A in figure 1. If species 2 is the high abundance stock, harvests lie along ray 0B in figure 1.

Figure 1 shows, as examples, the first best harvest outcome at hA if x1 = ϕ and at hB if x2 =

ϕ. A sole owner can implement these outcomes directly. We next determine whether these harvest

outcomes can be implemented with decentralized harvesting and asymmetric information about true

stock abundance.

Suppose a standard IFQ is used to manage the fishery (no CSF and no discard ban) with the quota

set at q̃. This regulation caps landings at li ≤ q̃i for i = 1, 2. If realized abundance is x1 = ϕ with
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x2 = 1−ϕ, species 1 harvests will exceed q̃ and the overquota catch will be discarded at sea. Discards

of species 1 fish occur for harvests on segment (h′, h′′] of 0A. Since h1 > q̃ must be discarded, the

marginal revenue product of z is 1
2 (pj(1− ϕ)) z−

1
2 once either species’ quota binds. When fishing is

profitable, as assumed, fishers will harvest at h′′ and overquota discards of species 1 fish will equal d1

as shown.

If species 2 is the higher abundance stock, the outcome is the mirror image of the one just described.

Figure 1 shows why the stock-contingent outcome (hA, hB) cannot be implemented under a stan-

dard IFQ design. If the species 1 stock is more abundant, there will be over-quota discards of species 1

fish and/or under-utilization of the species 2 quota, or both. If the species 2 stock is more abundant the

outcome is the reverse. As noted above, discarding is biologically and economically inefficient in our

model. Harvests that are subsequently discarded waste z and generate zero revenue. Discarded fish do

not contribute to future abundance.

Consider an IFQ with CSF design, with quotas set at q̃. CSF allows αq units of species i quota to be

used to the land species j fish. Legal landings lie on a line segment that has slope −1, e.g., connecting

and including points (hA, hB) in figure 1. Flexibility afforded by CSF is precisely what is needed to

implement the first best (stock-contingent) harvest outcome. If x1 = ϕ harvest is at hA while if x2 = ϕ

harvest is at hB . There is no cost inefficiency and no discarded fish.

An IFQ with discard ban design also implements the first best outcome. Consider the quota at q̂

in figure 1. The discard ban prohibits harvest beyond the point where the first species quota binds.

If x1 = ϕ, the quota constraint binds at hA and a portion of species 2 quota is unused. If x2 = ϕ,

the harvest is at hB and a portion of species 1 quota is unused. There is no cost inefficiency and no

discards.

The results above follow from the assumption that ϕ is a known constant. We next show that neither

CSF nor a discard ban will implement the first best outcome under a more general form of uncertainty.

3.2 Continuous abundance uncertainty

We now consider the case where ϕ is drawn from a continuous uniform distribution, ϕ ∼ U [1
2 , ϕ] with

ϕ̄ > 1
2 . Since the regulator is free to choose α = 0, an optimally designed IFQ with CSF will do at

least as well as a standard IFQ. We therefore compare outcomes under an IFQ with CSF (F) and an
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IFQ with discard ban (DB). Appendix 7.4 formally shows that an optimal CSF sets α = 2ϕ̄ − 1. The

quotas under the two alternatives are given by

qDB = arg max
q
Eϕ
{
πDB (q)

}
; qF = arg max

q
Eϕ
{
πF (q)

}
where πDB (q) and πF (q) are as in (7) and (8), respectively.

We again contrast fisher-implemented outcomes to the first best (∗) outcomes. Derivations of the

results in this section appear in Appendix 7.4.

3.3 Discard ban vis à vis CSF

First best quota choices span a continuum of ϕ−contingent harvests and ’one-size-fits-all’ quotas can-

not replicate the first best. The expected fishery value under any regulation will therefore be below

the first best, the difference arising due to stock uncertainty. Proposition 2 summarizes bioeconomic

performance of alternate regulatory designs.

Proposition 2. An IFQ with CSF set to α = 2ϕ̄− 1 will eliminate discards. The quotas under an IFQ

regulation with discard ban are larger than under a IFQ with CSF regulation. Specifically,

qDB =
p

2

Eϕ

{
1
ϕ

}
wEϕ

{
1
ϕ2

}
+ κ

2Eϕ

{
ϕ2+(1−ϕ2)

ϕ2

}
> q∗ =

p

4w + κ

> qF =
p

4

1

w + κ
2Eϕ {ϕ2 + (1− ϕ2)}

.

For all ϕ̄ < ϕ̂ ≈ 0.728

WF > WDB.

For all ϕ̄ ∈ (ϕ̂, 1] :

WF ≷WDB ⇔ κ ≶ κ (ϕ̄) ,

15



where κ (ϕ̄) is a function over ϕ̄ ∈ (ϕ̂, 1] and

κ′ (·) < 0; lim
ϕ̄→ϕ̂

κ (ϕ̄) =∞; κ (1) ' 0.7267.

Proof: See Appendix 7.4, for the expression ϕ̂ and the function κ (·) in explicit form.

While an IFQ-CSF regulation does better than DB for all ϕ̄ < ϕ̂, irrespective of κ values, for

ϕ̄ > ϕ̂ states a discard ban does better if and only if κ is sufficiently high. Clearly, with κ < 0.72 such

a situation never arises.

Evidently, qF is declining in ϕ̄, whereas qDB first rises and then declines but stays above the first

best harvest quantity p
4w+κ . Neither regulation will replicate the first best outcome. For example, when

the realized ϕ = 1
2 , the sole-owner chooses q∗ = p

4w+κ , whereas qDB > q∗ while qF < q∗.

Figure 2: Fixed output proportions and continuous stock uncertainty.

Figure 2 presents an intuition for proposition 2. Referring to the figure, note that if x1 is the largest

stock, {x1, x2} = {ϕ, 1 − ϕ}, harvest outcomes lie along the ray 0A. If x2 is the high abundance

stock harvests lie on ray 0B. A third ray 0C shows the harvests if ϕ = 1
2 under realized abundance,

x1 = x2 = 1
2 . Recall that this section assumes ϕ is continuous. Abundance realizations spanning

the entire cone 0AB are possible, but do not appear in the figure to reduce clutter. The three stock

realizations depicted are sufficient to demonstrate the equilibrium outcomes under each regulation.

Figure 2 shows the first best harvest at hA when x1 = ϕ, at hB when x2 = ϕ and at hC when
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x1 = x2 = 1
2 .19. These outcomes cannot be implemented under a standard IFQ since discarding

cannot be prevented. For example, a quota at q̃ = (q̃1, q̃2) will result in cost inefficiency, discards and

under-utilization of one species quota.

Consider a quota equal to q̃ = (q̃1, q̃2) under an IFQ with CSF design. Following earlier logic, this

regulation will implement hA if x1 = ϕ and hB if x2 = ϕ. If x1 = x2 = 1
2 , the harvest outcome will

lie on the ray 0C at hi = q̃i < hCi . The first best stock-contingent outcome thus cannot be implemented

under a IFQ with CSF regulation.

Will a discard ban fare better? Consider quota q̂ = (q̂1, q̂2) in figure 2. If x1 = ϕ, the harvest

outcome is at hA and some species 2 quota is unused. If x2 = ϕ is realized, the harvest outcome will

be hB and a portion of species 1 quota unused. For stock realization x1 = x2 = 1
2 harvest will be at

h′ > hC . We see that an IFQ with discard ban also cannot implement the first best outcome.

Moreover, it is apparent that fine tuning the quota quantities does not solve the problem. For

example, quotas could be increased under the IFQ-CSF design such that hC is implemented if x1 =

x2 = 1
2 is realized. For all other abundance realizations, harvests will then exceed the first best quantity.

Reducing quotas to q̃ = (q̃1, q̃2) and maintaining the discard ban will implement hC only if ϕ = 1
2 is

realized. For all other realized abundances, hi < q̃i.

The example in 2 makes clear that first best, stock-contingent outcomes cannot be implementable

under regulatory designs considered. It, however, suggests that CSF and discard ban provisions can

move outcomes that are implemented by fishers closer to those that meet management goals. The next

section assesses how close to the first best can the fisher-implemented outcomes be under an optimally

configured second best regulation? The results demonstrate that CSF and DB provisions retain their

relative rankings and their desirability vis-a-vis a standard IFQ.

4 Regulatory design with endogenous targeting

This section assumes fishers choose the scale and the scope (or mix) of species they harvest. We begin

with a description of the fishing technology. We introduce a tractable analytical model that captures

characteristics of the multiple-species fisheries that we deem requisite for analyses of IFQ regulatory
19Sections below formally derive stock contingent harvests that maximize the objective in (20)
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designs and performance.20 The section closes with a derivation of rational regulation-to-outcome

mappings under alternate regulations.

General technology

Our general technology embeds three features of multiple-species fishing: (i) endogenous control over

the mix of harvested species, (ii) an explicit positive link between the productivity of factor inputs

in harvest of individual species and their respective stock abundances, and (iii) output substitutions

capable of replicating targeting and discarding behaviors common in multiple-species fisheries that are

regulated with IFQs.21

LetH(z|x) denote the set of all vectors h that can be harvested and landed with factor input z under

given stock abundances, x. Three examples of harvest sets for a two-species fishery appear in figure 3.

Figure 3: Multiple-Species Fishing Technology With Output Substitution. Harvest sets are conditional
on input allocations z1 < z2 < z3 and stock vector x, with xi

xj
≈ 1.

The harvest sets in figure 3 assume increasing input quantities, z1 < z2 < z3, under roughly equal
20A review of alternate representations of fishing technology and their limitations appears in Appendix 7.1.
21These features are emphasized elsewhere (Singh and Weninger, 2009, 2015; Turner, 1995, 1997; Scheld and Walden,

2018).
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abundances of the two species stocks; x1x2 = 1.

The harvest sets in figure 3 illustrate costly targeting of individual species (Singh and Weninger,

2009). The costs materialize as factor inputs are used up when actions are taken to target a mix of

species that differs from the mix of stock abundances in the water. Searching for and intercepting

species i fish and/or avoiding intercepting species j fish expends fuel, perhaps requires use of special-

ized hooks and baits, fishing at certain times of the day on specific tides, or fishing only at a subset of

available locations across the fishing ground. When targeting actions are taken, factor input z captures

and transports back to port fewer fish than when no targeting such actions are taken. The absence of

targeting actions, alternatively, reflects acceptance of a harvest mix that mirrors relative species’ stock

abundances. For h1h2 ≈
x1
x2

= 1, the feasible h takes its largest value.

For each H(z|x) in figure 3, the marginal rate of product transformation (MRPT) is negative in

the interior of a cone delineated by rays 0A and 0C. MRPT is positive for h lying outside of this

cone. Singh and Weninger (2009) refer to the exterior of this cone as the discard set. The terminology

is understood by comparing costs at harvest vectors h̃2, h̃1 and h̃ in the figure. h̃2 is in the discard

set, h̃1 lies on its boundary, on ray 0A, and h̃ lies in a no discard region. The three vectors share a

common harvest of species 2 fish and increasing harvest of species 1 fish. Species 1 harvests as large

as h̃1 are feasible with a smaller input allocation than z2. Therefore, along the ray h̃2 to h̃1, input

requirements are less and harvest costs decline with increased h1. Input requirements and costs rise

with h1 as h1 increases beyond h̃1. Thus a quota regulation that attempts to implement a harvest h̃2

provides an incentive to discard fish at sea. Costs savings arise from avoiding the costly actions that

would otherwise be required to harvest a mix that includes a small share of species 1 fish.

We assume that fishers operate at boundary points of the harvest sets. The following correspon-

dence offers a tractable analytical representation of the technology described above:

H(z, x) ≡

 h1

h2

 =

 c1

(
1 + sin aπ

2

)
xµ1

c2

(
1 + cos aπ2

)
xµ2

 zγ . (9)

c1 and c2 denote strictly positive scaling parameters. µ is the non-negative stock-harvest elasticity and

γ > 0 is the input-harvest elasticity, measuring the percentage change in the harvest for a percent

increase in z. The parameter a controls the mix of harvested species. Note that lowercase π in (9)
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denotes the mathematical constant 3.141 . . ..

For a ∈ [−1, 0] ∩ [1, 2], the MRPT is positive, implying that, holding z fixed, a reduction (increase)

in the harvest of species i is possible only with a reduction (increase) in the harvest of species j 6= i. It

is easily checked that for a ∈ [0, 1], the technology exhibits negative MRPT. It can be shown that in an

unregulated fishery, the profit maximizing choice of a will conform to non-positive MRPT (Singh and

Weninger, 2009).22

The following values of the targeting parameter are noteworthy:

a =



−1 ⇒ h = [0, c2x
µ
2z

γ ]T

0 ⇒ h = [c1x
µ
1z

γ , 2c2x
µ
2z

γ ]T

1 ⇒ h = [2c1x
µ
1z

γ , c2x
µ
2z

γ ]T

2 ⇒ h = [c1x
µ
1z

γ , 0]T

(10)

where T denotes transposition. Figure 3 plots the corresponding harvests in equation (10) for input

quantity z3.

At a = −1 (a = 2) the harvest vector includes zero quantity of species 1 ( 2 ) fish. The technology

thus allows for specialization in the harvest of one species, although at considerable cost, determined

as foregone harvests of both species.23

When a = 0 the MRPT between species 1 and 2 is zero. Equivalently, at a = 0 the marginal cost of

harvesting more h1, conditional on maintaining h2 constant, is zero. An increase in a tilts the harvest

mix toward species 1. At a = 0 harvesting more h1 utilizes factor inputs. Harvesting less h2 saves

factor inputs that would otherwise be utilized in avoiding species 2. At a = 0 these costs offset. By

reverse reasoning, at a = 1 the MRPT between species 2 and species 1 is zero.

It is worth pointing out that a ∈ [−1, 0) or a ∈ (1, 2] arise under profit optimal targeting only if a

discard ban is in place. Suppose discards are allowed by regulation. If at harvest vector h, MRPT > 0,

more of each species can be harvested by adjusting a toward its midpoint value of one half. It is easy to

see that if discarding is allowed, this adjustment to a will either increases revenue, lower cost, or both.
22Equation (9) embeds the fixed output proportions (equation (3)) as a special case. By fixing a to a value in [0, 1], and

setting µ = γ = 1, the mix of harvested species becomes fixed and exogenously determined by x.
23Multiple-species fishing technologies may alternatively exhibit null-jointness in output/harvest, wherein a strictly positive

harvest of species i is feasible only if the harvest of species j 6= i is also strictly positive (see Scheld and Walden (2018)).
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For future reference we define:

hi (z) ≡ cixµi z
γand hi (z) ≡ 2cix

µ
i z

γ .

The quantities above are, respectively, the minimum and maximum harvest of species i given z and

for which the MRPT is non-positive. Referring to figure 3 with input z3, for example, hi (z) is shown

at h(z3)|a=0, and hi (z) at h(z3)|a=1. Notice that for any z, a profit maximizing fisher will choose

hi (z) ∈
[
hi (z) , hi (z)

]
as we demonstrate below.

First best with endogenous targeting

As above we first characterize outcomes under the first best. Sole owner harvests are characterized by,

wz̃ =γ
[(
p− κh̃1

)
h̃1 +

(
p− κh̃2

)
h̃2

]
; (11a)

ã =
2

π
tan−1

[
p− κ h̃1

p− κ h̃2

(
ϕ

1− ϕ

)µ]
. (11b)

Equation (11a) is standard: it equalizes the marginal input cost, inclusive of its impact on prospective

stocks, with marginal revenue. The second equation determines the optimal choice of a. Equations

(11a) and (11b) along with (9) uniquely solve for {z̃, ã} and thereby
{
h̃1, h̃2

}
for any realization of

ϕ. However, even with γ = 1
2 and either µ = 1 or 1

2 , it is no longer possible to obtain closed-form

expressions. What follows therefore relies on numerical computations.

4.1 Outcomes under endogenous targeting and CSF

Consider a representative fisher’s profit maximization problem. The input z and targeting action a

is chosen to maximize own profits under given bioeconomic fundamentals and the regulation, e.g.,

aggregate quotas {q1, q2} and CSF provision α, and the available technology. The problem formulation

is:
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max
{hi,li}

Π =p1l1 + p2l2 − wz;

s.t.

l1 ≤ h1; l2 ≤ h2;

l1 ≤ q1 + αq2; l2 ≤ q2 + αq1;

l1 + l2 ≤ q1 + q2,

The Lagrangian for this problem is:24

L = p1l1 + p2l2 − wz + λ (q1 + q2 − l1 − l2)

+ω1 (q1 + αq2 − l1) + ω2 (q2 + αq1 − l2)

+υ1 (h1 − l1) + υ2 (h2 − l2) ,

(12)

where λ, ωi, and υi are Lagrange multipliers. Necessary conditions for optimal hi, li and di include:

li ≥ 0; pi − λ− ωi − υi ≤ 0; li (pi − λ− ωi − υi) = 0, (13a)

λ ≥ 0; λ (q1 + q2 − l1 − l2) = 0, (13b)

ωi ≥ 0; ω1 (q1 + αq2 − l1) = 0; ω2 (q2 + αq1 − l2) = 0, (13c)

υi ≥ 0; υi (hi − li) = 0. (13d)

Equation (13a) is the complementary slackness condition for landings. λ and ωi are multipliers for the

aggregate and species-specific quota constraints, respectively, and υi is the multiplier for the species i

harvest. Notice that the constraints in equation (13c) cannot both bind simultaneously since in this case

the aggregate constraint (13b) would not be met. Therefore, either ω1 or ω2 or both are zero.

The optimal choice of a follows,

a =
2

π
tan−1

[
υ1

υ2

c1

c2

(
x1

x2

)µ]
, (14)

24In the absence of a flexibility provision, i.e., α = 0, the quota constraints reduce to l1 ≤ q1 and l2 ≤ q2; the third
constraint, l1 + l2 ≤ q1 + q2 is then redundant.
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and the optimal input choice satisfies,

z =
γ

w
(υ1h1 + υ2h2) . (15)

The multiplier υi is non-negative with strictly positive value only if li = hi, i.e., di = 0. Suppose

υ1 = 0, then a = 0. In this case, the optimal input choice is determined by its marginal contribution to

the harvest of species 2; marginal harvest of h1 has no value since it must be discarded. Symmetrically,

when υ2 = 0 and a = 1, marginal harvest of h2 is discarded and the input choice equates its unit cost

to its marginal revenue product in the harvest of species 1.

We next describe fisher-implemented harvests, landings and discards that are consistent with nec-

essary conditions (13a)-(13d), and solutions (14) and (15). In what follows, we hold stock abundances

and prices fixed and present profit-maximizing outcomes across the full quota domain, {q1, q2} ∈ <2
+.

We partition this space into regions for which regulatory constraints bind and are slack. Regions are

depicted graphically in figure 4. A formal derivation of our results is presented in appendix 7.4.

Figure 4: Quotas and Implemented Harvests Under CSF. Regions I-X distinguish quota vectors for
which constraints (13a)-(13d) are either binding or are slack. Line segments S1 − S5 are landings
vectors allowed under the regulation. Stock abundances are fixed and assumed equal across species.
Prices satisfy p1 > p2.
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To fix ideas, and without loss of generality, figure 4 assumes p1 ≥ p2. Stock abundances are

assumed equal across species.

Quotas in regions III and VI induce positive discards of species 1 fish. In these regions there is

low q1 relative to q2 and since abundances are equal, targeting a species mix that matches the quota

mix is costly, i.e., marginal cost for species 1 is negative at h1/h2 = q1/q2 and costs can be reduced

by harvesting h1 > q1 and discarding the overage. For the same reasons but with species numbers

reversed, species 2 discards are positive for quotas set in regions V, VII and X in figure 4.

Discards are zero for quotas set in region VIII. For such quotas, the MRPT is everywhere negative

such that harvesting in excess of available quotas increases costs with revenue unchanged.

The technology in (9) exhibits diminishing returns when γ < 1, which is assumed in figure 4. Point

B delineates the quota/harvest vector at which marginal profit is zero for both species simultaneously.

Point B is the harvest vector that is implemented absent the regulation.

Segment AB in figure 4 delineates harvest combinations for which the marginal profit from ad-

ditional h2 conditional on h1 is zero. Segment CB has a similar interpretation with species labels

reversed.

While perhaps not immediately apparent, segments 0A and 0C are drawn symmetrically in <2
+

whereas the harvest bundle atB includes a larger share of h1. This result is explained by our assumption

that abundances are equal while landing prices satisfy, p1 > p2. The result highlights a nonlinearity in

the relationship between landings prices and implemented harvests. When one or both quota constraints

are slack, the marginal profit of individual species harvests is determined by the landings price less the

species’ marginal harvest costs. When quotas bind, marginal profits are strictly positive and equal to

quota lease prices. When quota prices are strictly positive, small changes in landings prices have no

impact on input and harvest outcomes.

IFQ with CSF regulation is reflected in figure 4 as a set of legal landings. For a quota q ∈ <2
+ space,

the regulation takes the form of a line segment with northwest coordinate {(1− α) q1, q2 + αq1} and

southeast coordinate {q1 + αq2, (1− α) q2}. Some example quotas under a moderate value of α are

shown to aid the discussion.

Consider quotas in region I and specifically qI in figure 4. The set of legal landings spans regions

I and II. Point B is the quota-unconstrained profit maximizing harvest and is legally implementable
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under qI and flexibility alpha. It is easy to see that all quotas that span region I induce equilibrium

harvest at point B.

Next consider qII which lies entirely in region II. In region II, the marginal profit of species 2

harvest is negative; recall that line segment AB demarcates harvest vectors for which the marginal

profit from additional h2 conditional on h1 = q1 is zero. Marginal profit from additional species 1

harvest is positive in region II and therefore it is optimal for fishers to use CSF discretion to harvest

and land species 1 fish. The profit-maximizing harvest lies on segment AB with h1 = qII1 + αqII2 and

h2 < (1− α)qII2 .

Extending these insights obtains the following inferences for fishing behavior:

• If any portion of the CSF quota constraint lies in region I, the optimal landing choices are uncon-

strained and there are no discards.

• If the southeast endpoint of the CSF quota constraint lies in either of the regions II, III, VI, VIII,

and X, the optimal harvests, landings, and discards are determined (as described above for qII ).

• If the northwest endpoint of the CSF quota constraint lies in either of the regions IV, V, VII, and

IX, the optimal harvests, landings, and discards are determined (as described above for qII but

with species-labels reversed).

• Notice that adjacent regions VIII and IX share the boundary given by line segment 0B. If the

CSF constraint crosses 0B, the aggregate constraint binds but no individual species’ constraints

bind, i.e., ω1 = ω2 = 0. Harvests are equal to landings with no discards. Since p1 ≥ p2, we

restrict λ ≤ p2 so that υi = pi − λ > 0. Then,

υ1 − υ2 = p1 − p2.

Also, li = hi implies,

h1 + h2 = q̄ ≡ q1 + q2;

the above two equations along with (14) and (15) determine {a, z, υ1, υ2}. Line segment 0C

represents values of q̄ such that λ ∈ [0, p2].
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• If the CSF quota constraint crosses segment 0C such that its northwest endpoint lies in region X

but the southeast endpoint lies in region VII, the choices are determined by ω1 = ω2 = υ2 = 0

and υ1 = (p1 − p2). Here, a∗ = 1, and z∗ are determined by

wz∗ = γ (p1 − p2)h1 (z∗) ,

with l1 = h1 and l2 = q̄ − l1 < h2 (z∗).

Under a discard ban, quotas are matched to harvested fish. Regulatory constraints reduce to l1 =

h1 ≤ q1 and l2 = h2 ≤ q2. The Lagrangian for the fishers’ profit maximization problem is:

L = p1h1 + p2h2 − wz + r1 (q1 − h1) + r2 (q2 − h2) (16)

where ri denotes the Lagrange multiplier for species i quota. Substituting the technology in equation

(9) gets

L =

 (p1 − r1) ν1 (1 + sin aπ2)xµ1

(p2 − r2) ν2 (1 + cos aπ2)xµ2

 zγ − wz + r1q1 + r2q2.

The optimal choice of a follows,

a =
2

π
tan−1

[
p1 − r1

p2 − r2

v1

v2

(
x1

x2

)µ]
, (17)

and the optimal input choice satisfies,

wz∗ = γ ((p1 − r1)h1 + (p2 − r2)h2) . (18)

Finally, complementary slackness condition require:

ri ≥ 0; ri (qi − li) = 0.

There are four cases to consider which, as above, are define by constraints that bind and constraints

that are slack. Figure 5 illustrates.

A first case is where neither quota binds, with r1 = r2 = 0. Equations (17) and (18) then determine
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Figure 5: Quotas and Harvests Under a Discard Ban. Regions I-IV distinguish quota vectors for which
quota constraints are binding or are slack. Stock abundances in the figure are fixed and assumed equal
across species. Prices satisfy p1 = p2.

the joint bounds {q̃1, q̃2} such that if q1 ≥ q̃1 and q2 ≥ q̃2, the harvest outcomes are {h1, h2} =

{q̃1, q̃2}; quotas exceeding these thresholds will be unused.

Quotas in region I of figure 5 satisfy this criteria. It is easy to see that under a discard ban, all quotas

in region I implement harvest at point B.

A second case is that quota for species 2 binds, while quota for species 1 is slack; r1 = 0, r2 > 0.

Quotas in region II of figure 5 satisfy this criteria.

Consider the line segment 0CB which identifies the upper boundary of region II. Moving from point

B toward pointC, along 0CB, the value of a declines from its no-targeting value, 2
π tan−1

[
p1
p2
v1
v2

(
x1
x2

)µ]
to 1. For values of a in this range, we have r2 ∈ [0, p2] with optimal (z, a) determined such that the

MRPT remains non-positive. The implication is that quotas in region II for which the ratio q1
q2

is not

too small facilitates multiple-species harvesting in the domain of the technology for which the MRPT

is non-positive.

However, notice that r1 = 0 in region II with a species 1 quota constraint that is slack, with p1 > 0.

There are quotas in region II for which fishers are willing to incur a marginal profit loss in the harvest
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of species 2 fish in order to the harvest more species 1 fish. The marginal loss derives from costly

avoidance of species 2 fish. The result is r2 > p2 with a ∈ (1, 2). Harvests along segment 0C in figure

5 satisfy this property.

A third case is that the species 1 quota binds while the species 2 quota is slack with, r2 = 0, r1 > 0.

Quotas in region III in figure 5 satisfy the criteria. This case corresponds the one just described with

species labels reversed. Moving from point B to A, the optimal a declines from its no-targeting value

to a = 0 with the MRPT non-positive. At A the optimal a becomes negative and the MRPT positive.

For quotas in region III, implemented harvests utilize all of the relatively scarce species 1 quota

with species 2 quota unused, e.g., at quota qIII , h1 = qIII1 and h2 < qIII2 .

Case four includes quotas for which r1 > 0 and r2 > 0. Quota interior to 0CB and 0AB denoted

as region IV satisfy the criteria. In region IV harvests implemented by fishers match quotas set by the

regulator.

5 Regulatory performance with endogenous targeting: CSF vs. discard

ban

This section evaluates the performance of the CSF and DB regulations.25 We choose a set of funda-

mentals; prices, technology, random distribution of relative stock abundances, and resource users costs.

We derive fishers’ privately optimal behavior under these fundamentals and for each regulation. For

CSF we solve for the fishers optimal choice of (z, a) for all (q ∈ <2
+, α ∈ [0, 1]) with quotas countered

against landings, i.e., discards are allowed. For DB we derive fishers optimal choice of (z, a) for all

(q ∈ <2
+) and with quotas counted against harvests, i.e., discards are banned. Conditional on fishers

choices we solve the manager’s problem of choosing regulations to maximize expected fishery value.

Before presenting the results we demonstrate, graphically, an intuition for how the two regulatory ap-

proaches determine performance in the setting of our model.

Figure 6 considers a fully symmetric fishery example. The setting is one where the manager be-

lieves ϕ is continuous on the interval (1
2 , ϕ̄]. Thus, at one extreme the species 1 stock will be largest,

{x1, x2} = {ϕ, 1 − ϕ}. This abundance realization is represented by the ray 0C in figure 6. At the

25A standard IFQ regulation is a special case of CSF with the flexibility parameter set to zero. Its performance is thus
dominated by the CSF regulation.
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Figure 6: Regulatory performance under stock uncertainty: CSF vs. discard ban.

other extreme species’ abundances are reversed with x2 = ϕ̄. This abundance realization is represented

by the ray 0A in the figure.

Figure 6 plots the first-best, stock-contingent harvests shown as an arc of harvest vectors labelled

h∗(x). To understand the shape and location of h∗(x), recall that the regulator internalizes the temporal

resource user costs. First best harvests equate marginal profit to the resource user cost;∇hiΠ(h1, h2) =

κihi. The assumption in the figure, that κ1 = κ2, prescribes a harvest mix that is not too different. The

first best harvest mix is less dissimilar than the realized stock abundance mix.

Figure 6 shows the implementable mortality under the CSF regulation as a familiar downward

sloping line segment that intersects quota qF . Proposition 2 makes clear that the CSF regulation cannot

implement h∗(x). The challenge is to choose (qF , α) optimally, such that implemented and first best

mortalities, weighted by the probabilities of the abundance realizations, maximizes fishery value. Un-

der the second best design, implemented and first best mortalities do not perfectly align, but they come

close due CSF allowed under the regulation.

The second best quota under a discard ban is shown at qDB in figure 6. The design problem is
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as described above. The regulator chooses qDB such that the implemented and first best mortality,

weighted by the probabilities of the realized abundances, maximizes fishery value. The implemented

harvest is at hDB = qDB for all realizations of ϕ. It is easy to understand why, for the symmetric

fishery example in figure 6, performance under a CSF regulation will exceed performance under a DB

regulation.

Will CSF always outperform DB? Recall that an advantage of a DB design is that it can implement

harvests that cannot be implemented under the CSF design. Harvests that lie in the CSF discard regions

of figure 4 can be implemented under a DB regulation. Correspondingly, a DB regulation will out-

perform CSF across the set of bioeconomic fundamentals for which DB-implementable harvests yield

high expected fishery value. We next characterize the bioeconomic fundamentals under which the two

regulatory approaches perform best.

Heterogeneous prices

Figure 7 contrasts design and performance of second best regulations under varying fish prices. We

hold the price of species 2 fixed at p2 = $1 and increase p1 from $1 to $2 in discrete increments. For

each price pair, the figure plots the second best regulations and fishery values.

Note that we have smooth interpolated results for quotas and welfare. Second best α values are

reported as derived by our numerical calculations. This is because α does not vary smoothly with

changes in p1
p2

or below with changes in κ2
κ1

. The adjustment of α is relatively more flexible, and its

slope is non-monotonic, unlike the second best quotas and fishery values.

Higher prices increase the current consumption value of the stock which prescribes increased first

best extraction. Harvest of species 1 increases more than for species 2 due to the disproportionate in-

crease in p1. To maximize expected fishery value, both second best quota vectors qF and qDB increase

to maintain closeness of the fisher-implemented and first best harvests.

Panel 7a reports quotas for both species as p1
p2

rises. Recall that the technology exhibits cost com-

plementarities across harvested species. Thus as q1 increases the regulator also increases q2. Increasing

q1 as p1 increases but holding q2 fixed would result in quota mix that is incongruent to a subset of

realized abundance mixes. Since fishers have incentives to target the higher priced species 1, a high

q1/q2 ratio would result in too much targeting, high harvest cost and low fishery value.
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(a) Quota

(b) CSF parameter (c) Performance

Figure 7: Landings Prices and Regulatory Performance: Figure reports second best quotas, CSF flexi-
bility parameter α, and relative fishery value under an IFQ with CSF and IFQ with discard ban regula-
tion. Model parameters are set at µ = 0.5, γ = 0.7 c1 = c2 = 1, w = 1, κ1 = κ2 = 2.5, p2 = $1, p1

increases from $1 to $2.
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Panel 7a shows that when the price of species 1 increases, it is optimal to increase the quota of

species 2. Cost complementarities dictate that both quotas should rise. However, the rise of the quota

for species 2 is less than for species 1, resulting in the two quotas diverging as p1
p2

increases. This

divergence is more pronounced under a discard ban, i.e., when regulations prohibit discards and cross-

species quota flexibility. Under a CSF provision, where flexibility is equally likely to be used for each

species ex ante due to stock symmetry, a significant divergence between the two species stocks may

result in discards of species 2, i.e., when species 1 abundance is particularly high. Conversely, when the

stock of species 2 is high, its harvest may exceed what is justified by its resource user cost compared to

its current market valuation. As a result, the quotas of the two species under a CSF provision diverge

less than under a discard ban.

Figure 7b shows that the optimal α declines with p1
p2

. Recall that α defines the length of a legal

landings line segment with slope equal to -1 in <2
+. As p1

p2
increases first best harvests include larger

quantities of species 1 relative to species 2. Referring again to figure 6, the arc of first best harvests

h∗(x) shifts eastward and becomes flatter. Maintaining a close match between implemented and first

best harvests requires a reduction in the value of α.

When both species have similar revenue and costs, a common flexibility parameter is most effective

and aligns with optimal policies. As the price of species 1 increases, both quotas should rise due to cost

complementarity across harvested species. However, there are two drawbacks to using flexibility in this

scenario. First, flexibility tends to be used towards higher-priced species, which means it is no longer

ex ante species-neutral. This is why the regulator chooses to let the quotas of both species diverge less

under CSF than under a discard ban. Second, since the quotas of both species are already high with a

higher price of species 1, using flexibility towards species 2 when it has a higher stock realization has a

current consumption value that is lower than its resource user cost. As a result, as prices become more

asymmetric, the benefit of flexibility decreases, and the regulator chooses a smaller value for α.

Figure 7c reports the percentage increase in expected value under a CSF regulation versus a DB

regulation. The results show that the CSF outperforms DB when p1
p2
∈ [0, 1.8]; DB dominates for

p1
p2
> 1.8.

This relative performance result is explained by the implementability properties of the CSF and DB

regulations. As p1
p2

becomes large any/all flexibility afforded under CSF is used by fishers toward the
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harvest of species 1. Flexibility no longer responds to differences in stock abundance and therefore

CSF looses it advantage in implementing stock-contingent harvests. Moreover, as p1
p2

increases, first

best harvests, h
∗
1
h∗2

also increase. At p1
p2

= 1.8 h∗ is implementable under the DB regulation only and

Eϕ[WF −WDB] becomes negative.

In general, price differential at which relative regulatory performance switches sign is an empirical

matter. The lesson in figure 7c is that performance of CSF will be good when realized stock-abundances

are determinative of both the first best and the fisher-implemented harvests. If economic fundamentals

are the main determinants of first-best and implemented harvests, the advantage of CSF declines.

Heterogeneous resource user costs

We next use our model to compare performance under heterogeneous resource user costs. Management

settings arise in which a particular species stock has been overfished. Resource user costs will be high,

and perhaps higher than a cohabiting species. Our second experiment keeps κ1 = 2 constant and varies

the ratio κ2
κ1

from 1 to 2 in increments of 0.25. Figure 8 reports the results.

The results in figure 8 align with the findings above. As κ2
κ1

increases, quotas for each species

decrease, under both regulations. Additionally, the performance of CSF relative to a discard ban de-

creases.

In contrast to the asymmetric price scenario, divergence between the second best quotas is smaller

under a discard ban than under CSF. In the present scenario, both species share common landings

prices and stock characteristics. Differences across species is due, exclusively, to heterogenous inter-

temporal resource user costs. This means there is an equal chance ex ante that discretion under CSF

will be applied to each species. As κ2 increases, both species quotas and the CSF parameter decrease.

However, when the realised stock of species 1 is higher, reducing α lowers fishery value even though

prices and resource costs are unchanged. As a result, the regulator allows the quotas of the two species

to diverge more under a CSF provision than under a discard ban.

5.1 CSF under asymmetric bioeconomic fundamentals

The policy experiments in this section show that the performance gains under CSF dissipate when

species become particularly asymmetric. It should be emphasized that this decline in relative perfor-
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(a) Quotas

(b) CSF parameter (c) Performance

Figure 8: Resource User Costs and Regulatory Performance: Figure reports second best quotas, CSF
flexibility parameter α, and relative fishery value under an IFQ with CSF and IFQ with discard ban
regulation. Model parameters are set at µ = 0.5, γ = 0.7 c1 = c2 = 1, w = 1, p1 = p2 = 1, κ1 = $2,
κ2 increases from $2 to $4.
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mance conditions can be mitigated by adopting asymmetric flexibility provisions. Instead of a common

α, the regulator can use α1 when using species 1 towards species 2 and α2 when using species 2 to-

wards 1. This approach is simple to implement. The specifics of the design of an asymmetric CSF

regulation will vary with bioeconomic fundamentals and is left for future work.

6 Conclusion

Fisheries managers set annual catch quotas under uncertainty over the size and growth characteristics

of multiple cohabiting fish-species’ populations. Harvesting operations are conducted by autonomous

fishers with private information about stock conditions; fishers observe the productivity of their gear

as harvesting is underway. We study an individual fishing quota (IFQ) regulatory design that grants

fishers discretion to adjust the mix of species that are legally landed under the regulation. Discretion

in the form of a cross species flexibility (CSF) provision allows fishers to respond in real time to ob-

served productivity of gear across the different species they pursue. To the extent that gear productivity

correlates with true stock abundances, CSF will reduce information asymmetry for the manager and

increase fishery value.

Our results show that across a wide range of bioeconomic fundamentals, CSF obtains higher ex-

pected fishery value relative to a standard IFQ design, and relative to an IFQ regulation that bans at-sea

discarding. The discard ban approach is seen by some as necessary for eliminating wasteful discards.

Our results show that discards are also eliminated under a second best CSF design. Discretion under

CSF can more closely match first best mortality and economic rent outcomes relative to rules-based

control provided under a discard ban.

Importantly, our assessments of regulatory performance, which favor CSF, did not include the costs

of administering the regulation. Counting all fish that are intercepted by gear and retrieved to the deck of

a fishing vessel against available IFQ requires at-sea monitoring...of every trip taken by every vessel that

operates under the IFQ regulation. The lowest cost option for monitoring commercial fishing operations

at sea uses on-board cameras with subsequent viewing of video recordings (on-board observers are

more expensive) Marshall (1999). Cost estimates are in the range of e7,981 per vessel per year (in

$ 2019). In 2019, 57,236 vessels participated in EU fisheries putting the total cost of enforcing the

Common Fishery Policy’s discard ban stipulation at roughlye456.8 million per year. An IFQ with CSF
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regulation requires monitoring of landings at ports, at presumably much lower cost (formal estimates

are unavailable).

Our second best IFQ designs derive a rational and IFQ-market-clearing equilibrium mapping from

bioeconomic fundamentals and regulations to mortality and rent outcomes. This step is information

intensive and computationally demanding. Conditional on this mapping, a second step chooses pa-

rameters of the regulation to maximize expected fishery value, a derivation that is also not trivial.

We contend that the two-step approach is necessary to improve quota-based management of multiple-

species fisheries. Regulatory designs that do not anticipate fishers’ behavioral responses to regulations

and bioeconomic conditions, under market clearing and realistic technological constraints will surely

disappoint (Lucas Jr, 1976).

Our second best policy designs offer blunt advice for fishery managers and stakeholders. A popu-

lar algorithm used to set quotas in multiple-species fisheries follows a “most limiting stock” principle

(Batsleer et al., 2013; Briton et al., 2020; Ulrich et al., 2008).26 Step one estimates, from past data

sources and projected stock abundances, the limiting or choke species within a multiple-species com-

plex. Two mortality scenarios are identified. A min scenario assumes fishing stops when the limiting

species quota is exhausted, yielding zero discards but unutilized quota for all non-limiting species. A

max scenario assumes fishing proceeds until all quotas bind, with positive discards for all but the least-

binding species. Managers select quotas within the min-max range under an ad hoc behavioral rule

and/or naive prediction of future fishing patterns that are estimated from past data.

The equilibrium mapping from quotas to outcomes that we derive shows that the most limiting stock,

is an endogenous construct determined through rational endogenous targeting behavior that depend on

economic fundamentals, output substitution under the available technology, realized stock abundances,

all individual species’ quotas and, if present, CSF allowed under the regulation. Our model offers

a bioeconomic-founded approach to design and evaluate IFQ regulations that weigh the benefits of

increased quota utilization and avoid over-quota discarding entirely.

A practical consideration in solving the second-best IFQ design problem is accurate measurement

of the relevant bioeconomic fundamentals and extraction technology. Landings quantities, factor input

allocations, and revenues and costs are observed directly and can be measured relatively easily. Meth-
26See also https://www.ices.dk/advice/Fisheries-overviews/Pages/fisheries-overviews.aspx.
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ods to obtain internally consistent measurement of true stock abundances on the productivity of fishing

gear is more challenging (Bunzel and Weninger, 2021). Management authorities may wish to prioritize

data collection and analyses to facilitate robust measurement of the full set of fundamentals that are

relevant to designing effective regulations.
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7 Appendix

This appendix provides additional rational for: (i) the characterization of stock abundance uncertainty

and management objective and (ii) the specification for the multiple-species fishing technology.

7.1 Stock uncertainty and management goals

Our model assumptions mirror real world fisheries in which true individual-species’ population sizes

are unobservable.27 We assume the manager only has beliefs about true abundances which we model

as a random distribution.

Fishers on the other hand are assumed to make decisions based on direct observation of the produc-

tivity of the gear that they allocate to the water.

The management objective in equation (1) can be seen as an approximation to the objective that

appears in the canonical bioeconomic fishery model (Clark, 1974). To demonstrate we abstract mo-

mentarily from stock uncertainty. Following the notation in section 2, suppose the current, pre-harvest,

abundance vector is known and equal to x and that stock transitions follow, x′ = G(x − h), where
′ indexes the one period ahead value and G(·) is the known growth of the escapement, x − h. The

manager chooses current harvest h to maximize the present discounted value of an infinite sum of per-

period fishing profits. Application of dynamic programming principles obtains the following necessary

condition for an interior solution to this problem:

∇hΠ (h1, h2) = δ∇xV (x′)∇hG(x− h), (19)

where∇k denotes partial differentiation with respect to the vector argument k, δ is the discount factor,

and V (x) is the optimized fishery value given x.

Optimality requires that the marginal value of current harvest be equal to its discounted marginal

contribution to future value, i.e., from leaving the fish in the sea. The RHS of equation (19) is thus a

resource user cost.
27Stock assessment methods combine indirect data, e.g., past mortality, samples of the age and sex distributions of the

stock, indices of catch per unit of effort, with (untestable) ecological theory to formulate a projection of the most plausible
size of a fish population. See Schnute and Richards (2001); ?); Maunder and Piner (2015) for additional discussion of the
limitations of stock assessment methods.
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The necessary condition for optimality in the model of section 2 replaces the RHS of equation (19)

with the term, κ1h1 + κ2h2. The approximate resource user cost is κihi for species i. Equation (19) is

simple and tractable.

Note that low values of the κi parameters prescribe larger current harvest and thus a larger species

i quota. But the motive for increased current harvest of a higher abundance species also operates

via the technology channel, i.e., higher abundance increases factor input productivity, which increases

the value of current extraction.28 Specifying κi’s as stock-contingent parameters, in addition, will

only strengthen the motive for allowing discretion to harvesters to extract more of a high-abundance

stock. Nonetheless, this generalization complicates the algebraic derivations below without yielding

additional insights. Therefore, unless otherwise stated, we maintain the assumption that κi are fixed

constants.

7.2 Multiple-species fishing technologies

Models of multiple-species fishing technologies are generally of two forms. The fisheries management

literature has embraced a generalization of the single-species Gordon-Schaefer harvest function (see

Clark (1974)). The multiple-species version specifies a vector of individual species harvest quantities

as the multiplicative product of a catchability coefficient vector, a scalar composite input bundle known

as fishing effort, and a vector of individual species stock abundances. The model assumes that fishers

do not influence the mix of species that are harvested by their gear. Rather, exogenous catchability and

stock abundances fully determine the mix of harvested species. Fishing behavior is reduced to a simple

choice of the effort quantity variable, or alternatively, the harvest scale.

The fixed output proportions assumption is restrictive and not supported empirically. Fishers choose

gear types and configurations, baits, the micro-locations at which gear is set across continuous space

and time in marine environments that exhibit heterogeneity in ecological suitability and correspond-

ingly, densities of individual species stocks. Empirical observation of heterogeneous in the mix of

individual species’ harvests contradict the fixed output proportions assumption (Branch and Hilborn,

2008; Bunzel and Weninger, 2021; Mortensen et al., 2018).

Generalizations of the fixed output proportions assumption have appeared in the fisheries manage-
28Arguably, this may be the main first-order channel.
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ment literature. Ulrich et al. (2011) assumes a fishing fleet comprised of métier’s, where a single métier

is defined as “a group of fishing operations targeting a similar (assemblage of) species, using similar

gear, during the same period of the year and/or within the same area, and which are characterized by a

similar exploitation pattern.” (Ulrich et al., 2011, p. 1536). Harvests by the métier follows the multiple-

species version of the Gordon-Schaefer harvest function, i.e., the fixed output proportions assumption

is maintained.

The métier approach has important shortcomings. First, the number of métiers that are assumed to

exist within a fleet is necessarily finite, while abundance heterogeneity across species, space and time

is surely not. Fishers employing a particular métier are generally able to influence the mix of harvested

species.

Second, the evaluation of regulations that are not métier-specific require the researcher specify

the endogenous choice of métier’s that will be utilized, and how much effort to allocate to each of the

chosen métiers. Solving this problem requires use of discrete optimization methods with accompanying

computational challenges (e.g., Woods et al. (2016)). Added complexities that arise under a finite set

of discrete quota users, rational economic choices and equilibrium in quota trading markets is usually

ignored.

A second stream of literature applies the neoclassical theory of the multi-product firm (Panzar and

Willig, 1975) to multiple-species fishing technologies. This literature emphasizes endogenous factor

input demands and endogenous output supply and substitution across species (Squires (1987, 1988);

Kirkley and Strand (1988); see Squires and Walden (2020) for a recent review). Flexible functional

forms are common.

This literature has avoided modeling complications that arise under weak output disposability and

has neglected to explicitly incorporate multiple species stock abundances into harvest technologies (see

Scheld and Walden (2018); Singh and Weninger (2009) for exceptions). Weak output disposability is

long recognized as key to understanding the problems of bycatch (e.g., (Boyce, 1996)) and over-quota

discarding in quota-regulated multiple-species fisheries Turner (1995); Singh and Weninger (2009).

In sum, a robust model of a multiple-species fishing technology must allow endogenous output

substitutions (targeting), over-quota discarding under weak output disposability, and an explicit link

from individual species’ stock abundances to individual species harvest quantities. The technology
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presented in section 2 combines these elements within a tractable model.

7.3 Proof of Proposition 1

Here {x1, x2} is either {ϕ, 1− ϕ} or {1− ϕ,ϕ} with equal probability. The example is constructed

to highlight the role of flexibility when the stocks exhibit variations in relative abundance. Variations

in relative abundance is best captured here by making the two stocks perfectly negatively correlated.

Assuming that the two stocks have the same price p1 = p2 = p further allows us to focus on the role

of flexibility and contrast it with a discard ban in a simple tractable manner.

First best

The sole owner chooses harvests to maximize (1) subject to (3) and observed abundance {x1, x2}.

Since {x1, x2} is equally likely to be either {ϕ, 1− ϕ} or {1− ϕ,ϕ}, the high stock species harvest

as ϕ
√
z and the low stock being (1− ϕ)

√
z given an input choice z. As the prices are identical, the

sole sole owner’s problem is:

max
z

{
p
√
z − wz − κ

2

(
(1− ϕ)2 + ϕ2

)
z
}
, (20)

as stated in the main text. Then, the optimal input choice, irrespective of stock realizations is given by

z∗ =

1

2

p

w + κ
2

(
(1− ϕ)2 + ϕ2

)
2

.

From here, it is straightforward to compute harvest choices. For xi = ϕ:

h∗i =
1

2

ϕp

w + κ
2

(
(1− ϕ)2 + ϕ2

) ;

h∗j =
1

2

(1− ϕ) p

w + κ
2

(
(1− ϕ)2 + ϕ2

) ,
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where use of index j hereafter implies j 6= i. The value of the fishery is

W ∗ =
1

4

p2

w + κ
2

(
(1− ϕ)2 + ϕ2

) ,
IFQ without CSF

Since the two species are symmetric, quotas for both species will be equal. Let q1 = q2 = q denote

the quota choice. The optimal regulation is solved recursively. First, we derive the profit maximizing

outcomes for a given q. We will assume that κ is sufficiently large (the condition is derived below),

such that both species’ landing constraints bind, i.e., li = q, in other words, the resource user cost κi is

sufficiently large that limits on current extraction is warranted.

For xi = ϕ and xj 6=i = 1− ϕ, we have

hi = ϕz0.5 =
ϕ

1− ϕ
q > li = q (21a)

hj = (1− ϕ) z0.5 = lj = q (21b)

with discards of species i:

di =
2ϕ− 1

1− ϕ
q > 0.

Conditional on fishermen’s choices (21a) and (21b), the regulator sets quotas {q, q} to maximize

the expected fishery value. The optimal quota is

qS ≡ arg max
q

{
2pq − w

(
q

1− ϕ

)2

− κ

2

(
1 +

(
ϕ

1− ϕ

)2
)
q2

}
,

Which gives

qS =
p (1− ϕ)2

w + κ
2

(
(1− ϕ)2 + ϕ2

) .
Using the optimal quota, we obtain

WS =
p2 (1− ϕ)2

w + κ
2

(
(1− ϕ)2 + ϕ2

)
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Then, following (21a), the input allocation is

zS =

 p (1− ϕ)

w + κ
2

(
(1− ϕ)2 + ϕ2

)
2

= (2 (1− ϕ))2 z∗.

Recall that ϕ > 0.5 which implies the term (2 (1− ϕ))2 on the right-hand of above expression is less

than unity, and therefore zS < z∗. It follows that for the species i with xi = ϕ,

hSi = ϕ
p (1− ϕ)

w + κ
2

(
(1− ϕ)2 + ϕ2

) , hSj 6=i = (1− ϕ)
p (1− ϕ)

w + κ
2

(
(1− ϕ)2 + ϕ2

) .
A comparison with the sole owner’s landings and harvests finds,

lSi
l∗i
≤ hSi
h∗i

= 2 (1− ϕ) < 1, for i = 1, 2.

Summing up, we see that, under the second best regulation with no CSF, stock contingent harvests are

below their first best counterpart by a factor 2(1− ϕ) < 1, and positive discards of the high-abundant

species occur, as was suggested in the example of figure 1.

A necessary condition on κ
w for quotas to bind The above analysis assumes that landing constraints

for both species bind, i.e., marginal fishing profits are positive providing incentive to increase harvest

absent quota constraints. In equilibrium, this requires that quota market prices for both species, which

we will denote as {r1, r2}, be positive.

The species i with xi = ϕ is discarded at the margin, and therefore its quota price ri = p. In

equilibrium, the fishermen’s optimal input choice is

z∗ =
1

2w
(p− rj)h∗j , (22)
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where species j 6= i has xj = 1− ϕ. Since h∗j = qS , its equilibrium quota price is

rj =p− 2wqS

(1− ϕ)2 ,

=p

1− 2w

w + κ
2

(
ϕ2 + (1− ϕ)2

)
 , (23)

where the last expression follows from the above expression for the optimal quota. If the perceived

resource user cost is larger relative to the input cost, i.e., κ
2

(
ϕ2 + (1− ϕ)2

)
> w, both species’

quotas bind in equilibrium.29

IFQ with discard ban

Suppose a discard ban is imposed under the IFQ regulation. If discarding is prohibited, fishing must

stop as soon as one of the species’ quotas bind. As a result, the species with shock ϕ is fully utilized

with its harvest at q while the harvest of the other species equals q 1−ϕ
ϕ . Thus the combined quota

utilization is q + q 1−ϕ
ϕ = q

ϕ and the input use is z =
(
q
ϕ

)2
. Inserting these expressions into the

regulators quota choice problem obtains,

qDB ≡ arg max
q

{
pq

ϕ
− w

(
q

ϕ

)2

− κ

2
q2

(
1 +

(
1− ϕ
ϕ

)2
)}

,

which obtains,

qDB =
ϕ

2

p

w + κ
2

(
(1− ϕ)2 + ϕ2

) .
and the fishery value is evaluated to,

WDB =
1

4

p2

w + κ
2

(
(1− ϕ)2 + ϕ2

)
A discard ban thus gets the first best.

Notice that the discard ban policy essentially sets both quotas to the higher species harvest under

the first best. In the market equilibrium, fishermen employ the same amount of input as under the first

29Since min
{
(1− ϕ)2 + ϕ2

}
= 1

2
, a sufficient condition is κ > 4w.
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best.

qDB =
ϕ

2 (1− ϕ)2 q
S .

Its derivative

dqDB

dϕ
= w +

κ

2
− κϕ2

≷ 0⇔ ϕ ≶

√
w

κ
+

1

2

However, for ϕ = 1 :

qDB =
p

2w + κ

IFQ with CSF

Consider the case where the IFQ regulation permits α% of the quota of any species to be used to land

the other. The landing constraint for either of the species becomes:

li ≤ (1 + α) q subject to li + lj ≤ 2q,

Suppose, at the time of harvest {xi, xj} = {ϕ, 1− ϕ}. Relative to the case with no flexibility, the

fishermen can now better utilize both quotas by choosing

li = (1 + α) q ≤ hi = ϕ
1−ϕ (1− α) q

lj = (1− α) q = hj

 if
1 + α

1− α
≤ ϕ

1− ϕ
(24)

or
li = 2ϕq = hi

lj = 2 (1− ϕ) q = hj

 if
1 + α

1− α
≥ ϕ

1− ϕ
(25)
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Using CSF to replicate the first best

The latter condition (25) holds when α ≥ 2ϕ−1. In this case, neither species is discarded and the total

quota is utilized, i.e., h1 + h2 = 2q. Using (25) in (1), the regulator chooses

qF ≡ arg max
q

{
2pq − w (2q)2 − κ

2

(
(1− ϕ)2 + ϕ2

)
(2q)2

}
.

Which gets

qF =
1

4

p

w + κ
2

(
(1− ϕ)2 + ϕ2

)
With α ≥ 2ϕ−1, a market equilibrium ensures that the harvest of the two species is identical to the first

best outcome. A CSF provision over and above 2ϕ−1 is slack, because of the fixed proportions’ harvest

technology. For whichever species has higher abundance, i.e., ϕ, a fisherman can use (2ϕ− 1)% of

the other species quota in addition to harvest 2ϕqF . The other species’ harvest makes up the rest,

2 (1− ϕ) qF . The CSF provision obtains the first-best by aligning the ratio of the two equilibrium

harvests at ϕ/ (1− ϕ), precisely what the technology commands. Finally, note that qF = qDB

2ϕ < qDB .

The wider the disparity in relative stock abundance, the wider is the gap in the quotas set under the two

regulations.

7.4 Proof of Proposition 2

In this section we assume that ϕ is drawn from a continuous uniform distribution, ϕ ∼ U [1
2 , ϕ], where

ϕ̄
[

1
2 , 1
]
. Trivially, ϕ̄ = 1

2 represents the certainty benchmark with identical stock abundance for both

species.

First best

The sole owner chooses harvests after observing the stock conditions. His input choice is the same as

under a degenerate distribution of ϕ :

z∗ =

1

2

p

w + κ
2

(
(1− ϕ)2 + ϕ2

)
2

. (26)
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with

h∗i = ϕ (z∗)
1
2 ; h∗j = (1− ϕ) (z∗)

1
2 ;

as the harvest of the two species. Harvests and the payoffs now vary along with ϕ ∈
[

1
2 , ϕ̄

]
].

IFQ with discard ban

Now the regulator’s problem can be described as

qDB ≡ arg max
q
Eϕ

{
p
q

ϕ
− w

(
q

ϕ

)2

− κ

2
q2

(
1 +

(
1− ϕ
ϕ

)2
)}

.

The solution is obtained by taking the first order condition and then evaluating the expectations with

ϕ ∼ U [1
2 , ϕ]:

qDB =
E
[

1
ϕ

]
2wE

[
1
ϕ2

]
+ κE

[
1 +

(
1−ϕ
ϕ

)2
]

= p
ϕ̄ ln 2ϕ̄

ϕ̄− 1
2

w + κ
2

[
ϕ̄+ 1− ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)]
which is decreasing in input costs w and prospective costs parameter κ. Its dependence on ϕ, as under

Binomial uncertainty, is non-monotonic. It is increasing in ϕ̄ for all ϕ̄ ∈ (1
2 , ϕ̂

(
w
k

)
], and then decreases.

Note that qDB = p
4w+κ for ϕ̄ = 1

2 and for ϕ̄ = 1, it stays at a higher level of
2 ln 2

[1−ln 2]
w

[1−ln 2]
+κ >

p
4w+κ .

Substituting the value of qDB in the regulator’s benefit function evaluates to:

WDB = p
ln ϕ̄+ ln 2

ϕ̄− 1
2

qDB

=
p2

8

ϕ̄
(

ln 2ϕ̄

ϕ̄− 1
2

)2

w + κ
2

[
ϕ̄+ 1− ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)]
which is decreasing in ϕ̄.
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IFQ with CSF

Once again the regulator sets quotas qF for each species with maximum landing of any species allowed

to be (1 + α) qF . Assuming that in a market equilibrium both species quotas bind, if the ϕ realization

is sufficiently high such that ϕ
(
2qF

)
> (1 + α) qF , the high shock species will be discarded and

the input as well as the harvest choice will be governed by the full utilization of low shock species.

Specifically, the input choice will be

(1− ϕ)
√
z = (1− α) qF ⇒ z =

(
1− α
1− ϕ

)2 (
qF
)2

On the other hand, for the low realizations of ϕ, cross-species flexibility will allow full utilization of

quotas as long as α ≥ 2ϕ− 1. This logic motivates a conjecture that there exists a ϕ̃ = 1+α
2 ≤ ϕ̄ that

demarcates the discard set such that discards occur if and only if ϕ > ϕ̃.

The regulator’s objective in this scenario is to choose
{
qF , α

}
to maximize its expected benefit as

expressed below:

WF ≡ 2pqF − w

(
1

ϕ̄− 1
2

)(
qF
)2 ∫ ϕ̃

1
2

4dϕ

+
∫ ϕ̄
ϕ̃

(
1−α
1−ϕ

)2
dϕ


−κ

2

(
1

ϕ̄− 1
2

)(
qF
)2

∫ ϕ̃
1
2

[
(2ϕ)2 + (2 (1− ϕ))2

]
dϕ

(1− α)2 ∫ ϕ̄
ϕ̃

[
1 +

(
ϕ

1−ϕ

)2
]
dϕ


An interior solution would require the first order condition to hold. Since the integration limits include

ϕ̃ = 1+α
2 , taking derivative requires an application of Leibniz principle. The condition for an interior

solution is given by

−2w

∫ ϕ̄

ϕ̃

(
− 1− α

(1− ϕ)2

)
dϕ

−κ (1− α)

∫ ϕ̄

ϕ̃

[
1 +

(
ϕ

1− ϕ

)2
]
dϕ

= 0

which holds only if α = 1. But α = 1 contradicts the assumption of an interior solution. Essentially,
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it is never optimal for the regulator to let harvests fall in the discard set. This can only be ensured by

sufficient flexibility such that discards are ruled out for the highest realization of ϕ = ϕ̄. Thus, the only

optimal choice for the regulator is to set α = 2ϕ̄− 1, and then focus its attention on the choice of q to

maximize the benefit function WF , which is now expressed as

WF ≡ 2pqF − w
(
2qF

)2
−κ

2

(
1

ϕ̄− 1
2

)(
qF
)2(∫ ϕ̄

1
2

[
(2ϕ)2 + (2 (1− ϕ))2

]
dϕ

)
.

The optimal quota choice is now given by

qF =
p
(
ϕ̄− 1

2

)
4w
(
ϕ̄− 1

2

)
+ κ

2
4
3

(
ϕ̄3 − (1− ϕ̄)3

)
With its given quadratic functional form, the expected benefit under flexibility

WF = pqF .

Proof for a necessary and sufficient condition on κ
w

for WDB ≷ W F

Whether WDB ≷WF requires checking

1

w + κ
6

(
ϕ̄3−(1−ϕ̄)3

ϕ̄− 1
2

) ≷

1
8 ϕ̄
(

ln 2ϕ̄

ϕ̄− 1
2

)2

w + κ
2

[
ϕ̄+ 1− ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)]
A manipulation restates the above as

κ

w

ϕ̄+ 1− ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)
− 1

6
ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)2(
ϕ̄3 − (1− ϕ̄)3

ϕ̄− 1
2

) ≷ ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)2

− 2

The RHS is negative for all values of ϕ̄. The LHS is positive for all values of ϕ̄ ∈
(

1
2 , ϕ̂

)
and

negative for all ϕ̄ ∈ (ϕ̂, 1], with ϕ̂ = 0.728274. Thus, an IFQ with CSF dominates discard ban for all

ϕ < ϕ̂.
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For ϕ̄ > ϕ̂, the condition becomes

κ

w
≶

ϕ̄
(

ln 2ϕ̄

ϕ̄− 1
2

)2
− 2

1
6 ϕ̄
(

ln 2ϕ̄

ϕ̄− 1
2

)2 (
ϕ̄3−(1−ϕ̄)3

ϕ̄− 1
2

)
+ ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)
− (ϕ̄+ 1)

≡ κ (ϕ̄)

The RHS is declining in ϕ̄, from∞ at ϕ̂ to approximately 0.7267 for ϕ̄ = 1. We have assumed κ > w

to ensure that quotas bind in a decentralized equilibrium. Thus with sufficiently high ϕ̄ κ
w > κ (ϕ̄) and

a discard ban policy works better.

Proof for a necessary and sufficient condition on κ
w

for WDB ≷ W F

Whether WDB ≷WF requires checking

1

w + κ
6

(
ϕ̄3−(1−ϕ̄)3

ϕ̄− 1
2

) ≷

1
8 ϕ̄
(

ln 2ϕ̄

ϕ̄− 1
2

)2

w + κ
2

[
ϕ̄+ 1− ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)]
A manipulation restates the above as

κ

w

ϕ̄+ 1− ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)
− 1

6
ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)2(
ϕ̄3 − (1− ϕ̄)3

ϕ̄− 1
2

) ≷ ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)2

− 2

The RHS is negative for all values of ϕ̄. The LHS is positive for all values of ϕ̄ ∈
(

1
2 , ϕ̂

)
and

negative for all ϕ̄ ∈ (ϕ̂, 1], with ϕ̂ = 0.728274. Thus, an IFQ with CSF dominates discard ban for all

ϕ < ϕ̂.

For ϕ̄ > ϕ̂, the condition becomes

κ

w
≶

ϕ̄
(

ln 2ϕ̄

ϕ̄− 1
2

)2
− 2

1
6 ϕ̄
(

ln 2ϕ̄

ϕ̄− 1
2

)2 (
ϕ̄3−(1−ϕ̄)3

ϕ̄− 1
2

)
+ ϕ̄

(
ln 2ϕ̄

ϕ̄− 1
2

)
− (ϕ̄+ 1)

≡ κ (ϕ̄)

The RHS is declining in ϕ̄, from∞ at ϕ̂ to approximately 0.7267 for ϕ̄ = 1. We have assumed κ > w

to ensure that quotas bind in a decentralized equilibrium. Thus with sufficiently high ϕ̄ κ
w > κ (ϕ̄) and

a discard ban policy works better.
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Derivation of optimal targeting

This appendix summarizes profit maximization conditions within each regions on figure 4.

Aggregate constraint is slack (λ = 0):

From (13b), we see that with λ = 0, the sum of landings fall below the sum of quotas l1 + l2 < q1 + q2.

Region I: Neither species’ constraint binds; no discards.

Note that ω1 = ω2 = 0. Then υi = pi and a∗ and z∗ follow from (14) and (15). Also di = 0 for

both i. Then, li = hi < (1− α) qi. For q ∈ region I, profit maximizing harvest occurs at point B.

Region II: Species’ 1 constraint binds; no discards.

For q ∈ region II, we have p1 > ω1 > 0; ω2 = 0. Then υ1 = p1 − ω1 > 0 and υ2 = p2.

Here, a∗, z∗, and ω1 are jointly determined from l1 = h1 = q1 + αq2 and (14) and (15). Then,

l2 = h2 < (1− α) q2.

In region II the q2 constraint is slack due to the fact that marginal profit of harvesting additional

species 2 fish is zero, all else equal. If the price of species 2 fish were higher, segment AB in figure 4

would shift vertically.

Region III: Species’ 1 constraint binds; positive species 1 discards.

In region III, p1 = ω1 > 0; ω2 = 0. Here, υ1 = 0, a∗ = 0, l1 = q1 + αq2 < h1 (z∗), where z∗

solves

wz∗ = γp2h2 (z∗) .

Then, l2 = h2 < (1− α) q2.

In region III the species 2 quota is slack while the species 1 quota binds, tightly such that profit

maximization involves positive discards of species 1 fish. For all q ∈ III, harvest occurs at point A in

figure 4. For example, consider the quota allocation segment S3; harvest occurs at point A however we

have l1 < h1.

Region IV: Species’ 2 constraint binds; no discards.

Now p2 > ω2 > 0; ω1 = 0. Then υ2 = p2 − ω2 and υ1 = p1. Here, a∗, z∗, and ω2 are jointly

determined from l2 = h2 = q2 + αq1 along with equations (14) and (15). Then, l1 = h1 < (1− α) q1.
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Region IV is the mirror image of region II; now the q1 constraint is slack due to the fact that

marginal profit of additional species 1 harvest is zero, all else equal. If the price of species 1 fish were

higher, segment CB in figure 4 would shift horizontally to the right.

Region V: Species’ 2 constraint binds; positive species 2 discards.

In region V we have p2 = ω2 > 0; ω1 = 0. Here, υ2 = 0, a∗ = 1, l2 = q2 + αq1 < h2 (z∗), where

z∗ solves

wz∗ = γp1h1 (z∗) ;

Then, l1 = h1 < (1− α) q1.

Aggregate constraint binds (λ > 0):

We now consider regions for which λ > 0. From the necessary condition (13b) we have l1 + l2 =

q1 + q2. Here quotas are tight and the marginal profit from harvesting additional units of fish remains

positive. The question becomes, toward which species is CSF exploited, and when will discarding raise

profit?

Region VI: Species’ 1 constraint binds; positive species 1 discards.

In region VI, ω1 > 0 and λ = p1 − ω1 > 0; ω2 = 0; υ1 = 0 and υ2 = p2 − p1 + ω1 > 0. Since

l2 = h2 and with υ1 = 0 and a∗ = 0, z∗ is determined by,30

h2 (z∗) = (1− α) q2;

l2 = (1− α) q2 and h1 = h1 (z∗) > l1 = q1 + αq2.

Region VII: Species’ 2 constraint binds; positive species 2 discards.

Note that ω2 > 0 and λ = p2−ω2 > 0;ω1 = 0; υ2 = 0 and υ1 = p1−p2 +ω2 > 0. Since l1 = h1

and υ2 = 0 and a∗ = 1, z∗ is determined by31

h1 max (z∗) = (1− α) q1;

l1 = (1− α) q1 and h2 = h2 (z∗) > l2 = q2 + αq1.

30ω1 is in turn obtained from wz∗ = γ (p2 − p1 + ω1)h2 (z
∗) ;

31ω1 is in turn obtained from wz∗ = γ (p1 − p2 + ω2)h1 (z
∗) ;
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Region VIII: Species’ 1 constraint binds; no discards.

Here, p1 > ω1 > 0;ω2 = 0; υ1 = p1 − λ− ω1 > 0 and υ2 = p2 − λ > 0. Thus,

(p1 − υ1)− (p2 − υ2) = ω1;

the multiplier ω1, which is positive in region VIII, is equal to the marginal profit from adjusting harvests

away from species 2 toward species 1. The boundary that separates regions VIII and IX is determined

by relative fish prices, with the size of region VIII increasing in p1.

Also, h1 = l1 = q1 + αq2 and h2 = l2 = (1− α) q2. The above conditions along with (14) and

(15) determine {a, z, υ1, υ2, ω1} .

Region IX: Species’ 2 constraint binds; no discards.

Here, p2 > ω2 > 0; ω1 = 0; υ2 = p2 − λ− ω2 > 0 and υ1 = p1 − λ > 0. Therefore,

(p2 − υ2)− (p1 − υ1) = ω2;

the multiplier ω2, which is positive in region IX, is equal to the marginal profit from adjusting harvests

away from species 1 toward species 2. Also, h2 = l2 = q2 +αq1 and h1 = l1 = (1− α) q1. The above

conditions along with (14) and (15) determine {a, z, υ1, υ2, ω2} .

Region X: Species 1 constraint binds; positive species 2 discards.

Up until now there is a symmetry across partitions. This symmetry will indeed be the case if

p1 = p2. However, if p1 > p2, and the aggregate constraint binds, λ ≥ p2 is required for conditions

(13a-13d) to hold. When λ = p2, υ2 = ω2 = 0. In this region, ω1 ∈ [0, p1 − p2]. Since υ1 ≥ 0,

a∗ = 1, z∗ is determined by32

h1 (z∗) = q1 + αq2;

l1 = q1 + αq2 and h2 = h2 (z∗) > l2 = (1− α) q2.

It is worth reiterating that region X exists only if prices are unequal as is assumed. To understand

region X, it is instructive to contrast outcomes in regions VII and X. Recall that profit maximization

requires that quota flexibility be exploited toward landing the highest marginal profit species allowed

by the regulation. Quota q2 tightly binds in regions VII and X; for h in these regions, inputs must
32ω1 is in turn obtained from wz∗ = γ (p1 − p2 − ω1)h1max (z

∗) .
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be spent to maintain low quantities of h2. Because υ2 = 0 in regions VII and X, the marginal profit

from allocating flexible quota to species 2 harvest is p2, i.e., the marginal cost of harvesting h2 is

zero along ray 0C and thus marginal profit is equal to the marginal revenue. However, if p1 > p2,

as we have assumed, and at particularly at low levels of h1, that marginal (cost) profit from species 1

harvest will also be large (small) and can exceed p2. Moving left to right, from region X to VII, in

the figure decreases (increases) species 1 marginal profit (cost). When species 1 harvests increase, the

optimal quota allocation will eventually tip from species 1 to species 2. This tipping point delineates

the boundary between regions X and VII.

It is easily seen how the regions are modified when the relative prices are reversed, i.e., p2 > p1.
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