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TORUS ORBITS ON HOMOGENEOUS VARIETIES AND KAC
POLYNOMIALS OF QUIVERS

PAUL E. GUNNELLS, EMMANUEL LETELLIER,
AND FERNANDO RODRIGUEZ VILLEGAS

Abstract. In this paper we prove that the counting polynomials of cer-
tain torus orbits in products of partial flag varieties coincides with the
Kac polynomials of supernova quivers, which arise in the study of the
moduli spaces of certain irregular meromorphic connections on trivial
bundles over the projective line. We also prove that these polynomi-
als can be expressed as a specialization of Tutte polynomials of certain
graphs providing a combinatorial proof of the non-negativity of their co-
efficients.
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1. Introduction

1.1. Quivers and Kac polynomials. Given a fieldκ andk parabolic sub-
groupsP1, . . . ,Pk of GLr(κ), we form the cartesian product of partial flag
varietiesF := (GLr/P1) × · · · × (GLr/Pk) on which GLr acts diagonally
by left multiplication. To each parabolicPi corresponds a unique partition
µi of r (given by the size of the blocks). From thek-tupleµ = (µ1, . . . , µk)
we define in a natural way (see for instance [10]) a star-shaped quiverΓ
with k legs whose lengths are the lengths of the partitionsµ1, . . . , µk minus
1. We also define fromµ a dimension vectorv of Γ with coordinater on
the central vertex and coordinatesn − µi

1, n − µ
i
1 − µ

i
2, . . . on the nodes of

the i-th leg. Denote byZr ⊂ GLr the one dimensional subgroup of central
matrices. The setE(κ) of GLr-orbits ofF whose stabilizer is, moduloZr , a
unipotent group is in bijection with the isomorphism classes of absolutely
indecomposable representations of (Γ, v) over the fieldκ. Hence the size
of E(Fq) coincides with the evaluation atq of the Kac polynomialAΓ,v(t)
of (Γ, v), see§2.1.2. Now it is known from Crawley-Boevey and van den
Bergh [3] that when the dimension vectorv is indivisible (i.e. the gcd of
the parts of the partitionsµi, i = 1, . . . , k, is one), the polynomialAΓ,v(t) co-
incides (up to a known power ofq) with the Poincaré polynomial of some
quiver varietiesMξ(v) attached to (Γ, v). Let us give a concrete descrip-
tion of this quiver variety. Assume givenk distinct pointsa1, . . . , ak ∈ C

and agenerictuple (C1, . . . ,Ck) of semisimple adjoint orbits ofglr(C) such
that the multiplicities of the eigenvalues ofCi is given by the partitionµi.
By Crawley-Boevey [2] we can identify this quiver varietyMξ(v) with the
moduli space of meromorphic connections

∇ = d−
k

∑

i=1

Ai
dz

z− ai
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on the trivial rankr vector bundle over the Riemann sphereP1 with residues
Ai ∈ Ci for i = 1, . . . , k and with no further pole at∞, i.e. A1 + · · ·+ Ak = 0.

In conclusion, when gcd (µi
j)i, j = 1, the counting overFq of the GLr-orbits

of F with unipotent stabilizer (moduloZr) gives the Poincaré polynomial of
the moduli space of some regular connections (i.e connections with simple
poles at puncturesa1, . . . , ak) on the trivial rankr vector bundle overP1.
In general (i.e. without assuming gcd (µi

j)i, j = 1), it is conjectured (see
[11, Conjecture 1.3.2]) that this counting coincides with the pure part of
the mixed Hodge polynomial of the moduli space ofCr-local systems on
P1 r {a1, . . . , ak} with local monodromy in semisimple conjugacy classes
C1, . . . ,Ck of GLr(C) with (C1, . . . ,Ck) genericsemisimple of typeµ.

1.2. Torus orbits on homogeneous varieties.There is another geometric
counting problem that also arises in this setup. LetT ⊂ GLr be the maximal
torus of diagonal matrices. We can consider the enumerationoverFq of the
T-orbits inF . In general this is a very subtle problem, even for the simplest
case of a single maximal parabolic subgroup of GLr where we would be
counting torus orbits on Grassmannians. This problem is connected to ma-
troids, configuration spaces of points in projective spaces, generalizations
of the dilogarithm, hypergeometric functions, and moduli spaces of genus
0 pointed curves [5–7,16].

In this paper we show (Theorem 3.15) that the counting function ET(q)
of the T-orbits of F whose stabilizer is equal toZr coincides withAΓ,v,
the Kac polynomial of a certain quiverΓ for a certain dimension vectorv
(see§2.2 for the definitions and a picture ofΓ). As a consequence,ET(q)
is a monic polynomial inq with non-negative integer coefficients whose
degree is given by an explicit formula. Moreover, we obtain necessary and
sufficient condition forET(q) to be non-zero (Theorem 3.15).

The quiverΓ belongs to a class of quivers known assupernova quivers
(the name is due to Boalch). The corresponding generic quiver varieties
Mξ(v) have the following explicit interpretation. Given a tuple(C1, . . . ,Ck)
of semisimple adjoint orbits ofglr(C) of typeµ as above, it follows from
Boalch [1, Theorem 9.11 & Theorem 9.16] thatMξ(v) is isomorphic to the
moduli space of meromorphic connections on the trivial rankr vector bun-
dle overP1 with k simple poles ata1, . . . , ak with residues inC1, . . . ,Ck, and
with an extra pole of order 2 whose coefficient indz/z2 (in a local trivial-
ization) is a semisimple regular matrix. Hence using the main result of [3]
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(on the connection between Kac polynomialAΓ,v(t) and Poincaré polynomi-
als ofMξ(v)), Boalch’s result and the results of this paper, we end up with
an interpretation ofET(q) as the Poincaré polynomial of the moduli space
of certain irregular meromorphic connections as above on the trivial rankr
bundle overP1.

1.3. Graph polynomials. The second main result of this paper is a refined
analysis of the coefficients of the polynomialsAΓ,v(q) = ET(q). More pre-
cisely, we expressET(q) as a sum of the specializationx = 1, y = q of the
Tutte polynomialof certain associated graphs (see Theorem 3.13 and§3.3).
We deduce that the coefficients of AΓ,v(q) count spanning trees in these
graphs of a given weight, which accounts for their nonnegativity.

Recall that Kac conjectured that the coefficients of Kac polynomials (for
any finite quiver) are non-negative [14]. This conjecture was proved in in
the case of an indivisible dimension vector by Crawley-Boevey and van
den Bergh [3] with further case proved by Mozgovoy [17]; it was proved
in full generality by Hausel-Letellier-Villegas [12]. Theproofs all give a
cohomological interpretation of the coefficients of the Kac polynomial. Our
proof of the non-negativity for Kac polynomials of the supernova quivers
is completely different relying, as mentioned, on Tutte’s interpretation of
the coefficients of his polynomial in terms of spanning trees. This proof is
purely combinatorial and opens a new approach in understanding the Kac
polynomials.

In a continuation to this paper we will discuss how, in fact, the whole
Tutte polynomial of the associated graphs is related to counting T-orbits
of F .

2. Supernova complete bi-partite quivers

2.1. Generalities on quivers. Let Γ be a finite quiver,I its set of vertices
andΩ its set of arrows. We assume thatΓ has no loops. Forγ ∈ Ω we
denote byh(γ) (respectively,t(γ)) the head (resp., tail) ofγ. A dimension
vectorv of Γ is a tuple (vi)i∈I of non-negative integers indexed byI .

2.1.1. Roots.We now recall some well known properties of roots in quiv-
ers. For more information, we refer the reader to [14].
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For i ∈ I , let ei ∈ Z
I be the tuple with coordinatei equal 1 and all other

coordinates 0. LetC = (ci j )i, j be the Cartan matrix ofΓ, namely

ci j =















2 if i = j

−ni j otherwise,

whereni j is the number of edges joining vertexi to vertex j. The Cartan
matrix determines a symmetric bilinear form (, ) onZI by

(ei , ej) = ci j .

For i ∈ I , define the fundamental reflectionsi : ZI → ZI by

si(λ) = λ − (λ, ei) ei , λ ∈ Z
I .

The Weyl groupW =WΓ of Γ is defined as the subgroup of automorphisms
ZI → ZI generated by the fundamental reflections{si | i ∈ I }. A vector
v ∈ ZI is called areal root if v = w(ei) for somew ∈ W and i ∈ I . Let
M = MΓ be the set of vectorsu ∈ ZI

≥0 − {0} with connected support such
that for all i ∈ I , we have

(ei , u) ≤ 0.

Then a vectorv ∈ ZI is said to be animaginary rootif v = w(δ) or v =
w(−δ) for someδ ∈ M andw ∈ W. Elements ofM are calledfundamental
imaginary roots. We denote byΦ = Φ(Γ) ⊂ ZI the set of all roots ofΓ (real
and imaginary).

A root is said to bepositiveif its coordinates are all non-negative. One
can show that an imaginary root is positive if and only if it isof the form
w(δ) with δ ∈ M. In particular the Weyl groupW preserves the set of
positive imaginary roots.

For any vectoru ∈ ZI put

∆(u) := −
1
2

(u, u).

We have the following characterization of the imaginary roots [15, Propo-
sition 5.2]:

Lemma 2.1. Assume thatv ∈ Φ. Thenv is imaginary if and only if∆(v) ≥
0. �
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2.1.2. Representations.Let κ be a field. Arepresentationϕ of Γ overκ is
a finite-dimensional gradedκ-vector spaceVϕ :=

⊕

i∈I Vϕi and a collection
(ϕγ)γ∈Ω of linear mapsϕγ : Vϕt(γ) → Vϕh(γ). The vectorv = (dimVi)i∈I is called
the dimension vectorof ϕ. We denote by Rep

Γ,v(κ) the κ-vector space of
representations ofΓ of dimension vectorv overκ.

For ϕ ∈ Rep
Γ,v(κ) andϕ′ ∈ Rep

Γ,v′(κ), we have the obvious notions of
morphismϕ → ϕ′ and direct sumϕ ⊕ ϕ′ ∈ Rep

Γ,v+v′(κ). We say that a
representation ofΓ over κ is indecomposableif it is not isomorphic to a
direct sum of two non-zero representations ofΓ overκ. An indecomposable
representation ofΓ overκ that remains indecomposable over any finite field
extension ofκ is called anabsolutely indecomposablerepresentation ofΓ
overκ.

Recall [14] that there exists a polynomialAΓ,v(t) ∈ Z[t] such that for
any finite fieldFq, the evaluationAΓ,v(q) counts the number of isomorphism
classes of absolutely indecomposable representations ofΓ of dimensionv
overFq. We callAΓ,v(t) theKac polynomialof Γ with dimension vectorv.1

Theorem 2.2.The polynomial AΓ,v(t) satisfies the following properties [14]:

(i) The polynomial AΓ,v(t) does not depend on the orientation of the
underlying graph ofΓ.

(ii) The polynomial AΓ,v(t) is non zero if and only ifv ∈ Φ(Γ). Moreover
AΓ,v(t) = 1 if and only ifv is a real root.

(iii) If non-zero, the polynomial AΓ,v(t) is monic of degree∆(v) + 1.
(iv) For all w ∈W, we have AΓ,w(v)(t) = AΓ,v(t).

We have also the following theorem (see Hausel-Letellier-Villegas [12]),
which was conjectured by Kac [14]:

Theorem 2.3.The polynomial AΓ,v(t) has non-negative integer coefficients.

Forv = (vi)i∈I a dimension vector, put

Gv :=
∏

i∈I

GLvi (κ),

and identify Rep
Γ,v(κ) with

⊕

γ∈Ω
Matvh(γ),vt(γ)(κ). Under this identification

the groupGv acts on Rep
Γ,v(κ) by simultaneous conjugation:

g · ϕ = (gvh(γ)ϕγg
−1
vt(γ)

)γ∈Ω.

1In the literature this polynomial is sometimes called theA-polynomial.
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Then two representations are isomorphic if and only if they areGv-conjugate.
Put

Zv = {(λ · Idvi )i∈I ∈ Gv | λ ∈ κ
×}.

The groupZv acts trivially on Rep
Γ,v(κ). We have the following characteri-

zation of absolute indecomposibility in terms ofGv andZv:

Proposition 2.4. [14, §1.8] A representation inRep
Γ,v(κ) is absolutely in-

decomposable if and only if the quotient of its stabilizer inGv by Zv is a
unipotent group.

2.2. Complete bipartite supernova quivers. We now introduce the main
objects of this paper. For fixed non-negative integersr, k, s1, . . . , sk con-
sider the quiverΓ with underlying graph as in Figure 1. The subgraph with
vertices (1), . . . , (r), (1; 0), . . . , (k; 0) is the complete bipartite graph of type
(r, k), i.e. there is an edge between any two vertices of the form (i) and (j; 0).
We orient all edges toward the vertices (1; 0), . . . , (k; 0), and denote byI the
set of vertices ofΓ and byΩ the set of its arrows. We call paths of the form
( j; sj), ( j; sj − 1), . . . , ( j; 0) thelong legsof the graph, and the edges of the
complete bipartice subgraph theshort legs.

(1)

(2)

(r − 1)

(r)

(1; 0)

(2; 0)

(k; 0)

(1; 1)

(2; 1)

(k; 1)

(1; s1)

(2; s2)

(k; sk)

Figure 1. The complete bipartite supernova graph

Forv ∈ ZI
≥0 andi = 1, . . . , k, define

δi(v) := −(e(i;0), v) = −2v(i;0) + v(i;1) +

r
∑

j=1

v( j).

Lemma 2.5. Let v ∈ ZI
≥0. Thenv is in MΓ if and only if the following three

conditions are satisfied
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(i) for all i = 1, . . . , k we haveδi(v) ≥ 0,
(ii) for all l = 1, . . . , r,

k
∑

j=1

v(i;0) ≥ 2v(l),

(iii) for all i = 1, . . . , k and all j= 0, . . . , si − 1,

v(i; j) − v(i; j+1) ≥ v(i; j+1) − v(i; j+2)(2.2.1)

with the convention that v(i;si+1) = 0.

Consider ak-tuple of non-zero partitionsµ = (µ1, . . . , µk), whereµi has
partsµi

1 ≥ µ
i
2 ≥ · · · ≥ µ

i
si+1 with µi

j possibly equal to 0. This tuple de-
fines a dimension vectorvµ = (vi)i∈I ∈ Z

I
≥0 as follows. Putv(l) = 1

for l = 1, . . . , r, v(i;0) = |µ
i | and v(i; j) = |µ

i | −
∑ j

f=1 µ
i
f for j = 1, . . . , si.

Thus the long leg attached to the node (i; 0) (i.e., the typeAsi+1 graph with
nodes (i; 0), (i; 1), . . . , (i; si)) is labelled with a strictly decreasing sequence
of numbers, and the tips of the short leg are labelled with 1.

Notice that for alli = 1, . . . , k, we have

δi(vµ) = r − |µi | − µi
1 =: δ(µi),

and thatvµ satisfies already the condition Lemma 2.5 (iii). The condition
(ii) is always satisfied unlessk = 1 andv(1;0) = 1, in which casevµ is a real
root. This implies the following lemma:

Lemma 2.6. Assume k> 1 or v(1;0) > 1. Thenvµ ∈ MΓ if and only if for all
i = 1, . . . , k we have r≥ |µi | + µi

1.

Recall [11, Lemma 3.2.1] that iff = ( fγ)γ∈Ω is an indecomposable repre-
sentation (over an algebraically closed field) ofΓ of dimension vectorv and
if v(i;0) > 0 then the linear mapsfγ, whereγ runs over the arrows of the long
leg attached to the node (i; 0) are all injective. Recall also (see§2.1.2) that
a dimension vectorv ∈ ZI

≥0 r {0} is a root ofΓ if and only if there exists an
indecomposable representation ofΓ with dimension vectorv. We deduce
the following fact:

Lemma 2.7. Let v ∈ ZI
≥0. If v ∈ Φ(Γ) and v(i;0) > 0 then v(i;0) ≥ v(i;1) ≥

v(i;2) ≥ · · · ≥ v(i;si ).

Corollary 2.8. Assume thatvµ is an imaginary root. Then r≥ |µi | for all
i = 1, . . . , k.
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Proof. Sincev = vµ is a positive imaginary root,v′ = s(i;0)(v) is also a
positive imaginary root. In particularv′(i;0) = r − µi

1 > 0 and so by Lemma
2.7 we must haver − µi

1 = v′0 ≥ v′(i;1) = v(i;1) = |µ
i | − µi

1, i.e. r ≥ |µi |. �

Remark2.9. Corollary 2.8 is false for real roots. For instance assumek = 1,
µ = (3, 1) andr = 3. Then clearlys(1;0)(vµ) is a real root with coordinate
0 at the vertex (1; 0) and with coordinate 1 at the edge vertices. Thusvµ is
also a real root, but note thatr < |µ|.

3. Kac polynomial of complete bipartite supernova quivers

3.1. Preliminaries.

3.1.1. Row echelon forms.Recall thatκ denotes an arbitrary field. Denote
by B the subgroup of GLn(κ) of lower triangular matrices. Letr ≥ n be
an integer. Given a sequence of non-negative integerss = (s1, s2, . . . , sd)
such that

∑

i si = n we denote byPs the unique parabolic subgroup of GLn

containingB and havingLs = GLsd × · · · ×GLs1 as a Levi factor. Consider
a matrix A ∈ Matn,r(κ) and decompose its set of rows intod blocks; the
first block consists of the firstsd rows ofA, the second block consists of the
following sd−1 rows, and so on.

Definition 3.1. We say thatA is in row echelon formwith respect tos if the
following hold:

(i) The rightmost non-zero entry in each row (called apivot) equals 1.
(ii) All entries beneath any pivot vanish.

(iii) If a block contains two pivots with coordinates (i, j) and (i′, j′),
theni < i′ if and only if j < j′.

We have the following easy proposition, whose proof we leaveto the
reader:

Proposition 3.2. For any matrix A ∈ Matn,r(κ) of rank n there exists a
unique g∈ Ps such that gA is in row echelon form with respect tos.

3.1.2. Bruhat decomposition.We identify the symmetric groupSr with
permutation matrices in GLr (if w ∈ Sr , the corresponding permutation
matrix (a(w)i j )i, j is defined bya(w)i j = δi,w( j)). ThenSr acts on the maximal
torusT ≃ (κ×)r of diagonal matrices asw · (t1, . . . , tr) = (tw−1(1), . . . , tw−1(r)).
Consider a parabolicPs of GLr for some sequences = (s1, . . . , sd) with
∑

i si = r and denote bySr,s the subset ofSr of permutation matrices which
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are in row echelon form with respect tos. Equivalently, if we form the
partition

(3.1.1) {1, . . . , r} = {1, . . . , sd} ∪ {sd+1, . . . , sd−1} ∪ · · · ∪ {r − s1+1, . . . , r}

corresponding to our partition of the rows, then we havew−1(i) < w−1( j)
for any i < j in the same block. Then we have the following generalized
version of the Bruhat decomposition:

GLr =

∐

w∈Sr,s

PswB.

Denote byR the root system of GLr with respect toT. Recall that it is
the set{αi, j | 1 ≤ i , j ≤ r} of group homomorphismsαi, j : T → κ× given
by

αi, j(t1, . . . , tr) = ti/t j .

We haveαi, j = α
−1
j,i for all i , j. The symmetric groupSr acts onR by

w·α : T → κ×, (t1, . . . , tr) 7→ α(tw(1), . . . , tw(r)). In particularw·αi, j = αw(i),w( j)

for all i , j. Let
R+ := {αi, j | 1 ≤ j < i ≤ r}

be the set of positive roots with respect toB, and letR− = Rr R+.
For α ∈ R, denote byUα the unique closed one dimensional unipotent

subgroup of GLr such that for allt ∈ T andg ∈ Uα, we havet(g− 1)t−1
=

α(t) · (g− 1). Explicitly, if α = αi, j, then the groupUα consists of matrices
of the formI + xEi, j , wherex ∈ κ andEi, j is the matrix whose only non-zero
entry is 1 in position (i, j). We denote byRs ⊂ R the set of rootsα such that
Uα is contained in the Levi factorLs. Forw ∈ Sr,s, put

Uw :=
∏

{α∈R+|w(α)∈R−rRs}

Uα.

One can show thatUw is a subgroup of GLr (see for instance [20, 10.1.4]).
We have the following lemma, whose proof we omit:

Lemma 3.3.

(i) Any element g in the cell PswB can be written uniquely as pwu with
p ∈ Ps and u∈ Uw.

(ii) Any element of the form wu with u∈ Uw is in its row echelon form.

For anyu ∈ Uw let uα be its image under the projectionUw → Uα. The
groupHs := Ps × T acts onwUw via (p, t) · wu = pwut−1. For any groupH
acting on a setX and any pointx ∈ X, let CH(x) ⊂ H denote the stabilizer
of x.
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Lemma 3.4. For u ∈ Uw we have

CHs(wu) ≃ CT(u) =
⋂

{α∈R+|w·α∈R−rRs, uα,1}

Kerα.

Proof. Let (p, t) ∈ Hs such thatpwut−1
= wu. Then

(pwt−1w−1) w (tut−1) = wu.

By Lemma 3.3 this identity is equivalent top = wtw−1 and tut−1
= u as

T normalizesUw. But tut−1
= u holds if and only if for allα we have

tuαt−1
= uα which identity is equivalent tot ∈ Kerα whenuα , 1. �

Lemma 3.5. For any w∈ Sr,s we have

{α ∈ R+ | w · α ∈ R− r Rs} = {α ∈ R+ | w · α ∈ R−}

= {αi, j | j < i, w( j) > w(i)}.

Proof. Only the first equality requires proof. Ifαi, j ∈ R+ andw · αi, j ∈ R−,
i.e., j < i andw(i) < w( j), then by definition ofSr,s we cannot havew(i)
andw( j) in the same block of the partition (3.1.1), i.e.,Uw·αi, j = wUαi, j w

−1 is
not contained inLs. We have thus proved that the right hand side of the first
equality is contained in the left hand side. The reverse inclusion is easy. �

To simplify notation, we putUi, j = Uαi, j , so that

Uw =

∏

j<i,w(i)<w( j)

Ui, j .

Definition 3.6. For anyk-tuple w = (w1, . . . ,wk) ∈ (Sr)k, we denote by
Kw the inversion graphof w. Namely, the vertices ofKw are labelled by
1, 2, . . . , r and for any two verticesi and j such thatj < i, put an edge from
i to j for eachwt in w such thatwt(i) < wt( j). ThusKw can have multiple
edges. We can think of each edge as having one ofk possible colors.

For u = (u1, . . . , uk) ∈ Uw := Uw1 × · · · × Uwk, we denote byKw,u the
subgraph ofKw that for any pairi, j includes the edge coloredt between
verticesi and j if (ut)i, j , 1.

Denote byZr the center of GLr and letT act diagonally by conjugation
onUw.

Proposition 3.7. For u ∈ Uw we have CT(u) = Zr if and only if the graph
Kw,u is connected.
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Proof. This is clear since Kerαi, j is the subtorus of elements (t1, . . . , tr) such
thatti = t j. �

3.2. Computing the Kac polynomials. Now Γ is as in§2.2. We want to
investigate the polynomialAΓ,v(t). Recall (see Theorem 2.2) thatAΓ,v(t) = 1
if v is a real root andAΓ,v(t) = 0 if v is not a root. MoroeverAΓ,v(t) is invari-
ant under the Weyl group action. We are reduced to study the polynomials
AΓ,v(t) with v is in the fundamental domainMΓ. Here we restrict our study
to the case wherev ∈ MΓ is of the formv = vµ for some partitionµ. The
important thing for our approach is that the coordinates ofvµ at the vertices
( j), j = 1, . . . , r, equal 1.

Fix once for all a multi-partitionµ = (µ1, . . . , µk) as in§2.2, and to al-
leviate the notation putni := |µi |. We assume thatvµ is in MΓ, and so that
r ≥ ni + µ

i
1 for all i = 1, . . . , k (see Lemma 2.6).

For a partitionµ = (µ1, . . . , µs), we denote byPµ the parabolic subgroup
of GL|µ| as defined in§3.1.1 and we denote simply bySµ the subsetS|µ|,µ of
the symmetric groupS|µ| as defined in§3.1.2.

Proposition 3.8. Assumeϕ ∈ Rep
Γ,vµ(κ) is indecomposable. Then

(i) the mapsϕγ, whereγ runs over the arrows on the k long legs, are
all injective, and

(ii) for each i= 1, . . . , k, the images ofϕ( j)→(i;0), with j = 1, . . . , r, span
Vϕ(i;0).

Proof. Let us prove (ii). LetW(i;0) be the subspace generated by the im-
ages of the mapsϕ( j)→(i;0) with j = 1, . . . , r. If W(i;0) ( Vϕ(i;0) we de-
fine subspacesU(i;1),U(i;2), . . . ,U(i;si ) by U(i;1) := ϕ−1

(i;1)→(i;0)(W(i;0)), U(i;p) :=
ϕ−1

(i;p)→(i;p−1)(U(i;p−1)). Letϕ′ be the restriction ofϕ to

W(i;0) ⊕

r
⊕

j=1

Vϕ( j) ⊕

si
⊕

p=1

U(i;p) ⊕
⊕

f,i

sf
⊕

j=1

Wϕ

( f ; j).

Let W′
(i;0) be any subspace such thatVϕ(i;0) = W(i;0) ⊕W′

(i;0) and define sub-
spacesU′(i; j) ⊂ Vϕ(i; j) by taking the inverse images ofW′

(i;0). Then defineϕ′′

as the restriction ofϕ to

W′
(i;0) ⊕

si
⊕

p=1

U′(i;p).

Clearlyϕ = ϕ′ ⊕ ϕ′′. Hence we must haveW(i;0) = Vϕ(i;0). �
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We denote byXµ = Xµ(κ) the subset of representationsϕ = (ϕγ)γ∈Ω ∈
Rep

Γ,vµ(κ) that satisfy the conditions (i) and (ii) in Proposition 3.8. As in
§2.1.2 we identify Rep

Γ,vµ(κ) with spaces of matrices and so for eachi =
1, . . . , k, the coordinatesϕ(1)→(i;0), . . . , ϕ(r)→(i;0) of anyϕ ∈ Xµ are identified
with non-zero vectors inκni which form the columns of a matrix in Matni ,r

of rank ni. For a partitionµ = (µ1, . . . , µs) of n, denote byGµ the group
GLn ×GLn−µ1 ×GLn−µ1−µ2 × · · · ×GLµs. LetGµ be the subgroup

∏k
i=1 Gµi of

Gvµ and denote byT ther-dimensional torus (GL1)r . Note thatGvµ ≃ Gµ×T.
Denote byXµ/Gµ the set ofGµ-orbits ofXµ. Since the actions ofGµ and

T on Rep
Γ,vµ commute, we have an action ofT onXµ/Gµ.

For i = 1, . . . , k, put µi
0 := r − ni. Note that ˜µi := (µi

0, µ
i
1, . . . , µ

i
si
) is a

partition ofr, i.e.,µi
0 ≥ µ

i
1. Consider

Sµ̃ := Sµ̃1 × · · · × Sµ̃k ⊂ (Sr)
k,

whereSµ is defined as in the paragraph preceding Proposition 3.8.

Proposition 3.9. We have a T-equivariant bijection

(3.2.1) Xµ/Gµ
∼
−→

∐

w∈Sµ̃

wUw,

where T acts onwUw as t · (w1u1, . . . ,wkuk) = (w1tu1t−1, . . . ,wktukt−1).

Remark3.10. By Lemma 3.3 the right hand side of (3.2.1) is isomorphic to
∏k

i=1 GLr/Pµ̃i on whichT-acts diagonally by left multiplication.

Proof. We first explain how to construct the bijection (3.2.1). For each
i = 1, . . . , k, denote byFµi the set of partial flags ofκ-vector spaces

{0} ⊂ Esi ⊂ · · · ⊂ E1 ⊂ E0
= κni

such that dimE j
= ni −

∑ j
f=1 µ

i
f . Let G′

µi ⊂ Gµi be the subgroup GLni−µ
i
1
×

· · · × GLµi
si+1

and putG′
µ
=

∏k
i=1 G′

µi . Let Mat′ni ,r ⊂ Matni ,r be the subset of
matrices of rankni. Then we have a natural GLn1 × · · · × GLnk-equivariant
bijection

(3.2.2) Xµ/G
′
µ
≃

k
∏

i=1

(

Fµi ×Mat′ni ,r

)

that takes a representationϕ ∈ Xµ to (F i
ϕ
, ϕ(1)→(i;0), . . . , ϕ(r)→(i;0)); hereF i

ϕ
is

the partial flag obtained by taking the images of the compositions of theϕγ,
whereγ runs over the arrows of thei-th long leg.
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Now fix an elementϕ ∈ Xµ, and denote by (Fϕ,Mϕ) its image in















∏

i

Fµi















×















∏

i

Mat′ni ,r















via (3.2.2). Since we are only interested in theGµ-orbit of ϕ, after taking a
Gµ-conjugate ofϕ if necessary we may assume that the stabilizer ofF i

ϕ
is

the parabolic subgroupPµi of GLni . By Lemma 3.2 we may further assume
that for all i = 1, . . . , k, the i-th coordinateMi

ϕ
of Mϕ is in its row echelon

form with respect to (µi
1, µ

i
2, . . . , µ

i
si+1), this time taking a conjugatep · Mi

ϕ

with p ∈ Pµi if necessary. It is easy to see that there is a unique way to
complete the matrixMi

ϕ
to a matrixM̃i

ϕ
∈ GLr that is in row echelon form

with respect to (µi
0, µ

i
1, . . . , µ

i
si+1). (cf. Example 3.11).

Now the pivots ofM̃i
ϕ

form a permutation matrixwi
ϕ
∈ Sµ̃i and M̃i

ϕ
∈

wi
ϕ
Uwi

ϕ
. We thus defined a mapXµ/Gµ →

∏k
i=1

(

∐

w∈S
µ̃i

wUw

)

. The inverse

map is obtained by truncating the lastµi
0 rows in each coordinate. The

fact that the inverse map isT-equivariant is easy to see from the relation
wtut−1

= (wtw−1) · wu · t−1. �

Example3.11. For example, supposes= (1, 1) and

A =

(

∗ ∗ 1 0 0
∗ 1 0 0 0

)

.

Then

Ã =













































∗ ∗ 1 0 0
∗ 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1













































is the completion ofA to the corresponding echelon form with respect to
(3, 1, 1).

Proposition 3.12. Letϕ ∈ Xµ and letw ∈ Sµ̃, u ∈ Uw such that the image
of ϕ under (3.2.1) iswu. Then the following assertions are equivalent.

(i) ϕ is absolutely indecomposable,
(ii) CGvµ

(ϕ) = Zvµ ,
(iii) the graph Kw,u is connected.

By Proposition 3.8, the absolutely indecomposable representations of
(Γ, vµ) overκ are all inXµ.



TORUS ORBITS AND KAC POLYNOMIALS 15

Proof of Proposition 3.12.First assumeϕ is absolutely indecomposable. Then
CGvµ

(ϕ)/Zvµ is unipotent, see Proposition 2.4. ThereforeCT(u) must reduce
to Zr . Indeed ift ∈ CT(u), then there existsg ∈ Gµ such that (g, t) ∈ CGvµ

(ϕ)
and so we must havet ∈ Zr for (g, t) to be unipotent moduloZvµ . By Propo-
sition 3.7, the graphKw,u is connected.

Now assume that the graphKw,u is connected. By Proposition 2.4 the rep-
resentationϕ is absolutely indecomposable if and only if the groupCGµ×T(ϕ)/Zvµ

is unipotent. Taking a conjugate ofϕ if necessary we may assume that the
image (Fϕ,Mϕ) under (3.2.2) is such that the stabilizer of

F i
ϕ
= (Esi

i ⊂ · · · ⊂ E1
i ⊂ E0

i = κ
ni )

in GLni is the parabolic subgroupPµi andMi
ϕ

is in its row echelon form with
respect to (µi

si+1, µ
i
si
, . . . , µi

1). Let (g, t) ∈ Gµ × T be such that

(3.2.3) (g, t) · ϕ = ϕ.

Theng = (g(i;t))i,t ∈ Gµ must satisfyg(i;0) ∈ Pµi andg(i;t)
= g(i;0)|Et

i
for all

i = 1, . . . , k andt = 1, . . . , si. Taking the image of (g, t) · ϕ = ϕ by (3.2.1)
we find thatt · (wu) = wu. Thereforet ∈ CT(u).

Since (by assumption)Kw,u is connected, Proposition 3.7 impliesCT(u) =
Zr . Thus (3.2.3) reduces to

(λ−1 · g(i;0)) · Mi
ϕ
= Mi

ϕ

for all i = 1, . . . , k, with t = λ · Ir ∈ Zr for someλ ∈ κ. By Proposition
3.2, we find thatg(i;0)

= λ · In, i.e., (g, t) ∈ Zvµ . HenceCGµ×T(ϕ) = Zvµ and
thereforeϕ is absolutely indecomposable. This completes the proof.�

Forw ∈ Sµ̃ we put

(3.2.4) Rw(q) :=
∑

K⊂Kw

(q− 1)b1(K),

where the sum is over the connected subgraphs ofKw; hereb1(K) = e(K) −
r + 1 is the first Betti number ande(K) is the number of edges ofK. If the
graphKw is not connected then we putRw(q) = 0.

Denote byXw
µ
⊂ Xµ the subset of representations corresponding towUw

in the bijection (3.2.1).

Theorem 3.13.The polynomial Rw(q) counts the number of isomorphism
classes of absolutely indecomposable representations inXw

µ
(Fq).
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Proof. TheT-equivariant bijection (3.2.1) induces an isomorphism between
the isomorphism classes ofXw

µ
with the T-orbits ofwUw. By Proposition

3.12 the isomorphism classes of absolutely indecomposablerepresentations
in Xw

µ
corresponds to theT-orbits ofC = {wu ∈ wUw |Kw,u is connected}.

Now for a given subgraphK of Kw, the number of elementsu ∈ Uw(Fq)
such thatK = Kw,u equals (q − 1)e(K). Moroever by Proposition 3.7, the
groupT/Zr acts trivially onC and so the number ofT-orbits ofC overFq

equalsRw(q). �

We can now state the main result of our paper:

Theorem 3.14.We have

AΓ,vµ(q) =
∑

w∈Sµ̃

Rw(q).

3.3. Tutte polynomial of graphs. The above polynomialsRw(q) are re-
lated to classical graph polynomials. Recall (cf. [8,18]) that the Tutte poly-
nomialTK(x, y) ∈ Z[x, y] for a graphK with edge setE and vertex setV can
be defined by

TK(x, y) =
∑

A⊆E

(x− 1)k(A)−k(E)(y− 1)k(A)+|A|−|V|,

wherek(A) is the number of connected components of the subgraph with
edge setA. Tutte proved that for a connected graphK we also have

TK(x, y) =
∑

T

xi(T)ye(T),

where the sum is over all spanning treesT of K and i(T), e(T) are respec-
tively their internal andexternal activity(for some fixed but arbitrary or-
dering of the edges ofK). In particular, the coefficients ofT(x, y) are non-
negative integers.

In this paper we will only be concerned with the specialization (for K a
connected graph)

RK(q) := TK(1, q) =
∑

T

qe(T),

which we will call theexternal activity polynomialof K. Up to a variable
change and renormalization,RK(q) coincides with the reliability polynomial

(1− p)|V|−k(K) p|E|−|V|+k(K)TK(1, 1/p),

which computes the probability that a connected graphK remains con-
nected when each edge is independently deleted with fixed probability p.
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A result of Hausel and Sturmfels [13] implies that the Kac polynomial
of a quiver with dimension vector consisting of all 1’s equals the external
activity polynomial of the underlying graph.

It is clear that ifK = Kw is connected then

Rw(q) = RKw .

Hence Theorem 3.14 together with Tutte’s result provide an alternative
proof of the non-negativity of the coefficients of the Kac polynomialsAΓ,vµ(q)
(see Theorem 2.3).

3.4. Counting T-orbits on flag varieties. Let P1, . . . ,Pk be parabolic sub-
groups of GLr containing the lower triangular matrices (this is only for con-
venience). Recall thatT denotes the maximal torus of GLr of diagonal ma-
trices. To each parabolicPi corresponds a unique partition ˜µi

= (µ̃i
1, µ̃

i
2, . . . )

given by the size of the blocks. Denote byET
µ̃
(q) the number overFq of

T-orbits in
∏k

i=1 GLr/Pi whose stabilizers equalZr . For i = 1, . . . , k, put
ni := r − µ̃i

1, and denote byµi the partition (µ̃i
2, µ̃

i
3, . . . ) of ni. From the tuple

µ = (µ1, . . . , µk) andr we consider the associated quiverΓ equipped with
dimension vectorvµ as in§2.2.

In view of Remark 3.10, we deduce from Proposition 3.12 the follow-
ing result, which relates Kac polynomials of complete bipartite supernova
quivers to countingT-orbits:

Theorem 3.15.We have

ET
µ̃
(q) = AΓ,vµ(q).

In particular, ET
µ̃
(q) is non zero if and only ifvµ ∈ Φ(Γ). Moreover ET

µ̃
(q) =

1 if and only ifvµ is a real root.

Remark3.16. According to Theorem 3.15, Theorem 3.14 and§3.3 we can
count certainT-orbits on homogeneous varieties overFq in terms of spe-
cializations of Tutte polynomials of certain graphs. Work of Fink and
Speyer [4,19] provides a geometric interpretation of the Tutte polynomial of
realizable matroids and theT-equivariantK-theory of torus orbits. It would
be interesting to understand the relationship between our work and theirs.

4. Examples

4.1. Notation. In this section we present examples to illustrate Theorems
3.14 and 3.15. We first consider the special case whenk, the number of long
legs of the supernova, equals 1. We call such quiversdandelion quivers
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(cf. Figure 2). In these examples the tuple of permutationsw consists of
a single elementw, so we lighten notation and writeKw for Kw, etc. We
represent permutationsw ∈ Sr by giving the sequence of their values, using
square brackets to avoid conflict with cycle notation. Thus [3, 2, 4, 1] ∈ S4

means the permutation taking 17→ 3, 2 7→ 2, 3 7→ 4, 4 7→ 1. When possible
we omit brackets and commas and write e.g. 3241 for [3, 2, 4, 1].

...

. . .

(1;0)
(1)

(2)

(3) (r−2)

(r−1)

(r)

(1;1)

(1;s1−1)

(1,s1)

Figure 2. The dandelion quiver

4.2. Projective space.Consider the dandelion quiver with no long leg, and
with central node labelled withn. In this example we consider the two cases
r = n andr = n+ 1. It is not hard to see that the corresponding root is real.
Indeed, apply a reflection at the central node. Ifr = n we get all leaf nodes
labelled with 1 and with the central node labelled with 0. Ifr = n+ 1, the
central node is labelled with 1. We can further apply reflections along the
leaves to make every leaf have label 0. Thus in these cases theroot is real
and we should haveA = 1.

If r = n, then the homogeneous variety is that ofn-planes inκn, i.e. is
a single point. There is one inversion graph, which is itselfa point, and
Theorem 3.14 implies that the Kac polynomial equals 1.

On the other hand, ifr = n + 1, then our homogeneous variety is that
of n-planes inκn+1, i.e. is a projective space. This time the only connected
inversion graph corresponds to the permutationw = [n + 1, 1, 2, . . . , n],
which indexes the open Schubert cell. The graphKw is a tree, and again the
Kac polynomial equals 1.
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4.3. A grassmannian. Now we consider a more complicated example. Let
Γ be the quiver in Figure 3, with the indicated dimension vector vµ. One can
check using Lemma 2.5 that this vector gives an imaginary root. The homo-
geneous variety isGr(2, 5), the grassmannian of 2-planes inκ5. This variety
is 6-dimensional and can be paved by 10 Schubert cellsUw = PswB, where
w ranges over the minimal length elements in the 10 cosets ofS2×S3 in S5.
Hence there are 10 graphsKw of order 5 that we need forAΓ,vµ(q). Of these
graphs, only 4 are connected. In fact, the number of edges ofKw equals
the dimension of the Schubert cellUw, and since we must have at least four
edges for a graph of order 5 to be connected, only the cells of dimensions
≥ 4 need to be considered. These are labelled by the permutations 31452,
34125, 34152, and 34512.

Figures 11–5 show these four graphs. We consider each in turn:

• The graphK34125 is not connected, soR34125= 0.
• The graphK31452 is a connected tree, which impliesR31452= 1.
• The graphK34152 is a 4-cycle with an extra edge. There are 4 span-

ning trees contributing 1 each, and the full graph contributesq− 1.
ThusR34152= q+ 3.
• The last graphK34512 is a complete bipartite graph of type (2, 3).

There are 12 spanning trees; each contributes 1 toR34512. Deleting
any single edge yields a graph isomorphic toK34152, each of which
contributesq − 1. Finally, the full graph itself has betti number 2
and thus contributes (q−1)2. Altogether we findR34512= q2

+4q+7.

Thus

(4.3.1) AΓ,vµ(q) = R31452+ R34152+ R34512= q2
+ 5q+ 11.

2
1

1
1

1

1

Figure 3.

4.4. A two-step flag variety. Now consider the dandelion quiver in Figure
6, with the indicated dimension vector. This is of course thesame example
we just treated, except that now we regard one of the short legs as being the
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1

2
3

4
5

(a) w = 31452

1

2
3

4
5

(b) w = 34125

Figure 4.

1

2
3

4
5

(a) w = 34152

1

2
3

4
5

(b) w = 34512

Figure 5.

long leg. The corresponding homogeneous variety is no longer a a grass-
mannian; instead we have the partial flag variety of two-stepflagsE3 ⊂ E2

in κ4. This time the inversion graphs have 4 vertices, so we need atleast 3
edges in anyKw for it be connected, and there are 6 permutations with at
least three inversions. The graphs are show in Figures 7–9. We leave it to
the reader to check the following:

• R3142= 1
• R3214= 0
• R3412= q+ 3
• R2341= 1
• R3241= q+ 2
• R3421= q2

+ 3q+ 4

Thus

(4.4.1) AΓ,vµ(q) = q2
+ 5q+ 11,

which agrees with (4.3.1).
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2
1

11

1

1

Figure 6.

1

2

3

4

(a) w = 3142

1

2

3

4

(b) w = 3214

Figure 7.

1

2

3

4

(a) w = 3412

1

2

3

4

(b) w = 2341

Figure 8.

4.5. A product of projective planes. Now we consider a more general
supernova quiver. We taker = 3 and (n1, n2) = (1, 1). Thus the quiver is the
complete bipartite graph of type (3, 2), and the dimension vector assigns 1
to each vertex. In terms ofT-orbits, we are counting the orbits of dimension
2 on a product of two projective planes with a 2-dimensional torus acting
diagonally.

The inversion graphs are labelled by pairs of permutations (w1,w2) ∈
(S3)2. There are five connected inversion graphs; they are characterized by
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1

2

3

4

(a) w = 3241

1

2

3

4

(b) w = 3421

Figure 9.

having at least onewi equal to 312, the longest permutation for this Bruhat
decomposition. We show the graphs in Figures 10–12 (edges curving in
correspond to the first permutation, and those curving out tothe second).
We find

• R123,312 = R312,123 = 1
• R132,312 = R312,132 = q+ 2
• R312,312 = q2

+ 2q+ 1

Altogether we obtain

(4.5.1) AΓ,vµ = q2
+ 4q+ 7.

We remark that (4.5.1) is in fact the external activity polynomial of the
underlying graph of the quiver thanks to the result of Hauseland Sturmfels
(see§3.3). Indeed, the Tutte polynomial of the complete bipartite graph of
type (3, 2) is

x4
+ 2x3

+ 3x2
+ x+ y2

+ 4y.

We can also recover (4.5.1) by counting 2-dimensional torusorbits in
F = P2 × P2, following Theorem 3.15. Letπ : F → P2 be the projection
onto the first factor. The action of the torusT commutes withπ.

• Choose a pointp0 in the image ofπ with trivial stabilizer. Any
point in the inverse image ofp0 determines a unique 2-dimensional
orbit, and thus this accounts forq2

+ q+ 1 orbits.
• Now choose a pointp0 in the image ofπ with 1-dimensional sta-

bilizer. We claim the inverse image ofp0 determinesq+ 1 orbits.
Indeed, after we have fixedp0, have one dimension ofT left. This
can move points along the lines inT-fixed point not contained in
the closure of the orbit ofp0. There areq+ 1 such lines, and hence
q+ 1 orbits. Since there are 3 choices forp0 (corresponding to the
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three 1-dimensionalT orbits in P2 we obtain 3q + 3 orbits alto-
gether.
• Finally we can choose a pointp0 fixed by T. There is one 2-

dimensionalT-orbit in the inverse image ofp0. Since there are
3 choices ofp0 we get 3 orbits this way.

Hence altogether we findq2
+ 4q + 7 torus orbits of dimension 2, which

coincides with (4.5.1).

1

2

3

(a) (123, 312)

1

2

3

(b) (312, 123)

Figure 10.

1

2

3

(a) (132, 312)

1

2

3

(b) (312, 132)

Figure 11.

1

2

3

Figure 12. (312, 312)
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4.6. Counting T-orbits. We conclude by illustrating Theorem 3.15 for
the grassmannianGr(2, 5) from section 4.3. The main tool we use is the
Gel′fand–MacPherson correspondence, which we state in Theorem 4.1. We
refer to [5–7,16, ] for more details.

Let E ⊂ Cr be a subspace of dimensionk. Assume thatE does not lie
in any of the coordinate hyperplanesHi = {zi = 0} ⊂ Cr . The intersections
E ∩ Hi determine a collection ofr hyperplanes inE and thus a point in
(Pk−1)r , i.e. a projective configuration. (Here we think ofPk−1 as being
P(E∗)). If E′ is aT-translate ofE, then the configuration corresponding to
E′ is equivalent toE an element of PGLk acting diagonally on (Pk−1)r .

Hence we can studyT-orbits onG(k, r) in terms of certain configura-
tions ofr points inPk−1. The precise statement of this fact is the Gel′fand–
MacPherson correspondence. We will only need to understandwhat hap-
pens when the theT-orbits have maximal dimensionr − 1.

Theorem 4.1.Let G◦(k, r) ⊂ G(k, r) be the subset of all L such that T·L has
dimension r−1. Let(Pk−1)r

◦ be the subset of configurations p= (p1, . . . , pr)
such thatPGLk · p has dimension k2 − 1. Then the assigment L7→ p, where
pi = E ∩ Hi, defines a bijection of orbit spaces

Φ : G◦(k, r)/T −→ (Pk−1)r
◦/PGLk.

Remark4.2. The bijectionΦ can be extended to all ofG(k, r) [5, Proposition
1.5].

In general it is very difficult to determine the configurations in the image
of Φ, but there is one case that is easy: the grassmanniansG(2, r). When
k = 2 the configurations are sets of points in the projective line, and the
only degenerations that can occur are multiple points. To make this precise,
let us say that a collection of distinct pointsp1, . . . , pm is r-labelled if it
is equipped with a surjective map{1, . . . , r} → {p1, . . . , pm}. We have the
following characterization of theT-orbits (cf. [16, Section 1.3]).

Proposition 4.3. Torus orbits in G(2, r) of maximal dimension are in bijec-
tion with r-labelled sets of m points inP1 up to PGL2-equivalence, where
3 ≤ m≤ r.

Now we consider configurations overFq. Let Cm(q) be the number of
configurations ofm distinct points up to equivalence. Fix three points in
P1(Fq) and call them 0, 1, and∞. Givenm unlabelled points inP1, we can
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use PGL2 to carry three of them to 0, 1,∞. This uses up all the automor-
phisms, which gives the following:

Cm(q) =















(q− 2)(q− 3)(q− (m− 2)) if m> 3,

1 if m= 3.

To complete the count we need to incorporate the labellings.An r-labelling
is determined by a sujective map{1, . . . , r} → {p1, . . . , pm}, in other words
an equivalence relation on{1, . . . , r} with m classes. These are counted by
S(r,m), the Stirling number of the second kind. LettingET

r (q) denote the
number ofT-orbits, we have

ET
r (q) =

r
∑

m=3

S(r,m)Cm(q).

For instance, whenr = 5, we have

ET
5 (q) = 1 · (q− 2)(q− 3)+ 10 · (q− 2)+ 25= q2

+ 5q+ 11,

in agreement with (4.3.1).
Comparing Figures 3 and 6, one sees that overFq the number of (r − 1)-

dimensional torus orbits inGr(2, r) equals the number of (r−2)-dimensional
torus orbits in the flag variety of{point⊂ line} in Pr−2 (the tori have differ-
ent dimensions, of course). This suggests that there shouldbe a bijection
between the sets of torus orbits for these two homogeneous varieties. This
is true, and we leave the reader the pleasure of finding it.

5. Generating Functions

We will use the series [10, (1.4)] to obtain a generating function for the
Kac polynomials of the supernova quivers of§2.2. The series [10, (1.4)] in
the case where the quiver is the complete (k, r) bipartite graph withk + r
vertices is the following
(5.0.1)

H(X,Y; q) := (q− 1)Log



















∑

λi ,µ j

q
∑

i, j 〈λ
i ,µ j〉

∏

i H̃λi (xi; q)
∏

j H̃µ j (y j; q)
∏

i q〈λ
i ,λi〉bλi (q−1)

∏

j q〈µ
j ,µ j〉bµ j (q−1)



















,

wherei = 1, . . . , k, j = 1, . . . , r

bλ(q) :=
∏

i≥1

mi (λ)
∏

j=1

(1− q j),

with mi(λ) the multiplicity of i in λ andX = (x1, . . . , xr); Y = (y1, . . . , yk).
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Since we are interested in a dimension vector where ther vertices have
value 1 we can restrict they variables toyi = (ui , 0, . . . ) for some indepen-
dent variablesu1, . . . , ur . Furthermore, we only need to work modulo the
ideal I := 〈u2

1, . . . , u
2
r 〉.

We haveH̃λ(u, 0, . . .) = u|λ|. It follows that the right hand side of (5.0.1)
becomes

(q− 1)Log

















∑

λi

r
∑

s=0

qs
∑

i l(λi )es(u)
∏

i H̃λi (xi; q)

(q− 1)s
∏

i q〈λ
i ,λi〉bλi (q−1)

















mod I ,

wherees(u) = es(u1, . . . , ur) is the elementary symmetric function in the
ui ’s. Interchanging summations this equals

(q− 1)Log















r
∑

s=0

∏

i

cs(xi)
es(u)

(q− 1)s















mod I ,

where

cs(x) :=
∑

λ

qsl(λ)H̃λ(x; q)
q〈λ,λ〉bλ(q−1)

, x = (x1, x2, . . .).

Note that

es1(u) · · ·esl (u) ≡
(s1 + · · · sl)!

s1! · · · sl!
es1+···+sl (u) mod I .

Therefore we may replacees(u) by a single termUs/s! and letr be arbitrary.
Except for the constant term inU the values of Log and log agree since we
are working moduloI . Hence we get

(q− 1)Log















∏

i

c0(xi)















+ (q− 1) log















∑

s≥0

∏

i

cs(xi)
c0(xi)

(U/(q− 1))s

s!















Define theRogers-Szëgo symmetric functionsas

Rs(x) :=
∑

|λ|=s

[

s
λ1, λ2, · · ·

]

mλ(x), x := (x1, x2, . . .),

wheremλ is the monomial symmetric function and
[

s
λ1, λ2, · · ·

]

:=
[s]!

[λ1]![ λ2]! · · ·
, [n]! := (1− q) · · · (1− qn),

is theq-multinomial andq-factorial respectively.

Proposition 5.1. The following identity holds

cs(x; q)
c0(x; q)

= Rs(1, x1, x2, . . .), x := (x1, x2, . . .).
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LetAs(x1, . . . , xk; q) be defined by the generating function
(5.0.2)

∑

s≥1

As(x1, . . . , xk; q)
Us

s!
= (q− 1) log

∑

s

Rs(x1) · · ·Rs(xk)
(U/(q− 1))s

s!
.

Proof. It follows from the main formula proved in [9]. �

A priori As(x1, . . . , xk; q) are symmetric functions with coefficients in
Q(q). In fact, the coefficients are inZ[q] as we now see. Combining the
above discussion with [10][Prop. (1.3) (i)] we finally obtain the following.

Theorem 5.2. With the notation of§3.2 the Kac polynomial AΓ,vµ of the
complete bipartite supernova quiver is given by

(5.0.3) AΓ,vµ(q) = 〈Ar , hµ̃〉,

where hµ denotes the complete symmetric function, hµ̃ := hµ̃1 · · ·hµ̃k with
µ̃ = (µ̃1, . . . , µ̃k) andµ̃i is the partition of r defined by(r − |µi |, µi

1, µ
i
2, . . .).

The right hand side of (5.0.3) gives the coefficient of mµ̃ when writing
Ar in terms of the monomial symmetric functions. For example, for k = 1
we obtain the following

A1 = m1

A2 = m12

A3 = (q+ 4)m13 +m12

A4 = (q3
+ 6q2

+ 20q+ 33)m14 + (q2
+ 5q+ 11)m122 + (q+ 4)m22 +m13

In particular we see the polynomialq2
+5q+11 corresponding to the exam-

ple discussed in§4.4. The coefficient ofm14 on the other hand corresponds
to a dandelion quiver with four short legs and a long leg with dimension vec-
tor (3, 2, 1) along its vertices corresponding to the full flag variety GL4/B.
Here is the list of permutationsw of block structure (1, 1, 1, 1) with con-
nected inversion graphs and their correspondingR-polynomials.
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w Rw

4321 q3
+ 3q2

+ 6q+ 6
4312 q2

+ 3q+ 4
4231 q2

+ 3q+ 4
4213 q+ 2
4132 q+ 2
4123 1
3421 q2

+ 3q+ 4
3412 q+ 3
3241 q+ 2
3142 1
2431 q+ 2
2413 1
2341 1

We verify that indeed the sum of these polynomials isq3
+6q2

+20q+33.
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