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AsstracT. In this paper we prove that the counting polynomials of cer-
tain torus orbits in products of partial flag varieties cades with the
Kac polynomials of supernova quivers, which arise in thelygtof the
moduli spaces of certain irregular meromorphic connestiom trivial
bundles over the projective line. We also prove that thesgnpmi-

als can be expressed as a specialization of Tutte polynswiiaertain
graphs providing a combinatorial proof of the non-negstief their co-
efficients.
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1. INTRODUCTION

1.1. Quivers and Kac polynomials. Given a fieldk andk parabolic sub-
groupsPy, ..., P¢ of GL;(x), we form the cartesian product of partial flag
varieties¥ = (GL,/P,) x --- x (GL;/Px) on which GL acts diagonally
by left multiplication. To each parabolfe; corresponds a unique partition
u' of r (given by the size of the blocks). From tkeupleu = (u*, ..., 4"
we define in a natural way (see for instancel [10]) a star-shagpéverl’
with k legs whose lengths are the lengths of the partitighs. . , 4% minus

1. We also define frone a dimension vectov of I with coordinater on
the central vertex and coordinates- ui,n — ) — 4, ... on the nodes of
thei-th leg. Denote by, c GL, the one dimensional subgroup of central
matrices. The sdf(«) of GL,-orbits of ¥ whose stabilizer is, modulé, a
unipotent group is in bijection with the isomorphism classéabsolutely
indecomposable representations Bf\) over the fieldk. Hence the size
of &(F,) coincides with the evaluation atof the Kac polynomialAr,(t)

of (T',v), see§2.1.2. Now it is known from Crawley-Boevey and van den
Bergh [3] that when the dimension vectotis indivisible (i.e. the gcd of
the parts of the partitiong, i = 1,...,k, is one), the polynomia, (t) co-
incides (up to a known power @ with the Poincaré polynomial of some
quiver varietiesi(v) attached toI(,v). Let us give a concrete descrip-
tion of this quiver variety. Assume givdadistinct pointsay,...,a € C
and agenerictuple Cy, ..., Cx) of semisimple adjoint orbits afl, (C) such
that the multiplicities of the eigenvalues 6f is given by the partition.'.
By Crawley-Boeveyl[2] we can identify this quiver variety,(v) with the
moduli space of meromorphic connections

k
dz
V=d- ) A——
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on the trivial rankr vector bundle over the Riemann sphgtavith residues
A e Cifori=1,...,kand with no further pole ab, i.e. Ay +---+ A, = 0.
In conclusion, when ngl.q)i’j = 1, the counting oveF, of the GL;-orbits
of ¥ with unipotent stabilizer (modulg,) gives the Poincaré polynomial of
the moduli space of some regular connections (i.e conmectath simple
poles at puncturea,, ..., a,) on the trivial rankr vector bundle oveP?.
In general (i.e. without assuming gqqn,j = 1), it is conjectured (see
[11, Conjecture 1.3.2]) that this counting coincides witle pure part of
the mixed Hodge polynomial of the moduli space@flocal systems on
P!\ {a,...,a with local monodromy in semisimple conjugacy classes
Cy,...,Ck of GL,(C) with (C4, ..., Cx) genericsemisimple of typeu.

1.2. Torus orbits on homogeneous varietiesThere is another geometric
counting problem that also arises in this setup.Let GL, be the maximal
torus of diagonal matrices. We can consider the enumeratierit,, of the
T-orbits in¥. In general this is a very subtle problem, even for the sistple
case of a single maximal parabolic subgroup of, @lhere we would be
counting torus orbits on Grassmannians. This problem isected to ma-
troids, configuration spaces of points in projective spageseralizations
of the dilogarithm, hypergeometric functions, and modphaes of genus
0 pointed curves [5-+7,16].

In this paper we show (Theorem 3115) that the counting fond&" ()
of the T-orbits of ¥ whose stabilizer is equal t8, coincides withAr,,
the Kac polynomial of a certain quivérfor a certain dimension vectar
(see§Z.2 for the definitions and a picture bj. As a consequenc&’ (q)
is @ monic polynomial ing with non-negative integer céiecients whose
degree is given by an explicit formula. Moreover, we obtaoessary and
sufficient condition forE™ (g) to be non-zero (Theorem 3]15).

The quiverT belongs to a class of quivers knownagernova quivers
(the name is due to Boalch). The corresponding generic guieeties
Mi-(v) have the following explicit interpretation. Given a tufi®, . . ., Cy)
of semisimple adjoint orbits aofl,(C) of type u as above, it follows from
Boalch [1, Theorem 9.11 & Theorem 9.16] th#t(v) is isomorphic to the
moduli space of meromorphic connections on the trivial namk&ctor bun-
dle overP! with k simple poles ady, . . ., a with residues irCy, . . ., Cx, and
with an extra pole of order 2 whose dheient indz/Z (in a local trivial-
ization) is a semisimple regular matrix. Hence using thenmesult of [3]



4 P. E. GUNNELLS, E. LETELLIER, AND F. RODRIGUEZ VILLEGAS

(on the connection between Kac polynondal, (t) and Poincaré polynomi-
als of Mi,(v)), Boalch’s result and the results of this paper, we end up wi
an interpretation oET(qg) as the Poincaré polynomial of the moduli space
of certain irregular meromorphic connections as above erirthial rankr
bundle oveiP!.

1.3. Graph polynomials. The second main result of this paper is a refined
analysis of the cd#cients of the polynomialéy,(q) = ET(g). More pre-
cisely, we expresk'(q) as a sum of the specialization= 1,y = q of the
Tutte polynomiabf certain associated graphs (see Thedrem 3.13ar8).
We deduce that the cliients of Ar,(g) count spanning trees in these
graphs of a given weight, which accounts for their nonn&ggti

Recall that Kac conjectured that the @o@ents of Kac polynomials (for
any finite quiver) are non-negativie [14]. This conjectures\geoved in in
the case of an indivisible dimension vector by Crawley-Bxyyeand van
den Berghl[3] with further case proved by Mozgovoy![17]; itsyaroved
in full generality by Hausel-Letellier-Villegas [12]. Tharoofs all give a
cohomological interpretation of the daeients of the Kac polynomial. Our
proof of the non-negativity for Kac polynomials of the sup@ra quivers
is completely diferent relying, as mentioned, on Tutte’s interpretation of
the codficients of his polynomial in terms of spanning trees. Thiopis
purely combinatorial and opens a new approach in underisigule Kac
polynomials.

In a continuation to this paper we will discuss how, in fabe tvhole
Tutte polynomial of the associated graphs is related to wog -orbits
of F.

2. SUPERNOVA COMPLETE BI-PARTITE QUIVERS

2.1. Generalities on quivers. LetI" be a finite quiver] its set of vertices
andQ its set of arrows. We assume tHahas no loops. Foy € Q we
denote byh(y) (respectivelyt(y)) the head (resp., tail) of. A dimension
vectorv of I' is a tuple ¢)ic; of non-negative integers indexed hy

2.1.1. Roots. We now recall some well known properties of roots in quiv-
ers. For more information, we refer the reader ta [14].
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Fori € |, lete € Z' be the tuple with coordinateequal 1 and all other
coordinates 0. Le€ = (c¢;);,; be the Cartan matrix df, namely

2 ifi=j
Gj = ,
—-n;j  otherwise

wheren;; is the number of edges joining vertexo vertexj. The Cartan
matrix determines a symmetric bilinear form () onZ' by

(e,€) = cj.
Fori € |, define the fundamental reflectien Z' — Z' by
s()=1-(1,&)e, 1€Z.

The Weyl groupN = W of I' is defined as the subgroup of automorphisms
Z' — 7' generated by the fundamental reflectiggs| i € I}. A vector

v € Z' is called areal rootif v = w(g) for somew € W andi € |. Let

M = Mr be the set of vectors € Z!, — {0} with connected support such
that for alli € I, we have )

(e,u) <0.

Then a vectov € Z' is said to be anmaginary rootif v = w(s) orv =
w(-4) for somes € M andw € W. Elements oM are calledundamental
imaginary roots We denote byd = ®(I') c Z' the set of all roots of (real
and imaginary).

A root is said to bepositiveif its coordinates are all non-negative. One
can show that an imaginary root is positive if and only if ibisthe form
w(6) with 6 € M. In particular the Weyl groupWV preserves the set of
positive imaginary roots.

For any vectou € Z' put

A(u) = —%(u, u).

We have the following characterization of the imaginarytsdd5, Propo-
sition 5.2]:

Lemma 2.1. Assume that € ®. Thenv is imaginary if and only ifA(v) >
0. |
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2.1.2. Representationslet « be a field. Arepresentatiorp of I' overx is
a finite-dimensional gradedvector spac&/¢ := P._, V¥ and a collection
(#y)yeq Of linear mapsp, : Vi) — Vr‘f(y). The vectov = (dim V)i is called
the dimension vectoof ¢. We denote by ReR («) the k-vector space of
representations df of dimension vectov over.

Fore € Reg,(x) andy¢’ € Reg., (k), we have the obvious notions of
morphisme — ¢’ and direct sump @ ¢’ € Reg.,,,. (k). We say that a
representation of over k is indecomposablé it is not isomorphic to a
direct sum of two non-zero representation$ aiverx. An indecomposable
representation df overk that remains indecomposable over any finite field
extension ofk is called anabsolutely indecomposabiepresentation of
overk.

Recall [14] that there exists a polynomi&,(t) € Z[t] such that for
any finite fieldF,, the evaluatiorr(q) counts the number of isomorphism
classes of absolutely indecomposable representationobtlimensionv
overFy. We call A, (t) theKac polynomiabf I' with dimension vector/H

Theorem 2.2.The polynomial A, (t) satisfies the following properties [14]:

() The polynomial A,(t) does not depend on the orientation of the
underlying graph of".
(i) The polynomial A,(t) is non zero if and only ¥ € ®(I'). Moreover
Ar,(t) = 1ifand only ifv is a real root.
(iii) If non-zero, the polynomialA(t) is monic of degre&(v) + 1.
(iv) Forallw e W, we have Ay (t) = Ary(t).

We have also the following theorem (see Hausel-Letellideyas [12]),
which was conjectured by Kac [14]:

Theorem 2.3. The polynomial A,(t) has non-negative integer ¢ieients.

Forv = (v)ic a dimension vector, put

G, := [ [ GL«(®).

i€l
and identify Rep, (k) with @yeg Maty, ., v, («). Under this identification
the groupG, acts on Rep, («) by simultaneous conjugation:

g-¢= (gvh(y) (pyg\;t?;)))/EQ-

Ln the literature this polynomial is sometimes called #polynomial
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Then two representations are isomorphic if and only if they&-conjugate.
Put

Zy ={(2-1dy)ic € Gy | 1 € K™},
The groupZ, acts trivially on Rep, (). We have the following characteri-
zation of absolute indecomposibility in terms®§ andZ,:

Proposition 2.4. [14), §1.8] A representation ilRep-, («) is absolutely in-
decomposable if and only if the quotient of its stabilizeGinby Z, is a
unipotent group.

2.2. Complete bipartite supernova quivers. We now introduce the main
objects of this paper. For fixed non-negative integekss,, ..., s con-
sider the quivel” with underlying graph as in Figute 1. The subgraph with
vertices (1)...,(r),(1;0),...,(k; 0) is the complete bipartite graph of type
(r,K), i.e. there is an edge between any two vertices of the foramd (j; 0).
We orient all edges toward the vertices (1,;.0), (k; 0), and denote by the
set of vertices of and byQ the set of its arrows. We call paths of the form
(i:s), (j; sj = 1),...., (j; 0) thelong legsof the graph, and the edges of the
complete bipartice subgraph tekort legs

) (1;0) (1;1) (%)
2
@) )
(r-1) i
- — @
(r) (k0) (k1) (K; s0)

Ficure 1. The complete bipartite supernova graph

Forv e Zljandi = 1,...,k define
r
5i(V) = —(e(i;o),V) = —2V(i;0) + V(i;l) + Z V(j).
-1

Lemma 2.5. Letv € Z. . Thenv is in My if and only if the following three
conditions are satisfied
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() foralli =1,...,kwe havey(v) > 0,
(i) foralll =1,...,r,

k
D Vo = vy,
=1

(i) foralli =1,...,kandall j=0,...,5 -1,

(2.2.1) Viis) = Viisj+1) = V(isj+1) — Viiij+2)
with the convention that;\ .1y = O.

Consider &-tuple of non-zero partitiong = (u%, ..., "), wherey' has
partsy > g, > --- > ui, with i possibly equal to 0. This tuple de-
fines a dimension vector, = (Vi) € Z'ZO as follows. Puty;y = 1
forl = 1,...,r, Vi:o)y = |/Ji| andv(i;j) = |/Ji| - ijzl/.lif for j =1...,S.
Thus the long leg attached to the nodéj (i.e., the typeAs.1 graph with
nodes{;0),(i;1),...,(i; s)) is labelled with a strictly decreasing sequence
of numbers, and the tips of the short leg are labelled with 1.

Notice that for alli = 1,...,k, we have

8i(V) = 1 = | = gy =2 6(1),
and thatv, satisfies already the condition Lemimal2.5 (jiii). The conditi

(ii) is always satisfied unleds= 1 andv1,q) = 1, in which case,, is a real
root. This implies the following lemma:

Lemma 2.6. Assume k- 1 or v(1.0) > 1. Thenv, € My if and only if for all
i=1....kwe have > || + .

Recall [11, Lemma 3.2.1] that if = (f,),<q is an indecomposable repre-
sentation (over an algebraically closed fieldJ 'aif dimension vectov and
if vii.0) > O then the linear mapk, wherey runs over the arrows of the long
leg attached to the nodge Q) are all injective. Recall also (s§2.1.2) that
a dimension vectov € Z'ZO \ {0} is a root ofT" if and only if there exists an
indecomposable representationloWith dimension vector. We deduce
the following fact:

Lemma 2.7. Letv € Z;. If v € ®() and \;o) > 0then v > V) >
Vi) 2 - 2 Viis)-

Corollary 2.8. Assume that, is an imaginary root. Then & |J/| for all
i=1,...,k
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Proof. Sincev = v, is a positive imaginary rooly’ = s;q(V) is also a
positive imaginary root. In particulanzi;o) =r —,uil > 0 and so by Lemma

2.7 we must have — i) = Vj > Vi) = Vi = |u'l — gy, ie.r > |ul. O

Remark2.9. Corollary[Z.8 is false for real roots. For instance asskmel,
u = (3,1) andr = 3. Then clearlysa.g(v,) is a real root with coordinate
0 at the vertex (1; 0) and with coordinate 1 at the edge vexti¢ausv, is
also a real root, but note thak |u|.

3. KAC POLYNOMIAL OF COMPLETE BIPARTITE SUPERNOVA QUIVERS

3.1. Preliminaries.

3.1.1. Row echelon formsRecall that denotes an arbitrary field. Denote
by B the subgroup of Gi(x) of lower triangular matrices. Let > n be
an integer. Given a sequence of non-negative integerys;, S, ..., &)
such that};; s = n we denote byP the unique parabolic subgroup of GL
containingB and having_s = GLg, X --- X GLg, as a Levi factor. Consider
a matrixA € Mat,,(x) and decompose its set of rows irddblocks; the
first block consists of the firsty rows of A, the second block consists of the
following sy_; rows, and so on.

Definition 3.1. We say tha# is in row echelon fornwith respect tsif the
following hold:

(i) The rightmost non-zero entry in each row (callepi2ot) equals 1.
(i) All entries beneath any pivot vanish.
(iii) If a block contains two pivots with coordinates, {) and ’, j’),
theni <i”ifand onlyif j < j’.

We have the following easy proposition, whose proof we |eavéhe
reader:

Proposition 3.2. For any matrix A€ Mat,,(x) of rank n there exists a
unique ge Ps such that gA is in row echelon form with respecsto

3.1.2. Bruhat decompositionWe identify the symmetric grouf, with
permutation matrices in GL(if w € S;, the corresponding permutation
matrix (@(w);j )i ; is defined bya(w);; = 6iwj)). ThenS; acts on the maximal
torusT =~ (x*)" of diagonal matrices a& - (t1,...,t) = (ty12), . - - ta1(p))-
Consider a paraboli®s of GL; for some sequence = (sy,..., S) with
> S =r and denote b¥s, s the subset 08, of permutation matrices which
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are in row echelon form with respect o Equivalently, if we form the
partition

@BlLD{,....rt={1,..., 9} U{g+1,..., S 1JU---U{r—=s+1,...,1}

corresponding to our partition of the rows, then we havé(i) < w(j)
for anyi < j in the same block. Then we have the following generalized
version of the Bruhat decomposition:

GL = | | PwB
WeS; s

Denote byR the root system of GLwith respect tol'. Recall that it is
the sef{a;; | 1 < i # | <r} of group homomorphisms;j: T — «* given
by

ai,j(tl, Lo t) = ti/t;.
We haveq;; = “Eil for alli # j. The symmetric groufs,; acts onR by
w-a: T — K%, (tl, cee tr) = a/(tW(l), cees tw(r))- In particularvv-ai,j = Qw(i),w(j)
foralli # j. Let
R* ::{a/i,j|1£j<i£r}
be the set of positive roots with respectBpand letR™ = R\ R*.

Fora € R, denote byJ, the unique closed one dimensional unipotent
subgroup of GL such that for alt € T andg € U,,, we havet(g — 1)t™* =
a(t) - (9 - 1). Explicitly, if @ = «; j, then the groupJ,, consists of matrices
of the forml + XE; j, wherex € x andE; ; is the matrix whose only non-zero
entry is 1 in positioni( j). We denote byrs ¢ Rthe set of roots such that
U, is contained in the Levi factdts. Forw € S, g, put

U= [] U
{aeRW(@)eR\Rs}
One can show that), is a subgroup of GL(see for instance [20, 10.1.4]).
We have the following lemma, whose proof we omit:

Lemma 3.3.

(i) Any element g inthe cells®B can be written uniquely as pwu with
p € Psand ue U,,.
(i) Any element of the form wu witheuU,, is in its row echelon form.

For anyu € Uy, let u, be its image under the projectidy, — U,. The
groupHs := Ps x T acts orwU,, via (p, t) - wu = pwut?. For any grougH
acting on a seK and any poink € X, let Cy(X) ¢ H denote the stabilizer
of x.



TORUS ORBITS AND KAC POLYNOMIALS 11

Lemma 3.4. For u € U,, we have
Ch.(Wu) ~ Cr(u) = ﬂ Kera.

{aeR*|W-aeR™\Rs, U, #1}

Proof. Let (p,t) € Hs such thatpwut! = wu. Then
(pwtw ) w(tut™?) = wu,

By Lemma[3.3 this identity is equivalent o = wtw! andtut? = u as
T normalizesU,,. Buttut? = u holds if and only if for alla we have
tu,t~* = u, which identity is equivalent to€ Kera whenu, # 1. O

Lemma 3.5. For any we S; s we have
{aeR |W-aeR \R}={adeR"|w-aeR}

={ai;j | j <i, w(j) > w(i)}.

Proof. Only the first equality requires proof. & j € R* andw- a;; € R,
i.e., ] <iandw(i) < w(j), then by definition ofS; s we cannot haveu(i)
andw(j) in the same block of the partitioR (3.1.1), i.8.,, = WU, W' is
not contained irLs. We have thus proved that the right hand side of the first
equality is contained in the left hand side. The reversaisioh is easy. O

To simplify notation, we put; ; = U, ;, so that

Uv= [] Ui
j<i, w(i)<w(j)
Definition 3.6. For anyk-tuplew = (wy,...,w) € (S,)¥, we denote by
Kw theinversion graphof w. Namely, the vertices oK, are labelled by
1,2,...,r and for any two verticesand j such thatj < i, put an edge from
i to j for eachw, in w such thatw(i) < wi(j). ThusK,, can have multiple
edges. We can think of each edge as having orkgpaofssible colors.
Foru = (us,...,w) € U, = Uy, x--- x Uy, we denote byK,, the

subgraph oK, that for any pairn, j includes the edge colorddbetween
verticesi and j if (w);; # 1.

Denote byZ, the center of GLand letT act diagonally by conjugation
onU,,.

Proposition 3.7. For u € U,, we have G(u) = Z if and only if the graph
Kw.u iS connected.
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Proof. This is clear since Key, j is the subtorus of elements.(. . ., t;) such
thatti = tj. O

3.2. Computing the Kac polynomials. Now I is as in§2.2. We want to
investigate the polynomid,(t). Recall (see Theorem 2.2) that, (t) = 1
if vis areal root and\-,(t) = O if v is not a root. MoroeveA(t) is invari-
ant under the Weyl group action. We are reduced to study thympmials
Ar,(t) with v is in the fundamental domaid-. Here we restrict our study
to the case where € M is of the formv = v, for some partitioru. The
important thing for our approach is that the coordinates,cft the vertices
(), j=1,...,r,equal 1.

Fix once for all a multi-partitionu = (u%, ..., 4" as in§2.2, and to al-
leviate the notation put; := |u'|. We assume that, is in Mr, and so that
r>m+py foralli=1,...,k(see Lemmaz2l6).

For a partitionu = (u1, . .., us), we denote byP, the parabolic subgroup
of GL, as defined i§3.1.1 and we denote simply I8, the subse§,,, of
the symmetric grou@, as defined i§3.1.2.

Proposition 3.8. Assumep € Re[ftv#(K) is indecomposable. Then

(i) the mapsp,, wherey runs over the arrows on the k long legs, are
all injective, and
(i) foreachi=1,...,k, theimages a0, With j=1,...,r, span
Vo
Proof. Let us prove (ii). LetW.q be the subspace generated by the im-
ages of the map®( o With j = 1,....r. If Wi C Vi, we de-
fine subspacebl(i;l), U(i;2), cee U(i;s) by U(i;l) = 90(7}1)_)(“0)(W(i;0)), U(i;p) =
Pimip-nUip-n)- Lety’ be the restriction op to
r S St
. ¢ .
Wiio) @ @ Vi @ @ Ugip @ @ W
=1 p=1 f£ j=1
Let W, be any subspace such thgf, = W) & W, and define sub-
spaced);.,, C Vg’;j) by taking the inverse images W;.,,. Then defingy”
as the restriction ap to

S
Wiio) @ EB Ugip)-
p=1

Clearlyp = ¢’ ® ¢”. Hence we must hawdy;.g) = V(“i’;o). m|
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We denote byX, = X,(«) the subset of representatiops= (¢,),cq €
REQ’V”(K) that satisfy the conditions (i) and (ii) in PropositionI3.8s in
§2.1.2 we identify Rep, (k) with spaces of matrices and so for each
1,...,k, the Coordinate$(1)_,(i;o), e PM)(i:0) of anygp € X, are identified
with non-zero vectors ir™ which form the columns of a matrix in Mat
of rankn;. For a partitionu = (u1,...,us) of n, denote byG, the group
GLn X GLy g X Gl X - X GL,.. Let G, be the subgroup[, G, of
G,, and denote by ther-dimensional torus (Gf)". Note thaG,, ~ G, xT.

Denote byX, /G, the set 0fG,-orbits ofX,. Since the actions @b, and
T on Rep,, commute, we have an action ®fonX,,/G,,.

Fori = 1,...,k,_put,q‘0 = r —n. Note thaty" := (uj, i, ....15) is a
partition ofr, i.e.,u, > uj. Consider
Si = S X -+ X S € (S,
whereS,, is defined as in the paragraph preceding Propoditidn 3.8.
Proposition 3.9. We have a T -equivariant bijection

(3.2.1) X,/G, —> ]_[ WUy,

WESp

where T acts owU,, as t- (WyUs, ..., WiUy) = (Watugt™, ... witut™2).

Remark3.10 By Lemmd3.B the right hand side ¢f(3.2.1) is isomorphic to
M, GL,/Pz on whichT-acts diagonally by left multiplication.

Proof. We first explain how to construct the bijectidn_(312.1). Facle
i =1,...,k, denote byF, the set of partial flags of-vector spaces

{O)cESc---cE'cE’=«"

such that dinE! = n - ©}_, 4. LetG/, c G, be the subgroup GL.,; x
e X GLﬂi$+l and putG, = L, G). Let Mat, , ¢ Mat, , be the subset of
matrices of ranky. Then we have a natural GLx - - - x GL,, -equivariant
bijection

K
(3.2.2) X,/G), = | | (Fu x Mat,,)

i=1
that takes a representatigne X, to (F.,, g)-(0). - - - » ©()-(i;0)); hereF, is
the partial flag obtained by taking the images of the comuusstof they,,
wherey runs over the arrows of theth long leg.
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Now fix an elemenp € X,,, and denote byH,, M,) its image in

(17) 11

via (3.2.2). Since we are only interested in gorbit of ¢, after taking a
G,-conjugate ofp if necessary we may assume that the stabilizd?jpofs
the parabolic subgrouB, of GL,. By Lemm&3.2 we may further assume
that for alli = 1,...,k, thei-th coordinateM,, of M, is in its row echelon
form with respect tog, i, . . ., 1 ), this time taking a conjugate - M;,
with p € P, if necessary. It is easy to see that there is a unique way to
complete the matri)MS‘o to a matrixML, € GL, that is in row echelon form
with respect tog, ,u'1~ Hy.,1)- (cf. Exampld3.11). | B

Now the pivots ofM;, form a permutation matrixj, € Sz andM,, €
wi,U,,; . We thus defined a ma, /G, — Hik:l(ﬂwesﬁi wUW). The inverse
map is obtained by truncating the Iagf rows in each coordinate. The

fact that the inverse map iB-equivariant is easy to see from the relation
wtut? = (wtwt) - wu- t1, O

Example3.11 For example, suppose= (1, 1) and

* = 1 0 O
A‘*looo)'
Then
*+ = 1 0 0
« 1000
A=[1 0000
00010
00001

is the completion ofA to the corresponding echelon form with respect to
(3,1,2).

Proposition 3.12. Letp € X, and letw € S;, u € U,, such that the image
of ¢ under [3.2.11) isvu. Then the following assertions are equivalent.
() ¢ is absolutely indecomposable,
(i) Ce,, (0) = Zy,,
(iii) the graph K, , is connected.

By Proposition 3.B, the absolutely indecomposable reptasens of
(I',v,) overk are all inX,,.



TORUS ORBITS AND KAC POLYNOMIALS 15

Proof of Proposition 3.12First assume is absolutely indecomposable. Then
Cs,, (#)/Z,, is unipotent, see Proposition 2.4. TherefGsgu) must reduce
to Z.. Indeed ift € Cr(u), then there existg € G, such thatg,t) € Cg, (¢)
and so we must hawtes Z for (g, t) to be unipotent moduld,,. By Propo-
sition[3.7, the grapk,,, is connected.

Now assume that the grapty, , is connected. By Proposition 2.4 the rep-
resentatiorp is absolutely indecomposable if and only if the gréig.r (¢)/Z,,
is unipotent. Taking a conjugate @fif necessary we may assume that the
image €,, M,) under [3.2.R) is such that the stabilizer of

FL:(E?C---CEE’CEP:KW)

in GL,, is the parabolic subgroup, and M; is in its row echelon form with
respect tog . Us. - - -» 1) Let @,1) € G, x T be such that

(3.2.3) 0.1)-¢=¢.

Theng = (g™);; € G, must satisfyg™? e P, andg" = gl for all
i=1,...,kandt = 1,...,s. Taking the image ofgt) - ¢ = ¢ by (3.2.1)
we find thatt - (wu) = wu. Thereforet € Cy(u).

Since (by assumptiot,, , is connected, Proposition 3.7 impliés(u) =
Z;. Thus [3.2.8) reduces to

(/1—1 . g(i;O)) . M‘Ip — Mglo
foralli =1,...,k, witht = 2.1, € Z for somea € k. By Proposition

B2, we find thag™® = 1 -1,, i.e., @.t) € Z,,. HenceCg «7(p) = Z,, and
thereforeyp is absolutely indecomposable. This completes the proof.o

Forw € S; we put

(3.2.4) Ru(@) == > (q- 1),
KcKw
where the sum is over the connected subgraplig,ohereb;(K) = gK) —
r + 1 is the first Betti number ang(K) is the number of edges &f. If the
graphK,, is not connected then we pB§(q) = O.
Denote byX! c X, the subset of representations correspondinglig,

in the bijection[[3.211).

Theorem 3.13. The polynomial R(q) counts the number of isomorphism
classes of absolutely indecomposable representatioly (fg).
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Proof. TheT-equivariant bijectior (3.211) induces an isomorphisnueen
the isomorphism classes &} with the T-orbits ofwU,,. By Proposition
[3.12 the isomorphism classes of absolutely indecomposajtesentations
in X} corresponds to th&-orbits of C = {wu € wUy, | Ky, is connectedi.
Now for a given subgrapK of K, the number of elements € U,,(F,)
such thatk = K, equals ¢ — 1)¥X). Moroever by Proposition 3.7, the
groupT/Z; acts trivially onC and so the number &f-orbits of C overF,
equalsRy/(q). O

We can now state the main result of our paper:
Theorem 3.14.We have
Ary, (@) = D" Ru(0).

weSy
3.3. Tutte polynomial of graphs. The above polynomial®,(q) are re-
lated to classical graph polynomials. Recall (cfl[8, 18Bttthe Tutte poly-
nomial Tk (X, y) € Z[X,y] for a graphK with edge seE and vertex se¥ can
be defined by

Tk(X,y) = Z(X _ DKAKE (y _ Y AHA-IVI

ACE
wherek(A) is the number of connected components of the subgraph with
edge sef. Tutte proved that for a connected graghwe also have

Tr(xy) = ) XOyD,
T

where the sum is over all spanning trédesf K andi(T), &(T) are respec-
tively their internal and external activity(for some fixed but arbitrary or-
dering of the edges df). In particular, the ca@cients ofT(x,y) are non-
negative integers.

In this paper we will only be concerned with the special@atffor K a
connected graph)

Re(@) = Tk(L.0) = ) g,
T

which we will call theexternal activity polynomiabf K. Up to a variable
change and renormalizatioRy (q) coincides with the reliability polynomial
(1 - pMHOPEVEOT (1, 1/p),

which computes the probability that a connected gr&phemains con-
nected when each edge is independently deleted with fixdzhpriity p.
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A result of Hausel and Sturmfels [13] implies that the Kacypoimial
of a quiver with dimension vector consisting of all 1's equtie external
activity polynomial of the underlying graph.

It is clear that ifK = K, is connected then

RW(q) = RKW .

Hence Theorem _3.14 together with Tutte’s result provide kerraative
proof of the non-negativity of the cécients of the Kac polynomiak,,,(g)
(see Theorem 2.3).

3.4. Counting T-orbits on flag varieties. Let Py, ..., P¢ be parabolic sub-
groups of Gl containing the lower triangular matrices (this is only fone
venience). Recall that denotes the maximal torus of Gbf diagonal ma-
trices. To each parabol; corresponds a unique partitiph= (i\, fib, . . .)
given by the size of the blocks. Denote Eg(q) the number oveF, of
T-orbits in H!‘zlGLr/Pi whose stabilizers equal. Fori = 1,...,k, put
ni :=r - fi}, and denote by' the partition &, ik, . . .) of n;. From the tuple
u = (u, ..., %) andr we consider the associated quiteequipped with
dimension vectov, as in§2.2.

In view of RemarK 3.7I0, we deduce from Proposition 8.12 thife
ing result, which relates Kac polynomials of complete hip@isupernova
quivers to counting@ -orbits:

Theorem 3.15.We have

E;(a) = Ary, (0.

In particular, E;(q) is non zero if and only i, € @(T). Moreover E(q) =
1if and only ifv, is a real root.

Remark3.16 According to Theorern 3.15, Theorém 3.14 &3 we can
count certainT -orbits on homogeneous varieties oWgrin terms of spe-
cializations of Tutte polynomials of certain graphs. WorkFonk and
Speyerl[4,19] provides a geometric interpretation of thiéeTpolynomial of
realizable matroids and thHeequivarianK-theory of torus orbits. It would
be interesting to understand the relationship between ouk and theirs.

4. EXAMPLES

4.1. Notation. In this section we present examples to illustrate Theorems
[3.12 and 3.75. We first consider the special case whtre number of long
legs of the supernova, equals 1. We call such quidarsdelion quivers
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(cf. Figure[2). In these examples the tuple of permutatioronsists of

a single elementv, so we lighten notation and writ€,, for K,,, etc. We
represent permutationge S, by giving the sequence of their values, using
square brackets to avoid conflict with cycle notation. TI&J2[4,1] € S,
means the permutation taking2 3,2 — 2,3 - 4,4 +— 1. When possible
we omit brackets and commas and write e.g. 3241 fa2,[& 1].

©) (t-2)
@) o (r-1)

(@) ()

(1,0)

(1;1)

(Lis1-1)
(L.s1)

Ficure 2. The dandelion quiver

4.2. Projective space.Consider the dandelion quiver with no long leg, and
with central node labelled with. In this example we consider the two cases
r = nandr = n+ 1. Itis not hard to see that the corresponding root is real.
Indeed, apply a reflection at the central node. # n we get all leaf nodes
labelled with 1 and with the central node labelled with Or ¥ n + 1, the
central node is labelled with 1. We can further apply reftawtialong the
leaves to make every leaf have label 0. Thus in these casesdhis real
and we should hava = 1.

If r = n, then the homogeneous variety is thatngblanes ink", i.e. is
a single point. There is one inversion graph, which is iteeffoint, and
Theoren 3.14 implies that the Kac polynomial equals 1.

On the other hand, if = n+ 1, then our homogeneous variety is that
of n-planes ink™?, i.e. is a projective space. This time the only connected
inversion graph corresponds to the permutatiorr= [n+ 1,1,2,...,n],
which indexes the open Schubert cell. The grphs a tree, and again the
Kac polynomial equals 1.
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4.3. A grassmannian. Now we consider a more complicated example. Let
I" be the quiver in Figuriel 3, with the indicated dimension veefoOne can
check using Lemmia 2.5 that this vector gives an imaginary we homo-
geneous variety i&r(2, 5), the grassmannian of 2-planes® This variety
is 6-dimensional and can be paved by 10 Schubert tglls PswB, where
w ranges over the minimal length elements in the 10 cose®s »5; in Ss.
Hence there are 10 grapKg, of order 5 that we need fdk-, (q). Of these
graphs, only 4 are connected. In fact, the number of edgég, dquals
the dimension of the Schubert céll,, and since we must have at least four
edges for a graph of order 5 to be connected, only the cellnoérsions
> 4 need to be considered. These are labelled by the perrmg&ict52,
34125, 34152, and 34512.

Figured 1115 show these four graphs. We consider each in turn

e The graphKs41,5is not connected, SBz4105= 0.

e The graphKsi45,is a connected tree, which impli&gi4s, = 1.

e The graphKs415,is a 4-cycle with an extra edge. There are 4 span-
ning trees contributing 1 each, and the full graph contabgt 1.
ThUSR34152 =g+ 3.

e The last graptKasss12 is @ complete bipartite graph of type, @.
There are 12 spanning trees; each contributesRk49, Deleting
any single edge yields a graph isomorphi&t;s, each of which
contributesq — 1. Finally, the full graph itself has betti number 2
and thus contributegi1)?. Altogether we findRass12 = 02 +40+7.

Thus
(4.3.1) Ar.,(9) = Re1as52+ Raaiso+ Raasio = o° + 50+ 11
1
1 I 1
1 1
2
FiGure 3.

4.4. Atwo-step flag variety. Now consider the dandelion quiver in Figure
[6, with the indicated dimension vector. This is of courseshme example
we just treated, except that now we regard one of the shadedpeing the
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2 2
3 3
1 1
4 4 °
5 5
(a) w = 31452 (b) w = 34125
Ficure 4.
2 2
3 3
1 1
4 4
5 5
(a) w = 34152 (b) w = 34512
FiGure 5.

long leg. The corresponding homogeneous variety is no loagegrass-
mannian; instead we have the partial flag variety of two-fisggs E3 c E?

in ¥*. This time the inversion graphs have 4 vertices, so we nekshsit 3
edges in anK,, for it be connected, and there are 6 permutations with at
least three inversions. The graphs are show in Fidurels 7-le&ve it to

the reader to check the following:

e Ryipp=1
® R314=0
® Rag1=0+3
® Rozs1=1
® Rypa1=0Q+2
® Ryo1= 7 +3q+4
Thus
(4.4.1) Ary,(0) = ¢ +5q+ 11,

which agrees witH{4.311).
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1 1

FiGure 6.

e

4

(a) w = 3142 (b) w = 3214

FiGure 7.

4 4

(a) w=3412 (b) w=2341

FiGure 8.

4.5. A product of projective planes. Now we consider a more general
supernova quiver. We take= 3 and (, n;) = (1, 1). Thus the quiver is the
complete bipartite graph of type,@), and the dimension vector assigns 1
to each vertex. In terms df-orbits, we are counting the orbits of dimension
2 on a product of two projective planes with a 2-dimensional$ acting
diagonally.

The inversion graphs are labelled by pairs of permutationsw,) €
(S3)?. There are five connected inversion graphs; they are clesized by
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2 2
3\D1 3%71
4 4

(@) w=3241 (b) w= 3421

FiGure 9.

having at least one; equal to 312, the longest permutation for this Bruhat
decomposition. We show the graphs in Figures[ I0-12 (edgeinguin
correspond to the first permutation, and those curving otthécsecond).
We find

® Rir3312= Ra1p123=1
® Ri3r312=Ra12132 =09+ 2
e Rypain= P +29+1

Altogether we obtain
(4.5.1) Ary, = o +4q+7.

We remark that[(4.5]1) is in fact the external activity palymial of the
underlying graph of the quiver thanks to the result of Haasel Sturmfels
(see§3.3). Indeed, the Tutte polynomial of the complete bipamgitaph of
type (32) is

X+ 263 + 3% + X+ V2 + 4y.

We can also recovef (4.5.1) by counting 2-dimensional tamits in
F = P? x P?, following Theoreni3.15. Let: ¥ — P? be the projection
onto the first factor. The action of the toriscommutes withn.

e Choose a poinpy in the image ofr with trivial stabilizer. Any
point in the inverse image aqf, determines a unique 2-dimensional
orbit, and thus this accounts fgf + g + 1 orbits.

e Now choose a poinp in the image ofr with 1-dimensional sta-
bilizer. We claim the inverse image @f determineg + 1 orbits.
Indeed, after we have fixegh, have one dimension df left. This
can move points along the lines Tnfixed point not contained in
the closure of the orbit gby. There areg+ 1 such lines, and hence
g+ 1 orbits. Since there are 3 choices f@r(corresponding to the
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three 1-dimensional orbits in P> we obtain 8 + 3 orbits alto-
gether.

e Finally we can choose a poim, fixed by T. There is one 2-
dimensionalT -orbit in the inverse image ob,. Since there are
3 choices ofpy we get 3 orbits this way.

Hence altogether we fing? + 4q + 7 torus orbits of dimension 2, which
coincides with[(4.5]1).

2 2
D

3 3
(a) (123312) (b) (312123)

Ficure 10.

3 3

(a) (132312) (b) (312 132)

Ficure 11.

2

s

3

Ficure 12. (312312)
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4.6. Counting T-orbits. We conclude by illustrating Theorem_ 3115 for
the grassmannia@r(2,5) from sectiori 413. The main tool we use is the
Gelfand—MacPherson correspondenuadich we state in Theorem 4.1. We
refer to [5+7,16, ] for more details.

Let E c C' be a subspace of dimensi&n Assume thak does not lie
in any of the coordinate hyperplanes = {z = 0} c C". The intersections
E N H; determine a collection of hyperplanes irE and thus a point in
(P<1), i.e. a projective configuration. (Here we think Bf! as being
P(E"). If E’ is aT-translate ofg, then the configuration corresponding to
E’ is equivalent td= an element of PGLacting diagonally onR<-1)".

Hence we can study-orbits onG(k,r) in terms of certain configura-
tions ofr points inP%1. The precise statement of this fact is the '@eld—
MacPherson correspondence. We will only need to understduad hap-
pens when the th&-orbits have maximal dimensian- 1.

Theorem 4.1.Let G,(k, r) c G(k, r) be the subset of all L such that has
dimension r- 1. Let(P*1)’ be the subset of configurations=p(ps, . .., pr)

such thaPGLy - p has dimension%- 1. Then the assigmentis p, where
pi = E N H;, defines a bijection of orbit spaces

@: G.(k,r)/T — (PN /PGL..

Remark4.2 The bijectiond can be extended to all &(k, r) [5, Proposition
1.5].

In general it is very dficult to determine the configurations in the image
of @, but there is one case that is easy: the grassman@Gighs). When
k = 2 the configurations are sets of points in the projective, lared the
only degenerations that can occur are multiple points. Tkentlais precise,
let us say that a collection of distinct poinps, ..., pn is r-labelled if it
is equipped with a surjective mdfp,...,r} — {ps,..., pm}. We have the
following characterization of th@-orbits (cf. [16, Section 1.3]).

Proposition 4.3. Torus orbits in G2, r) of maximal dimension are in bijec-
tion with r-labelled sets of m points iA* up to PGL,-equivalence, where
3<m<r.

Now we consider configurations ovEy. Let Cn(q) be the number of
configurations oim distinct points up to equivalence. Fix three points in
P1(Fy) and call them 0, 1, aneb. Givenm unlabelled points ifP*, we can



TORUS ORBITS AND KAC POLYNOMIALS 25

use PGL to carry three of them to0,Q, . This uses up all the automor-
phisms, which gives the following:

(@-2)@-3)g-(m-2) ifm>3,

Cnld) = {1 it m=3,

To complete the count we need to incorporate the labelliAgs-labelling

is determined by a sujective méh,...,r} — {ps,..., pm}, in other words
an equivalence relation di, ..., r} with mclasses. These are counted by
S(r, m), the Stirling number of the second kind. Lettiig(q) denote the
number ofT -orbits, we have

E () = ) S(r, mCn(0).
m=3

For instance, when= 5, we have
EZ(0) =1-(q-2)(-3)+10-(q-2)+25= ¢’ + 50+ 11,

in agreement witH(4.3.1).

Comparing Figurels]3 arid 6, one sees that &y¢he number of (- 1)-
dimensional torus orbits iBr(2, r) equals the number of £ 2)-dimensional
torus orbits in the flag variety dpoint c line} in P™=2 (the tori have dfer-
ent dimensions, of course). This suggests that there shmuldbijection
between the sets of torus orbits for these two homogeneaoigtiga. This
is true, and we leave the reader the pleasure of finding it.

5. GenNerATING FuncTIONS

We will use the series [10, (1.4)] to obtain a generating fiamcfor the
Kac polynomials of the supernova quivers§@2. The series [10, (1.4)]in
the case where the quiver is the complédg ) bipartite graph withk + r
vertices is the following
(5.0.2)

Zi.'</1ial~lj> . H i(X; H~ : o
HX,Y:0) = (q- Diog| 31 TGO Habi @)
g Pbe (@) I g% +2b,i(a)
wherei=1,...,k j=1,...,r

mi(2)

bu@) = || [@-a).

i>1 j=1

with my(2) the multiplicity ofi in A andX = (X1,...,%); Y = (Y, ..., Yk)-
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Since we are interested in a dimension vector where thertices have
value 1 we can restrict thevariables toy; = (u;, 0, ...) for some indepen-
dent variablesy,, ..., u,. Furthermore, we only need to work modulo the
ideall :=(u3,...,ud).

We haveH,(u,0,...) = u'. It follows that the right hand side of (5.0.1)
becomes

q°2 " Wey(u) [T, Ha(xi; 9)
- ”Log[Z; (@= 17 [T, 9"by(q- 1)]m°d"

whereeg(u) = es(uy,..., U ) is the elementary symmetric function in the
u's. Interchanging summations this equals

(q- 1)Log[Z U Cs(x) es( 1))5) mod|,

where .
. > “YH,(x; Q)
CS(X) = W’ X = (X]_, X2, .. )
Note that
e e = e () mod

Therefore we may repla@g(u) by a single terns/s! and letr be arbitrary.
Except for the constant term v the values of Log and log agree since we
are working moduld. Hence we get

@- 1)“’9[1_[ Col )J +(q-1) log[Z [[oo a2

Define theRogers-Szeégo symmetric functiass

Rs(X) := WZ::S[/M’ b ] m,(X), X = (X, Xo, .. .),
wherem, is the monomial symmetric function and
S [9]!
= n:=A-q)---1-9",
I I - e G BT R IRy
is theg-multinomial andg-factorial respectively.

Proposition 5.1. The following identity holds

Cs(X;
CSEX, gg = RS(l? X1, X2, - . ')’ X = (X]_, X2, .. )
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Let As(Xq, ..., Xk () be defined by the generating function
e us (U/(@- 1)
Z; A(X1, ... Xk; Q) g - (g-1) Iogz Rs(X1) - - - Rs(xk)T.
s> S

Proof. It follows from the main formula proved in [9]. O

A priori As(Xy, ..., Xk ) are symmetric functions with céiecients in
Q(g). In fact, the co#ficients are irZ[g] as we now see. Combining the
above discussion with [10][Prop. (1.3) (i)] we finally obtahe following.

Theorem 5.2. With the notation off3.2 the Kac polynomial A, of the
complete bipartite supernova quiver is given by

(5.0.3) AF,V,, (@) = (A, hﬁ>,

where h denotes the complete symmetric function,:f hg: - - - hz with
f= (..., @ andfd is the partition of r defined bfr — ||, 1), 1, . . ).

The right hand side of (5.0.3) gives the idgent of m; when writing
A, in terms of the monomial symmetric functions. For exampbe kf= 1
we obtain the following

A = my

A = My

Az = (q+4)mgs + my

As = (9 +60° + 200+ 33)Mya + (07 + 50 + 11)My2, + (0 + 4)Mp2 + My3

In particular we see the polynomiad + 5q+ 11 corresponding to the exam-
ple discussed i§4.4. The cofficient of m;« on the other hand corresponds
to a dandelion quiver with four short legs and a long leg withehsion vec-
tor (3,2,1) along its vertices corresponding to the full flag variety,{B.
Here is the list of permutations of block structure (11,1, 1) with con-
nected inversion graphs and their correspondsmplynomials.
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W Ry
4321 ® +30°+ 60+ 6
4312 o +3q+4
4231 P +3q+4
4213 q+2
4132 q+2
4123 1
3421 @ +3q+4
3412 q+3
3241 q+2
3142 1
2431 q+2
2413 1
2341 1

We verify that indeed the sum of these polynomialg’is 697 + 20g+ 33.
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