
University of Massachusetts Amherst

From the SelectedWorks of Paul Gunnells

November 6, 2012

Modular Forms And Elliptic Curves Over The
Cubic Field Of Discriminant - 23
Paul E. Gunnells, University of Massachusetts - Amherst
Dan Yasaki

Available at: https://works.bepress.com/paul_gunnells/35/

http://www.umass.edu
https://works.bepress.com/paul_gunnells/
https://works.bepress.com/paul_gunnells/35/


ar
X

iv
:1

20
1.

41
32

v2
  [

m
at

h.
N

T
] 

 2
5 

Ju
n 

20
12

MODULAR FORMS AND ELLIPTIC CURVES OVER THE

CUBIC FIELD OF DISCRIMINANT −23

PAUL E. GUNNELLS AND DAN YASAKI

Abstract. Let F be the cubic field of discriminant −23 and let O ⊂ F be its
ring of integers. By explicitly computing cohomology of congruence subgroups
of GL2(O), we computationally investigate modularity of elliptic curves over
F .

1. Introduction

1.1. Let F be a number field with ring of integers O, and let E be an elliptic curve
defined over F . According to a general contemporary philosophy with roots in the
work of Taniyama, Shimura, and Weil, the curve E should be modular. There are
many different perspectives about what this might mean, but at the very least one
expects there exists a cuspidal automorphic form f on GL2 that is a Hecke eigenform
with integral Hecke eigenvalues, and such that these eigenvalues are closely related
to the number of points on E over various finite fields. In particular, suppose n is
the conductor of E. Then one expects f also to have conductor n, and that there
should be an identification of partial L-functions LS(s, f) = LS(s, E), where S is a
fixed finite set of primes including all those dividing n. This identification is done
through matching of Euler factors at good primes: if p is prime to n, then one wants

(1) |E(Fp)| = Norm(p) + 1− ap,

where Fp = O/p is the residue field and ap ∈ Z is the pth Hecke eigenvalue. This
idea has been computationally investigated by a variety of authors, including Cre-
mona and his students for F complex quadratic [7, 9, 10, 21]; Socrates–Whitehouse
and Dembélé for F real quadratic [11, 23]; and the current authors, in joint work
with F. Hajir, for F the CM field of fifth roots of unity [15].

In this paper, we continue this computational work and study the modularity of
elliptic curves when F is the complex cubic field of discriminant −23. This field
has signature (1, 1) and is thus not Galois (its Galois closure is the Hilbert class
field of Q(

√
−23)).

The overall program is similar to that of [15]. Namely, instead of explicitly
working with automorphic forms, we work with the cohomology of the congruence
subgroups Γ0(n) ⊂ GL2(O). By Franke’s proof of Borel’s conjecture [13], one knows
that this cohomology is built from certain automorphic forms, and that there is a
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subspace of cuspidal cohomology that corresponds to certain cuspidal automorphic
forms. This cohomology can be computed using topological tools; in particular the
first step is carrying out a version of explicit reduction theory due to Koecher [20].
This reduction theory is one generalization of Voronoi’s theory of perfect quadratic
forms [24] to a much broader setting that includes quadratic forms over both number
fields of arbitrary signature and the quaternions. To the best of our knowledge,
this is the first time Koecher’s work has been used for such computations. Since
we expect that these techniques will be useful for later researchers, we take some
time to explain Koecher’s work.

The second step is computing the cohomology and its decomposition under the
action of the Hecke operators. Computing the cohomology is straightforward, since
the reduction theory provides us with an explicit cell complex with an action by
Γ0(n). Computing the Hecke operators, however, is much more involved. Our
technique is to use the sharbly complex and a variant of an algorithm described
by the first-named author for subgroups of SL4(Z) [17], and later developed by
both of us in [15, 18] for subgroups of GL2(O), where F is real quadratic and
totally complex quartic. Although these settings seem to have little to do with each
other, they share the feature that the highest cohomological degree where the cusp
forms can contribute is exactly one less than the virtual cohomological dimension.
Thus although the symmetric spaces and underlying fields are completely different,
computing the Hecke operators reduces to a similar combinatorial problem. The
technique we use is closely related to that of modular symbols [4, 22], although
the combinatorics are more complicated since we need to work with a different
cohomology group. As in the papers [15, 17, 18], we do not have a proof that our
technique of computing Hecke operators works, but the technique has always been
successful in practice.

With the first two steps completed, we find ourselves with a list of Hecke eigen-
classes, some of which apparently correspond to cuspforms, and further some of
which have eigenvalues that are rational integers. The final step is to compile a list
of elliptic curves over F of small conductors. This is done in the obvious way: we
enumerate curves by searching over a box of Weierstrass equations and throwing
out duplicates.

After all three steps are done, we arrive at a list of cohomology classes and a list
of elliptic curves. We found complete agreement between these lists. In particular:

• For each elliptic curve E with norm conductor within the range of our
cohomology computations, we found a cuspidal cohomology class with ra-
tional Hecke eigenvalues that matched the point counts for E as in (1), for
every Hecke operator that we checked.

• For each cuspidal cohomology class with rational Hecke eigenvalues, we
found a corresponding elliptic curve whose point counts matched every
eigenvalue we computed.

We now give a guide to the contents of the paper. In §§2,3 we recall Koecher’s
work on positivity domains, and explain how one can find explicit fundamental
domains for GLn over number fields acting on spaces of quadratic forms. In §4 we
compute the Koecher polyhedron for the case under consideration, namely GL2(O)
where O is the ring of integers in the cubic field of discriminant −23. Next, §5
explains the complexes we use to compute the cohomology of subgroups of GL2(O)
and the Hecke action. After this, in §6 we give a brief overview of how we compute
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the action of the Hecke operators, following [15, 18]. The following two sections
§§7,8 give more details about what is done differently in the current paper from the
techniques in [15, 18]. Finally, in §9 we present our computational data.

2. Positivity domains

In this section we review Koecher’s study of positivity domains [20], which gen-
eralizes Voronoi’s reduction theory for positive definite quadratic forms [24].

Let V be a finite dimensional vector space over R. Let 〈 , 〉 : V × V → R be
a positive definite symmetric bilinear form. The form determines a norm | · | on
V in the usual way by |v| =

√

〈v, v〉, and we give V the metric topology. For any

subset C ⊂ V , let C be the closure, let Int(C) be the relative interior, and let
∂C = C r Int(C) be the boundary.

Definition 2.1. A subset C ⊂ V is called a positivity domain if the following hold:

• C is open and nonempty.
• 〈x, y〉 > 0 for all x, y ∈ C.
• For each x ∈ V r C there is a nonzero y ∈ C such that 〈x, y〉 ≤ 0.

One can show that a positivity domain C is a convex cone in V . In other words,
if y ∈ C then λy ∈ C for all λ > 0, and if y, y′ ∈ C then y + y′ ∈ C. Furthermore,
C contains no line.

Let D ⊂ C r {0} be a nonempty discrete subset. For y ∈ C, let

µ(y) = Inf
d∈D

{〈d, y〉}.

Koecher proves that µ(y) > 0 and that the infimum is achieved only on a finite set
of points, which we denote M(y):

M(y) = {d ∈ D | 〈d, y〉 = µ(y)}.
We call M(y) the set of minimal vectors for y.

Definition 2.2. A point y ∈ C is called perfect if the linear span of its minimal
vectors M(y) is all of V .

Note that the set M(y), as well as the notion of perfection of a point in C,
depend on the choice of the set D. If y is perfect, then so is λy for λ > 0, and
clearly M(λy) = M(y). We let Φ = Φ(D) be the set of all perfect points y with
µ(y) = 1.

Example 2.3. We consider the classical case of this construction. Let V be the
space of symmetric n × n matrices over R, let 〈a, b〉 = Tr(ab), and let C ⊂ V be
the cone of positive definite matrices. Let D ⊂ V be the set of points of the form
vvt for v ∈ Zn, where we regard elements of Zn as column vectors. Then if y ∈ C,
d = vvt ∈ D, the quantity 〈d, y〉 is easily seen to be the value Qy(v) = vtyv, in
other words the value of the positive definite quadratic form Qy determined by y on
the integral vector v. Koecher’s notion of perfect coincides with Voronoi’s notion
of a perfect quadratic form: a positive definite quadratic form is perfect if it can
be recovered from the knowledge of its nonzero minimum and the set of vectors on
which the minimum is attained.

Returning now to the general setting, Voronoi used perfect quadratic forms to
provide an explicit reduction theory for the cone of positive definite quadratic forms,
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and we want the same for our positivity domain C. Unfortunately not all sets D
will accomplish this. Thus we have the following definition:

Definition 2.4. A nonempty discrete subset D ⊂ C r {0} is said to be admissible
if for any sequence {yi} converging to a point in ∂C, we have limµ(yi) = 0.

Note that the set D from Example 2.3 is admissible. Suppose {yi} → y ∈ ∂C.
The real quadratic formQy associated to y is degenerate, and thus there is a nonzero
subspace W ⊂ Rn such that Qy restricted to W vanishes. Since there exist integral
vectors arbitrarily close to W , we have limµ(yi) = 0.

Koecher proved that if D is admissible, then Φ(D) is a discrete subset of C,
and provides a polyhedral decomposition of C. To explain what we mean, we must
recall some notions from convex geometry (a convenient reference is [14, Chapter
1]). Recall that a polyhedral cone in a real vector space V is a subset σ of the form

σ = σ(v1, . . . , vp) = {
p

∑

i=1

λivi | λi ≥ 0},

where v1, . . . , vp is a fixed set of vectors. We say that the v1, . . . , vp span σ. The
dimension of σ is the dimension of its linear span; if the dimension of σ is n, then
we call σ an n-cone. If σ is spanned by a linearly independent subset, then σ is
called simplicial.

Now given any y ∈ Φ(D), let σ(y) be the cone

σ(y) = {
∑

λdd | λd ≥ 0, d ∈ M(y)}.
Koecher calls σ(y) the perfect pyramid of y. We remark that typically σ(y) is not
a simplicial cone.

Let Σ be the set of perfect pyramids and all their proper faces, as y ranges over
all points in Φ(D). Koecher proves that for admissible D, the perfect pyramids
have the following properties:

(i) Any compact subset of C meets only finitely many perfect pyramids.
(ii) Two different perfect pyramids have no interior point in common.
(iii) Given any perfect pyramid σ, there are only finitely many perfect pyramids

σ′ such that σ ∩ σ′ contains a point of C (which, by item (ii), must lie on
the boundaries of σ, σ′).

(iv) The intersection of any two perfect pyramids is a common face of each.
(v) Let σ(y) be a perfect pyramid and F a codimension one face of σ(y). If

F meets C, then there is another perfect pyramid σ(y′) such that σ(y) ∩
σ(y′) = F .

(vi) We have
⋃

σ∈Σ σ ∩ C = C.

In item (v), if a facet F of a perfect pyramid is contained in ∂C, we say that F is
a dead end. In item (iii), the pyramid σ′ is called a neighbor of σ. Property (iv),
together with the definition of Σ, implies that Σ is a fan [14, §1.4].
Definition 2.5. We call Σ the Koecher fan, and the cones in Σ the Koecher cones.

Now we bring groups into the picture. Let G ⊂ GL(V ) be the group of auto-
morphisms of C. Let Γ ⊂ G be a discrete subgroup such that ΓD = D. Koecher
proves that if D is admissible, then Γ acts properly discontinuously on C [20, §5.4].
Moreover, the Koecher fan gives an explicit reduction theory for Γ in the following
sense:
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(O1) There are finitely many Γ-orbits in Σ.
(O2) Every y ∈ C is contained in a unique cone in Σ.
(O3) Given any cone σ ∈ Σ with σ ∩ C 6= ∅, the group {γ ∈ Γ | γσ = σ} is

finite.

Choose representatives σ1, . . . , σn of the orbits of Γ in Σ, and let

Ω =
⋃

σi ∩ C.

One would hope that Ω is a fundamental domain for the action of Γ on C, but
unfortunately the properties (O1)–(O3) do not imply this. However Ω is close to
a fundamental domain: each of the σi has at worst a finite stabilizer subgroup in
Γ. If one wishes to refine Ω to an exact reduction domain, as Koecher does, one
must account for these finite stabilizers, for instance by passing to the barycentric
subdivision of the perfect pyramids and then taking an appropriate union of the
resulting cones. For our purposes this is not necessary, since explicit knowledge of
Ω and these stabilizers suffices for cohomology computations (cf. [1, §4]).

We conclude this section by presenting another viewpoint on the perfect pyra-
mids and the Koecher fan. This perspective does not appear in [20], but instead is
motivated by the theory of cores and co-cores in [3, Chapter II].

Definition 2.6. Let D be an admissible set in C. The Koecher polyhedron Π is
the convex hull in C of D.

The connection between Π and Σ is given by the following proposition:

Proposition 2.7. Assume that no perfect pyramid in Σ has a dead end. Then the
nonzero cones in the fan Σ are the cones on the faces of Π.

Proof. Because Π is a convex polyhedron, it suffices to see that the perfect pyramids
are the cones on the facets (maximal proper faces) of Π. So let y be a perfect form
with minimal vectors d1, . . . , dn and with perfect pyramid σ(y). The equation
〈x, y〉 = 1 defines a hyperplane in V that is a supporting hyperplane for Π (all
other d ∈ D satisfy 〈d, y〉 > 1, and Π is the convex hull of D). Since the di span
V , it follows that the convex hull of the di is a facet of Π. Thus σ(y) gives rise to
a facet F of Π, and σ(y) is the cone on F . Since we assume no perfect pyramids
have dead ends, property (v) on page 4 implies that the facets of Π meeting F in a
codimension one face correspond to perfect forms by a similar argument. Thus the
facets of Π are in bijection with the perfect pyramids. �

3. Quadratic forms over number fields and reduction theory

In this section we specialize the results of §2 to the setting of primary concern
to us. This recapitulates [20, §9].

Let F be a number field of degree d = r + 2s with r real embeddings and
s conjugate pairs of complex embeddings. For each pair of complex conjugate
embeddings, choose and fix one. We can then identify the infinite places of F with
its real embeddings and our choice of complex embeddings.

For each infinite place v of F , let Vv be the real vector space of n×n real symmet-
ric (respectively, of complex Hermitian) matrices Symn(R) (resp., Hermn(C)) if v is
real (resp., complex). Let Cv be the corresponding cone of positive definite (resp.,
positive Hermitian) forms. Put V =

∏

v Vv and C =
∏

v Cv, where the products
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are taken over the infinite places of F . We equip V with the inner product

(2) 〈x, y〉 =
∑

v

cv Tr(xvyv),

where the sum is again taken over the infinite places of F , and cv equals 1 if v is
real and equals 2 if v is complex.

The group G = GLn(R)
r ×GLn(C)

s acts on V by

(g · y)v =

{

gvyvg
t
v v real,

gvyvḡ
t
v v complex.

This action preserves C, and exhibits G as the full automorphism group of C.
Moreover, if G is the reductive group ResF/Q GLn, then we can identify the group
of real points G(R) with G. In fact, we can identify the quotient C/R>0 of C by
homotheties with the symmetric space X = G/KAG, where K ⊂ G is the maximal
compact subgroup and AG is the split component (the connected component of a
maximal Q-split torus in the center of G). Indeed, let Xn (respectively Yn) be the
symmetric space of noncompact type SLn(R)/ SO(n) (resp. SLn(C)/ SU(n)). Then
we have

X ≃ (Xn)
r × (Yn)

s × Z,

where Z is a euclidean symmetric space of dimension r+ s− 1.1 Now we also have
isomorphisms

(3) Symn(R)/R>0
∼→ Xn, Hermn(C)/R>0

∼→ Yn.

The identification C/R>0 ≃ X then follows, once one rewrites (3) as Symn(R) ≃
Xn × R>0 and Hermn(C) ≃ Yn × R>0.

Now we construct an admissible subset D of C. Let O be the ring of integers of
F . The nonzero (column) vectors On r {0} determine points in V via

(4) q : x 7−→ (xvx
∗
v).

Here ∗ denotes transpose if v is real, and conjugate transpose if v is complex.
We have q(x) ∈ C for all x ∈ On, and by analogy with Voronoi’s construction it is
natural to consider the set D obtained by applying q to the nonzero points. Indeed,
we have the following basic result of Koecher (cf. [20, Lemma 11]):

Proposition 3.1. The set

D =
{

q(x)
∣

∣ x ∈ On r {0}
}

is admissible.

The group Γ = GLn(O) acts on C and takes D into itself. Thus we can find the
Koecher fan Σ. After passing to the symmetric space X , we obtain a decomposition
of X into cells with Γ-action that can then be used to compute the cohomology of
Γ and its finite-index subgroups as in [1, 15] and other places.

Remark. One can think of the cone C as being the space of real-valued positive
quadratic forms over F in n-variables. Specifically, if A ∈ C is a tuple (Av), then
A determines a quadratic form QA on Fn by

QA(x) =
∑

cvx
∗
vAvxv,

1In terms of the associated discrete groups, this flat factor Z accounts for the difference between
SLn(O) and GLn(O); the former is infinite index in the latter.
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where cv is defined in (2) and ∗ is defined as in (4). However, not every quadratic
form of interest comes from a matrix A that is the image of a matrix from F under
the embeddings. For instance, in general the perfect forms will not come from
matrices over F in this way.

4. The Koecher polyhedron and fan for the field of discriminant −23

From now on, we set n = 2 and consider a particular mixed signature cubic field,
namely F = Q[x]/(f(x)), where f(x) = x3−x2+1. If we choose a root t of f , then
the field F has ring of integers O = Z[t], discriminant −23, and class number one.
We remark that much of what we do can be extended to other mixed signature
cubic fields, but for this investigation we focus on F to honor its special place in
the menagerie of complex cubics.2

Since F has signature (1, 1), the space of forms V is the product

V = Sym2(R)×Herm2(C).

The quotient X = C/R>0 is 6-dimensional.
We now present representatives for the Γ = GL2(O) orbits of perfect forms.

These were computed using the algorithm in [16], which is a recasting of Voronoi’s
original algorithm to the setting of self-adjoint homogeneous cones. In particular,
the algorithm begins with an initial perfect form and then identifies the neighbors
of the corresponding perfect pyramid. To find the initial perfect form, we computed
a large enough part of the Koecher polyhedron Π (Definition 2.6) to identify a facet.

In our computation, we found that there are nine Γ-orbits of perfect forms, which
thus give rise to nine Γ-orbits of perfect pyramids. Seven of these orbits consist of
simplicial cones (each with seven spanning vectors); the remaining two classes of
cones are spanned by eight and nine vectors.

Theorem 4.1. A perfect binary form over F has minimal vectors that are GL2(O)-
conjugate to exactly one of the following sets (each vector d in these lists is a

2For instance, it appears first in lists of cubic fields ordered by the absolute value of their
discriminants. It appears often in algebraic number theory courses since its Galois closure is the
Hilbert class field of Q(

√
−23).
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representative of a pair ±d of minimal vectors):

{[

1
0

]

,

[

0
1

]

,

[

1
1

]

,

[

t2 − t
t2

]

,

[

−t
−t

]

,

[

1
−t2 + 1

]

,

[

0
−t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

−t
−t

]

,

[

1
−t2 + 1

]

,

[

t2 − t
0

]

,

[

0
−t

]

,

[

t2 − t
t2

]}

,

{[

1
0

]

,

[

0
1

]

,

[

1
1

]

,

[

t2

1

]

,

[

−t2 + 1
−t2

]

,

[

−t
0

]

,

[

−t
−t

]

,

[

1
−t2 + 1

]

,

[

0
−t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

1
1

]

,

[

t2

1

]

,

[

t2 − t
t2

]

,

[

1
−t2 + 1

]

,

[

0
−t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

1
1

]

,

[

−t
−t

]

,

[

t2 − t
0

]

,

[

t2 − t
t2

]

,

[

0
−t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

0
−t

]

,

[

t2

t2

]

,

[

−t
−t

]

,

[

t2 − t
0

]

,

[

−1
−t

]

,

[

t
t2

]}

,

{[

1
0

]

,

[

0
1

]

,

[

1
1

]

,

[

t2 − t
t2

]

,

[

−t
−t

]

,

[

t2

t

]

,

[

1
−t2 + 1

]}

,

{[

1
0

]

,

[

0
1

]

,

[

t2

t2 − t

]

,

[

1
t2 − t

]

,

[

−t
0

]

,

[

1
t2

]

,

[

t2 − t
−t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

1
1

]

,

[

−t
0

]

,

[

t2 − t
−t

]

,

[

−t2

−t2 + t

]

,

[

t2 − t
t2 − t

]}

.

Using the data in Theorem 4.1, we can compute the complete combinatorial
structure of the fan Σ. In particular we can enumerate the GL2(O)-orbits of the
lower-dimensional cones of Σ. The results are given in Table 3. For later purposes,
we record the following facts about Σ, which represents the information we need
for our purposes. Propositions 4.2 and 4.3 are proved by direct computation.

Proposition 4.2.

(i) All cones up to dimension 6 in the Koecher fan are simplicial.
(ii) All 1-cones lie in the boundary ∂C.
(iii) One of the two orbits of 2-cones lies in ∂C; a representative has spanning

vectors

{[

1
0

]

,

[

t
0

]}

.

The other orbit, with representative spanned by

(5)

{[

1
0

]

,

[

0
1

]}

.

meets C.
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(iv) There are ten orbits of 3-cones, represented by
{[

1
0

]

,

[

0
1

]

,

[

0
−t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

1
−t2 + 1

]}

,

{[

1
0

]

,

[

0
1

]

,

[

t− 1
−t+ 1

]}

,

{[

1
0

]

,

[

0
1

]

,

[

−t
−t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

t
1

]}

,

{[

1
0

]

,

[

0
1

]

,

[

t2 − t+ 1
t− 1

]}

,

{[

1
0

]

,

[

0
1

]

,

[

−t+ 1
−t2 + t

]}

,

{[

1
0

]

,

[

0
1

]

,

[

t2

t2

]}

,

{[

1
0

]

,

[

0
1

]

,

[

−t2 + t
t2 − t+ 1

]}

,

{[

1
0

]

,

[

0
1

]

,

[

1
1

]}

.

All 3-cones meet the interior of C.
(v) There are thirty-one orbits of 4-cones. Representatives have spanning vec-

tors given by the following list (each pair in this list should be supplemented
by the spanning vectors of the cone (5)).
{[

1
−t2 + 1

]

,

[

0
−t

]}

,

{[

−t
−t

]

,

[

0
−t

]}

,

{[

−t+ 1
−t2 + t

]

,

[

t2 − t+ 1
t− 1

]}

,

{[

−t
−t

]

,

[

1
−t2 + 1

]}

,

{[

t2

t2

]

,

[

t
1

]}

,

{[

−t
0

]

,

[

0
t2 − t

]}

,

{[

t2 − t
t2

]

,

[

1
−t2 + 1

]}

,

{[

0
−t

]

,

[

t− 1
t2 − t

]}

,

{[

−1
−t+ 1

]

,

[

−t2 + t
t2 − t+ 1

]}

,

{[

t2 − t
t2

]

,

[

−t
−t

]}

,

{[

−1
t2 − t

]

,

[

t− 1
t2 − t

]}

,

{[

−t
0

]

,

[

−t2 + t
t2 − t+ 1

]}

,

{[

−t
0

]

,

[

−1
−t+ 1

]}

,

{[

−1
t2 − t

]

,

[

0
−t

]}

,

{[

1
1

]

,

[

0
−t

]}

,

{[

t2 − t
−t2 + t

]

,

[

−t+ 1
t− 1

]}

,

{[

1
1

]

,

[

1
−t2 + 1

]}

,

{[

t2

−t2 + 1

]

,

[

t
−t

]}

,

{[

−t
0

]

,

[

−t+ 1
t− 1

]}

,

{[

−t
0

]

,

[

t2 − t
−t2 + t

]}

,

{[

t2 − t
−1

]

,

[

−t+ 1
−t2 + t

]}

,

{[

1
1

]

,

[

t2 − t
t2

]}

,

{[

−t
t2

]

,

[

t
−t

]}

,

{[

−t
t2

]

,

[

t2

−t2 + 1

]}

,

{[

−t2 + t
t2 − t+ 1

]

,

[

−t+ 1
−t2 + t

]}

,

{[

−t2

t2 − t

]

,

[

−t2 + t
−t+ 1

]}

,

{[

−t2 + 1
1

]

,

[

−t
−t2 + 1

]}

,

{[

1
t2

]

,

[

−t2 + 1
1

]}

,

{[

t2

1

]

,

[

t2 − t
t2

]}

,

{[

−t
0

]

,

[

t
1

]}

,

{[

t2 − t
−t2 + t

]

,

[

t2

−t2 + t

]}

.

Proposition 4.3. Let γ and δ denote the matrices

γ =

[

0 1
1 0

]

, δ =

[

0 −1
1 0

]

.

(i) The 2-cone that meets C has stabilizer of order 8, isomorphic to D4 gen-
erated by γ and δ.

(ii) The stabilizers of the 3-cones are given in Table 1.
(iii) The stabilizers of the 4-cones are given in Table 2.

Remark. A consequence of the computations in this section is that the Koecher
fan has no dead ends, in the sense of item (v) on page 4. Thus the cones in the
Koecher fan are in bijection with the cones on the faces of the Koecher polyhedron,
as in Proposition 2.7. We expect this is always true for GLn over number fields
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when D is constructed as in Proposition 3.1. We do not know if this is true for
general admissible sets D, although we expect not, since dead ends do occur in
other generalizations of Voronoi’s theory [12, §3].

5. Cohomology, the Koecher complex, and the sharbly complex

We now turn to the cohomology spaces H∗(Γ;C), where Γ ⊂ GL2(O) is now a
congruence subgroup. This is isomorphic toH∗(Γ\X ;C). Since X is 6-dimensional,
we have Hi(Γ;C) = 0 unless 0 ≤ i ≤ 6. Since G mod its radical has Q-rank 1,
by the Borel–Serre vanishing theorem [5] we have Hi(Γ;C) = 0 if i = 6. Thus
the cohomological dimension ν of any Γ is 5. One can show that the cuspidal
cohomology (the part of the cohomology corresponding to cuspidal automorphic
forms) only occurs in degrees 2, 3, 4, and general results imply that we only need
to compute one of these groups. Thus we focus on H4(Γ;C); as we shall see this is
the easiest group for us to compute.

We now describe the techniques we use to compute cohomology and the action
of the Hecke operators. Similar techniques were used in [1, 15]. For more details
about the complexes we use (in the setting of GLn /Q), see [2].

Let T be the Tits building for GLn /F . Thus T is a simplicial complex with
k-simplices given by the proper flags in Fn of length (k+1). By the Solomon–Tits
theorem, T has the homotopy type of a bouquet of (n−2)-spheres, and in particular
has reduced homology concentrated in dimension n− 2. One can construct classes
in H̃n−2(T ) by taking the fundamental classes of apartments: one chooses a basis
E = {v1, . . . , vn} of Fn and considers all the possible flags that can be constructed
from E by taking spans of permutations of subsets. By appropriately choosing signs
one obtains a class 〈v1, . . . , vn〉 ∈ H̃n−2(T ). It is known that such classes span the
homology. We have an action of G(Q), and by definition, the Steinberg module Stn
is the G(Q)-module H̃n−2(T ).

According to the Borel–Serre duality theorem [5], for any arithmetic subgroup
Γ ⊂ G(Q) we have

Hν−k(Γ;C)
∼−−−→ Hk(Γ; Stn ⊗ C).

Thus to compute the cohomology of Γ, we need to take a resolution of the Steinberg
module. We work with two different complexes; each has features that help us deal
with the two sides of our computational problem, namely computing H∗ as well
as the action of the Hecke operators. The first, the Koecher complex, comes from
the geometry of the Koecher polyhedron. It has the advantage that it is finite mod
Γ, but it does not admit an action of the Hecke operators. On the other hand the
second, the sharbly complex, does admit a Hecke action, but unfortunately it is not
finite mod Γ.

Recall that Σ is the fan of Koecher cones in the closed cone C. After we mod
out by homotheties, the nonzero cones in Σ determine cells in the quotient X =
(C r {0})/R>0. We let K∗ be the oriented chain complex on these cells, and let
∂K∗ be the subcomplex generated by the cells contained entirely in the boundary
∂X = X\X . The Koecher complex K∗ is the quotient complex K∗/∂K∗. We can
construct a map

(6) K1 −→ St2

as follows. Let {e1, e2} be the standard basis of F 2. By (iii) of Proposition 4.2,
nontrivial generators of K1 correspond to the images of the oriented 2-cones in the
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GL2(O)-orbit of the cone spanned by q(e1), q(e2). Orient this cone by taking the
spanning points in this order, and then map it to the class of the corresponding
apartment. This leads to a diagram

K∗ −→ St2,

which gives the desired resolution.
We now turn to the sharbly complex. Recall that for any x ∈ O2 r {0}, we have

constructed a point q(x) ∈ C (see (4)). Write x ∼ y if q(x) and q(y) determine the
same point in X . Let Sk, k ≥ 0, be the Γ-module Ak/Ck, where Ak is the set of
formal C-linear sums of symbols u = [x1, . . . , xk+2], where each xi is in O2 r {0},
and Ck is the submodule generated by

(i) [xσ(1), . . . , xσ(k+2)]− sgn(σ)[x1, . . . , xk+2],
(ii) [x, x2, · · · , xk+2]− [y, y2, . . . , yk+2] if x ∼ y, and
(iii) u if x1, · · · , xk+2 are contained in a hyperplane (we say u is degenerate).

We define a boundary map ∂ : Sk+1 → Sk by

(7) ∂[x1, · · · , xk+2] =

k+2
∑

i=1

(−1)i[x1, · · · , x̂i, . . . , xk+2],

where x̂i means omit xi. The resulting complex S∗ is called the sharbly complex.
We have a map S0 → St2 analogous to (6), and the sharbly complex provides a
resolution of St2.

Recall that all Koecher cones of dimension ≤ 6 are simplicial (Proposition 4.2,
(i)) Thus one can identify Ki with a subgroup of Si for i ≤ 5. This identification
is compatible with the boundary maps, so we can think of K∗ as being a subcom-
plex of S∗ in these degrees. Since our main focus is computing H4, we will work
exclusively with Koecher/sharbly chains in degrees 0, 1, 2, and therefore we regard
the corresponding Koecher chains as living in the sharbly complex. Propositions
4.2–4.3 give all the information we need for computing H4.

To compute the Hecke operators, one proceeds as follows. First one computes
the cohomology group H4(Γ\X) using the relevant part of K∗. Let ξ be a cycle
representing a class in H4. We write ξ as a finitely supported 1-sharbly cycle
ξ =

∑

n(u)u, where “cycle” means that the boundary vanishes modulo the action
of Γ. We can compute the Hecke operator T in the sharbly complex as

(8) T (ξ) =
∑

n(u)
∑

g

g · u,

where the inner sum is taken over a finite subset of G(Q). The right hand side of
(8) will usually be a 1-sharbly cycle that does not come from the Koecher complex,
and thus cannot obviously be written in terms of a fixed basis of H4. Therefore one
needs an algorithm to move T (ξ) back to a sum of cycles coming from K∗. How
this is done is described in the next section.

Remark. Since K∗ is not the chain complex of a simplicial complex, one cannot
directly regard it as a subcomplex of S∗. However, it is possible to canonically
refine K∗ to a complex K̃∗ that does sit naturally inside the sharbly complex: one
simply considers the simplicial complex on all simplices that arise by subdividing
the cells in K∗ without adding new vertices. One must also add new relations that
encode when an original Koecher cell is a union of simplices. Since we do not need
this construction in our paper, we omit the details.
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6. Reduction algorithm

In this section we describe how Hecke images T (ξ) as in (8) are rewritten as
a sum of sharbly cycles supported on Koecher cones. The main ideas and steps
already appear in [18], which studied the case of a GL2(O), where O is the ring
of integers of a real quadratic field. Here we focus on the differences between that
case and the current. We begin with some definitions.

Given a point q(x), x ∈ O2 r {0}, let R(x) be the unique point y ∈ O2 r {0}
such that y ∼ x and y is closest to the origin along the ray R≥0q(x). We call R(x)
the spanning point of x; for any sharbly u = [x1, . . . , xn] we can speak of its set
of spanning points. Any sharbly u = [x1, . . . , xn] determines a closed cone σ(u) in
C̄. We call a sharbly u = [x1, . . . , xn] reduced if its spanning points are a subset of
the spanning points of some fixed Koecher cone; similarly we call a sharbly cycle
reduced if each sharbly in its support is reduced. Note that u reduced does not
mean that σ(u) is the face of some perfect pyramid, and thus a reduced sharbly
cycle need not come from a Koecher cycle. However, it is clear that there are only
finitely many reduced sharbly cycles modulo Γ. Moreover, it is not difficult to write
a reduced sharbly cycle in terms of Koecher cycles directly, so our main challenge
is to rewrite T (ξ) in terms of reduced sharbly cycles.

We now introduce notions of size and reduction level help us gauge how close a
sharbly cycle is to being reduced. For any 0-sharbly u = [x1, x2], define the size of
u by Size(u) = |Norm(det(R(x1), R(x2)))|. We extend this to general sharblies by
first defining the size of u = [x1, . . . , xn] to be the maximum of the size of the sub
0-sharblies [xi, xj ], and then to chains ξ =

∑

n(u)u by taking the maximum size
found over the support of ξ.

We now focus on 0- and 1-sharblies. Given a 1-sharbly u = [x1, x2, x3], we call
its sub 0-sharblies edges, and define the reduction level of u to be the number of
edges that are not reduced. According to Proposition 4.2 the only GL2(O)-class of
reduced 0-sharbly is [e1, e2], and all we can often detect nonzero reduction level by
computing sizes, but we remark that there are subtleties: for instance, there exist
nonreduced 1-sharblies of reduction level zero. Similar phenomena occur in [15,18],
and reflect the infinite order units in O.

There are also edges with size 0 that are not reduced. More precisely, looking
at the edges of the standard 1-sharblies, we see that [x, cx] is reduced only if the
coordinates of x generate the ideal O and c ∈ {±t,±t−1} = {±ǫ,±ǫ−1}, where
ǫ = −t is a generator of O× mod torsion. Such 0-sharblies are of course degenerate
and are eliminated in the defining relations of S∗, but when one wants to write a
1-sharbly cycle in terms of reduced cycles they must be considered. Again, this is
not surprising since the same phenomena appear in [15,18]. However, if a 1-sharbly
contains an edge of the [x,±x], then the 1-sharbly is degenerate and is thrown away.

We now turn to the reduction algorithm. The overall structure proceeds as
described in [18], and we refer to there for more details. For each 1-sharbly u in
the support of a Hecke image, we Γ-equivariantly choose a collection of reducing
points for the nonreduced edges of u (see [18, §3.3]). These points, together with the
original spanning points of u, are assembled into a new 1-sharbly chain ξ′, following
the cases described in [18, §3.5]. The process is repeated until the 1-sharbly chain
is reduced.

In the current work, there are two new features to this algorithm:
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(i) The case of reduction level 0 is handled slightly differently than in [15,18].3

(ii) A new technique is used to choose reducing points Γ-equivariantly.

For item (i) see the next section; item (ii) is discussed in §8.

7. Reduction level 0

We consider 1-sharblies with all edges reduced, but that are not themselves
reduced. According to Proposition 4.2, there are two GL2(O)-orbits of 2-cones.
One is degenerate, and the other corresponds to a 0-sharbly of size 1. It follows
that the 1-sharblies with all edges reduced must have edges of determinant 0 or ǫk,
where ǫ is an infinite generator of the unit group O×, and k ∈ Z has large absolute
value. More precisely, write

O× ≃ 〈−1〉 × 〈ǫ〉.
Then up to GL2(O)-equivalence, we need only consider 1-sharblies with spanning

points e1, e2, and v =

[

a
b

]

, where

• a = (−1)faǫna and b = (−1)fbǫnb ,
• at least one of |na|, |nb| is strictly greater than 1, and
• both na, nb are non-zero.

We now describe how to write [e1, e2, v] in terms of reduced 1-sharblies. We do
this by replacing [e1, e2, v] by a sum of 1-sharblies that are GL2(O)-equivalent to

3-cones listed in Proposition 4.2. First introduce new vertices va =

[

a
0

]

, vb =

[

0
b

]

and edges [va, v], [va, e1], [va, e2], [vb, va], [vb, v], and [vb, e2] (cf. the left of Figure 1.)
Now we treat each region Ai separately, depending on a variety of cases. Given

z = (−1)fǫn ∈ O×, let I(a) ⊂ O× denote the list

I(z) = [z0, z1, z2, . . . , z|n|],

where zi = (−1)f ǫi if n ≥ 0, and zi = (−1)f ǫ−i if n < 0. For example, if z = −ǫ3,
then I(z) is the list [−1,−ǫ,−ǫ2,−ǫ3].

By construction, the region A0 is already reduced. In fact, we have

[v, va, vb] = γ · [e1 + e2, e1, e2],

where γ =

[

a 0
0 b

]

∈ GL2(O).

For the regions A1, A2, along the edge [va, e1] we introduce vertices

εa =

{[

z
0

] ∣

∣

∣

∣

z ∈ I(a)
}

Note that # I(a) ≥ 2. If # I(a) = 2, then no new vertices are added. Otherwise,
let ε0a be εa with the first and last vector removed. Construct edges

{[w, v] | w ∈ ε0a}, {[w, e2] | w ∈ ε0a}, and

{[(εa)i, (εa)i+1] | i = 1, . . . ,#εa − 1}.
In A1 this creates the 1-sharblies [v, (εa)i, (εa)i+1]. These are reduced. Indeed, if
na ≥ 0, then

[v, (εa)i, (εa)i+1] = γ · [e1, e2, ǫe2],

3We also remark that for reduction level 1, only the second case of [18, §3.5 (III)] is needed.
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where γ =

[

0 b−1

ǫ−i ab−1ǫ−i

]

∈ GL2(O). If na < 0, then

[v, (εa)i, (εa)i+1] = γ · [e1, e2, ǫ−1e2],

where γ =

[

0 b−1

ǫi ab−1ǫi

]

∈ GL2(O). A similar argument applies to the new 1-

sharblies in A2, which are [e2, (εa)i+1, (εa)i]; thus they are also reduced.
The regions A3, A4 are handled in the same manner. Along the edge [e2, vb] we

introduce the vertices

εb =

{[

0
z

] ∣

∣

∣

∣

z ∈ I(b)
}

.

As before # I(b) ≥ 2, and we put ε0b to be εb with the first and last vector removed.
Add edges

{[w, v] | w ∈ ε0b}, {[w, va] | w ∈ ε0b}, and

{[(εb)i, (εb)i+1] | i = 1, . . . ,#εb − 1}.

The 1-sharblies added in region A3 are [va, (εb)i, (εb)i+1]; those added in region A4

are [v, (εb)i+1, (εb)i]. Both types are reduced as above. The result, after completing
all steps in this section, is the chain of 1-sharblies depicted in the right of Figure 1.

8. Normal forms

An important aspect of the reduction algorithm is choosing reducing points Γ-
equivariantly. This means the following. Suppose that u and u′ are two 1-sharblies
that appear in a 1-sharbly cycle ξ mod Γ with coefficient 1, and that an edge [x1, x2]
of u cancels an edge [x′

1, x
′
2] of u

′ when ∂ξ is taken mod Γ; that is, there exists
some g ∈ GL2(O) such that g · [x1, x2] = −[x′

1, x
′
2]. Suppose further that these two

edges are not reduced. Then when executing the reduction algorithm we begin by
choosing reducing points w,w′ for them, and we require that g · w = w′. If this
Γ-equivariance is not respected, then the output of the algorithm will not be a cycle
mod Γ.

In [18, §§3.2–3.4], we presented a technique to do this. First we encode a 1-
sharbly cycle mod Γ as a collection of 1-sharblies with extra data attached to
their edges, called lift matrices. These are 2 × 2 matrices over O such that if
two edges are GL2(O)-equivalent, then their lift matrices are in the same GL2(O)-
orbit. Then when computing a reducing point for an edge, we first compute a
unique representative of the GL2(O)-orbit of its lift matrix. This representative is
then fed into the reducing point algorithm.

Thus we must explain how to compute a normal form for any lift matrix. We
use the technique of pseudo-matrices and their associated Hermite normal form [8].

Definition 8.1. A pseudo-matrix is a pair (I, A), where A = (aj,l) is an m × r
matrix with entries in F , and I = (ai) is a sequence of fractional ideals called
coefficient ideals.

Definition 8.2. A pseudo-matrix (I, A) is in Hermite normal form if there are
s ≤ m, 1 ≤ i1 < · · · < is such that for 1 ≤ l < ij, we have aj,l = 0, aj,ij = 1, and

aj,l is reduced modulo aja
−1
l , and aj,l = 0 for j > s.
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We specialize to our case m = k = 2. For a matrix A, let Ai denote the
ith row. For a matrix A ∈ Mat2(O), let MA denote the O-module generated
by {A1, A2}. A pseudo-matrix consists of a triple [I1, I2, A], where Ii ⊆ O are
ideals, and A ∈ Mat2(O). For a pseudo-matrix A = [I1, I2, A], let MA denote the
O-module

MA = {a1A1 + a2A2 | ai ∈ Ii}.
Thus if A ∈ Mat2(O) and A = [O,O, A], then MA = MA.

Given a pseudo-matrix A = [I1, I2, A], Magma’s HermiteForm function returns
a pair H, T , where H is pseudo-matrix [J1, J2, H ] in Hermite normal form, and
T ∈ GL2(F ) satisfies

MH = MA and H = TA.

Note that while A and H have entries in O, the entries of T lie in F in general.
Note, however, that Ji · Ti ⊆ O2 for i = 1, 2. Since F is class number one, we can

pick generators gi ∈ O such that Ji = giO. Then giTi ∈ O2, and thus T̃ =

[

g1T1

g2T2

]

∈

GL2(O). Let H̃ =

[

g1H1

g2H2

]

. If A comes from a matrix A so that A = [O,O, A],

then we have H̃ = T̃A.
If we wish to use the theory of Hermite normal forms to produce normal forms

for matrices using the remark above, we need a section to the map

O → O/O×.

Let a ∈ O be the element for which we wish to produce a representative modulo
units. First construct the ideal a = aO. Then compute a Z-basis for a, and compute
the Hermite normal form (over Z) of the matrix of this basis. This will produce a
sequence L ⊂ O which generates a. In Magma, we create another ideal b generated
by L. Note that

(i) b = a.
(ii) The generators b only depend on the ideal a, not the original choice of

generator a.

Since F is class number one, Magma will produce a generator a0 for b, which only
depends on the generators L. This a0 is the representative for a modulo units.

This procedure, combined with Hermite normal form for pseudo matrices and
the remark above allow us to, given A ∈ Mat2(O), output a Hermite normal form

H̃ and transformation matrix T̃ such that

(i) H̃ = T̃A.

(ii) If A′ = gA for some g ∈ GL2(O), then H̃ ′ = H̃ .

This completes the computation of normal forms, but there is still one imple-
mentation detail of interest. Recall that we really only need the normal form to
ensure all reducing points are chosen Γ-equivariantly. A key step in computing a
reducing point is computing the cone containing the barycenter of the line through
q(v1) and q(v2), where vi are the columns of the lift matrix (cf. [18, §3.3]). By
abuse of notation, we will call this the cone containing the lift matrix.

It turns out that for a typical lift matrix A arising in our computations, the cone
containing A is much closer to the “standard” cones (i.e., cones appearing as faces
of the perfect pyramids from Theorem 4.1) than the cone containing the Hermite

normal form H̃ . This means that if we use Hermite normal form as the input to
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our code that computes reducing points, then our code will waste considerable time
trying to compute the cone containing H̃ .

We address this issue as follows by caching normal forms as we compute them.
Given a matrix A ∈ Mat2(O), we compute the pseudo matrix Hermite normal form
H. If H shows up on our master list, we return the associated normal form A0. If
H is not on the master list, we set A0 = A to be the normal form associated to
H. In practice we go ahead and compute the reducing point for A as well before
adding the data to the master list.

9. Computational results

We conclude by presenting our computational results, from both the cohomol-
ogy and elliptic curve sides. The techniques are very similar to that of [15], so
we will be brief. As before our programs were implemented in Magma [6]. We
remark that, as in [15], to avoid floating-point precision problems we did not use
the complex numbers C as coefficients for H4, but instead computed cohomology
with coefficients in the large finite field F12379. We expect that the Betti numbers
we report coincide with those one would compute for the group cohomology with
C-coefficients.

As in [15], we began by computing the dimension of H4 for a large range of
level. To determine if H4

cusp 6= 0, we experimentally determined the dimensions

of the subspace H4
Eis spanned by Eisenstein cohomology classes [19]. Such classes

are closely related to Eisenstein series. In particular the eigenvalue of Tq on these
classes equals Norm(q) + 1. We expect that for a given level n, the dimension of
the Eisenstein cohomology space depends only on the factorization type of n. Thus
initially we used some Hecke operators applied to cohomology spaces of small level
norm to compute the expected Eisenstein dimension for small levels with different
factorization types. The result can be found in Table 4. After compiling this table,
we were able to predict which levels had cohomology in excess of the Eisenstein
subspace, and thus gave candidates for cuspidal classes.

Next we computed the Hecke operators. Our primary focus was to find eigen-
classes with rational eigenvalues, and in fact this was almost always the case: for all
levels except level norm 529 = 232, the Hecke eigenvalues were rational. Altogether
we computed the cohomology at 308 different levels, which includes all ideals with
level norm ≤ 835.

We now turn to the elliptic curve side. We compiled a list of elliptic curves over
F of small norm conductor simply by searching over a box of Weierstrass equations.
More precisely, for a positive integer B, let

SB =
{

c0 + c1t+ c2t
2
∣

∣ |ci| ≤ B, 0 ≤ i ≤ 2
}

,

be a boxed grid of size (2B+1)3 inside the lattice of algebraic integers in F , centered
at the origin. We considered equations of the form

E : y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6,with a1, a2, a3, a4, a6 ∈ SB.

and took B = 2. For each non-zero discriminant ≤ 10000000, we kept those of norm
conductor ≤ 20000 to arrive at a list of elliptic curves of small norm conductor.
This consisted of 26445 curves lying in 1518 isomorphism classes. Of course with
such a naive method we have no way of knowing whether or not we have found all
isomorphism—or even isogeny—classes of curves up to some bound. Nevertheless,
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this enables us to obtain a list of curves of various conductors, which must then be
reconciled with the cohomology data.

Finally we compare the two sides. In every case, we found perfect agreement:

(i) In all cases where an eigenspace was one-dimensional with rational Hecke
eigenvalues, we found an elliptic curve over F whose point counts over finite
fields agreed with our Hecke data, at least within the range where we were
able to compute both sides. There were 44 levels where this occurred; the
curves are given in Table 5. Generators for the conductors of these curves
are given in Table 6.

(ii) For no level/conductor of norm ≤ 835 did we find a curve over F that was
not accounted for by a Hecke eigenclass, or a Hecke eigenclass that could
not be matched to a curve.

(iii) In 10 levels we encountered a two-dimensional eigenspace on which the
Hecke operators acted by rational scalar matrices. These were “old” coho-
mology classes and can be accounted for by cohomology classes at lower
levels. Table 7 records the data.

(iv) At norm level 529 = 232, we found a two-dimensional cuspidal subspace

where the eigenvalues live in Q(
√
5). The eigenvalues of this cohomology

class match those of the weight two newform of level 23.
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Order Group Generators
4 Z/2Z× Z/2Z −I, γδ

4 Z/2Z× Z/2Z −I,

[

1 −t2 + 1
0 −1

]

4 Z/2Z× Z/2Z −I, γ
4 Z/2Z× Z/2Z −I, γ

4 Z/2Z× Z/2Z −I,

[

−1 0
t 1

]

2 Z/2Z −I
2 Z/2Z −I
4 Z/2Z× Z/2Z −I, γ
2 Z/2Z −I

12 D6

[

1 1
−1 0

]

, γ

Table 1. The stabilizer groups of the 3-cones in the Koecher fan
Σ. See Proposition 4.3 for notation.
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Order Group Generators

4 Z/2Z× Z/2Z −I,

[

1 −t2 + 1
0 −1

]

2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I

8 D4 γδ,

[

0 −t2 + t
−t 0

]

2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I

4 Z/2Z× Z/2Z −I,

[

−1 t2 − t
0 1

]

4 Z/2Z× Z/2Z −I,

[

1 1
0 −1

]

4 Z/2Z× Z/2Z −I, γ
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I

4 Z/2Z× Z/2Z −I,

[

−t t2

−t t

]

2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I
2 Z/2Z −I

4 Z/4Z

[

t2 1
−t2 + t −t2

]

4 Z/2Z× Z/2Z −I,

[

−1 0
t 1

]

4 Z/2Z× Z/2Z −I,

[

t2 − t −t2 + t
t2 −t2 + t

]

Table 2. The stabilizer groups of the 4-cones in the Koecher fan
Σ. See Proposition 4.3 for notation.
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k 1 2 3 4 5 6 7
Nk 1 2 10 31 47 35 9

Table 3. The number Nk of GL2(O)-orbits of cones of dimension
k in the Koecher fan Σ.

Factorization of n p p2 pq p3 pq2 pqr

dimH4
Eis(Γ0(n)) 3 5 7 7 11 15

Table 4. Expected dimension of Eisenstein cohomology
H4

Eis(Γ0(n)) in terms of the prime factorization of n. Prime
ideals are denoted by p, q, r.
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Norm(n) a1 a2 a3 a4 a6
89 t− 1 −t2 − 1 t2 − t t2 0
107 0 −t −t− 1 −t2 − t 0
115 −t2 + t− 1 −t2 + 1 t− 1 −1 −t2

136 −t2 −1 −t2 + 1 t+ 1 0
161 t2 − t− 1 −t2 + t− 1 t2 − t+ 1 t2 − t t− 1
167 t2 + 1 t+ 1 t2 + t− 1 −t2 − t+ 1 −t2 + t+ 1
185 t −t2 + t+ 1 t+ 1 0 0
223 1 t2 t2 + t− 1 −t2 + t− 1 1
253 −1 −t2 − t −t2 − t −t2 − t 0
259 0 1 −t2 − t− 1 t2 − t+ 1 −t2 − t+ 1
275 −t2 + t t t2 − t 0 0
289 −1 t2 − t t 1 0
293 t2 − 1 −t+ 1 t2 − t+ 1 0 0
344 t− 1 −t2 − t −t2 + t+ 1 t2 − 1 0
359 −t2 + 1 t+ 1 t2 + 1 t2 − t −t+ 1
385 −t2 −t2 − t− 1 −t2 − 1 t2 + t −t2 + 1
392 −t2 + 1 −t2 + t+ 1 −t+ 1 t2 − 1 t
440 −t2 + 1 −t2 − t+ 1 −t2 −t 0
449 −t2 1 −t2 + t+ 1 t+ 1 0
475 0 −t t2 + t t2 − t+ 1 −t2 + 1
503 −t2 + t −t2 + t+ 1 −t2 + t −t2 + t 0
505 t2 − t t2 − t+ 1 t2 + t t2 − t+ 1 −t2 + 1
505 t2 − t− 1 t2 − 1 0 t− 1 0
512 0 t2 + 1 0 t2 0
553 t 1 t 0 0
593 t −t− 1 t2 −t2 + t+ 1 0
595 −t2 + t− 1 −t2 + t+ 1 −t2 + t+ 1 −t2 + t+ 1 0
625 t −t− 1 t2 + 1 1 −t2

649 −t2 − t− 1 −t 0 −t2 + t− 1 0
665 −t −t2 + 1 −t2 + t −t2 + t 0
685 t2 − 1 −t2 + t −t2 + 1 −t− 1 t2

712 2t2 − t− 1 −t2 − 2t+ 2 t+ 2 2t2 + 2t −2t2 − t
719 −t2 + t −t2 + t− 1 −1 0 0
719 t2 − t− 1 −t2 + t− 1 0 t2 − t 0
721 −t2 + t+ 1 −t2 + t− 1 t2 + 1 −t− 1 −t+ 1
727 1 t2 + t− 1 t2 − t −1 0
773 2t2 − 1 2t+ 1 2t2 + 2t −t2 + 2t+ 1 −2t2 − t
805 −t2 − 2t+ 2 −2t2 + 2t t2 − t− 1 −2t2 + t+ 2 −2t2 − t
808 −t− 2 0 2t2 − t− 2 −2t2 + 2t+ 2 −2t2 − t
809 −t2 + t− 1 t2 − 1 t2 + 1 t2 − t −t2

809 t2 − 1 t2 + t− 1 t2 − t t2 − t 0
817 −t2 + t −t2 t2 − t+ 1 −1 0
829 0 −t2 t2 − t− 1 0 0

Table 5. Equations for elliptic curves over F . Here t is a root of
x3 − x2 + 1.
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N(n) generator N(n) generator N(n) generator N(n) generator
89 4t2 − t− 5 107 −5t2 + 3t 115 −2t2 − 2t− 3 136 6t2 − 2t− 2
161 −5t2 + 5t+ 4 167 −5t2 + 3t− 3 185 −t2 − 5t+ 4 223 6t2 − 5t− 2
253 7t2 − 5t− 5 259 4t2 − 7t− 1 275 8t2 − 2t− 3 289 3t2 − 7t− 2
293 −5t2 − 2t− 2 344 6t2 − 2t− 8 359 7t2 − 6t− 2 385 −6t2 + 7t+ 5
392 −8t2 + 6t+ 6 440 8t2 + 2t− 6 449 t2 − 8t 475 −4t2 − 7t
503 t2 − t− 8 505 −2t2 − 7t+ 2 505 −8t+ 1 512 8
553 9t2 − 4t− 2 593 8t2 − t− 9 595 11t2 − 4t− 6 625 8t2 + 3t+ 1
649 8t2 + t− 8 665 9t2 + t− 8 685 −7t2 + 5t− 7 712 6t2 − 10t− 8
719 t2 − t− 9 719 11t2 − 4t− 5 721 8t2 − 9 727 10t2 − 7t− 7
773 −3t2 + 12t− 5 805 3t2 − 6t− 10 808 −6t2 − 2t− 4 809 9t2 − 9t− 1
817 −t2 − 7t− 8 829 6t2 − t− 10

Table 6. Generators for ideals arising as conductors of elliptic
curves. Here t is a root of x3−x2+1. The two curves labelled 809
in Table 5 share the level of norm 809 in this table. The curves
labelled 505 and 719 have different conductors, as indicated by the
levels in this table.

N(n) generator Norm of original level
445 2t2 − 5t− 8 89
535 −7t2 + 8t+ 2 107
575 −9t2 + t+ 9 115
623 10t2 + 2t− 7 89
680 −6t− 8 136
712 6t2 − 10t− 8 89
749 −8t2 + t− 2 107
805 −t2 + 10t+ 4 161
805 3t2 − 6t− 10 115
835 −10t2 + 8t− 1 167

Table 7. “Old” cohomology classes. In every instance the
eigenspace was two-dimensional, with the Hecke operators acting
by scalar matrices. The eigenvalues originally occur at the levels
in the third column. Here t is a root of x3 − x2 + 1.
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