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DEFEATING THE KALKA–TEICHER–TSABAN LINEAR

ALGEBRA ATTACK ON THE ALGEBRAIC ERASER

DORIAN GOLDFELD AND PAUL E. GUNNELLS

Abstract. The Algebraic Eraser (AE) is a public key protocol for shar-
ing information over an insecure channel using commutative and non-
commutative groups; a concrete realization is given by Colored Burau

Key Agreement Protocol (CBKAP). In this paper, we describe how to
choose data in CBKAP to thwart an attack by Kalka–Teicher–Tsaban.

1. Introduction

The Algebraic Eraser (AE), due to Anshel–Anshel–Goldfeld–Lemieux [1],
is a public key protocol for sharing information over an insecure channel
using commutative and noncommutative groups. The Colored Burau Key

Agreement Protocol (CBKAP) is a concrete realization of the AE based on
the braid group and finite general linear groups. The AE and CBKAP
have been proposed as a public key protocol suitable for use in low-resource
environments, such as passive RFID systems and remote-sensing networks.

In [4] Kalka–Teicher–Tsaban describe an attack on CBKAP based on
probabilistic group theory that tries to recover part of the private data in
CBKAP. This data consists of two matrices na, nb in a large finite general
linear group. Kalka–Teicher–Tsaban explain—under the assumption that
na and nb are chosen according to a certain probability distribution—how
to detect nontrivial relations that na, nb must satisfy. This then limits the
spaces in which na, nb live so that searching for them is feasible.

In this short note, we explain a simple technique for choosing na, nb that
defeats this attack.

2. The Algebraic Eraser Key Agreement Protocol and CBKAP

Following [1], we describe a protocol that allows two users (Alice and
Bob) to create a shared secret over a public channel. The Algebraic Eraser
protocol is built from the tuple

(G,M,N,Π, E,A,B,NA , NB),

where the publicly known elements are as follows:
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• G is a group, with identity element e.
• M,N are two monoids. The monoid M has a left G-action denoted
by (g,m) 7→g m. We denote the operation in M by a dot: ·. We
denote the semidirect product of M and G by M ⋊G, and write the
binary operation using ◦:

(m1, g1) ◦ (m2, g2) = (m1 ·
gm2, g1g2)

for all (m1, g1), (m2, g2) ∈ M ×G.
• Π: M → N is a monoid homomorphism.
• E is a function E : (N×G)×(M⋊G) → N×G, called E-multiplication,
defined as follows. For all (n, g) ∈ N ×G and all (m, g′) ∈ (M ⋊G)
we put

E((n, g), (m, g′)) :=
(

n · Π(gm) , gg′
)

∈ N ×G.

We denote E-multiplication by a star: E((n, g), (m, g′)) = (n, g) ∗
(m, g′).

• A,B ⊂ M ⋊ G are two E-commuting submonoids. Here by E-
commuting we mean

(Π(a), ga) ∗ (b, gb) = (Π(b), gb) ∗ (a, ga)

holds for all (a, ga) ∈ A, (b, gb) ∈ B.
• Two commuting submonoids NA, NB ⊂ N.

Now we describe how this data is used to form the AE Key Agreement

Protocol. The submonoids A,NA are assigned to Alice, while B,NB are
assigned to Bob. Alice chooses private keys

na ∈ NA, (a1, ga1), . . . , (ak, gak ) ∈ A

and then builds the public key

pA = (na, e) ∗ (a1, ga1) ∗ · · · ∗ (ak, gak ) ∈ N ×G.

Similarly, Bob chooses private keys

nb ∈ NB , (b1, gb1), . . . , (bℓ, gbℓ) ∈ B

and the public key

pB = (nb, e) ∗ (b1, gb1) ∗ · · · ∗ (bℓ, gbℓ) ∈ N ×G.

Given this data, Alice and Bob can then each compute one side of the
following equation, which constitutes the shared secret of the protocol:

(nb, e) · pA ∗ (b1, gb1) ∗ · · · ∗ (bℓ, gbℓ) = (na, e) · pB ∗ (a1, ga1) ∗ · · · ∗ (aℓ, gaℓ).

We note that, in practice, all data in the protocol would be assigned to Alice
and Bob by a trusted third party (TTP).

We now describe the Colored Burau Key Agreement Protocol, an explicit
instance of the AE. Choose n ≥ 8 even and let t = (t1, . . . , tn) be a tuple of
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variables. Define matrices xi(t) by

x1(t) =











−t1 1
1

. . .

1











,

and for i = 2, . . . , n− 1 by

xi(t) =















1
. . .

ti −ti 1
. . .

1















.

Fix a finite field F. The matrices xi(t) generate a subgroup

M ⊂ GL(n,F(t1, . . . , tn−1)).

Let G = Sn, the symmetric group on n letters, act on the ti by per-
mutations, and let si ∈ Sn be the simple transposition (i, i + 1). Then
the pairs {(xi(t), si)} then generate the semidirect product M ⋊ Sn inside
GL(n,F(t1, . . . , tn−1)) ⋊ Sn. Let N = GL(n,F) and choose n − 1 nonzero
elements τi ∈ N . The assignment ti 7→ τi defines a map Π: M → N .

To complete the description of CBKAP, we only need to specify the com-
muting monoids A,B ⊂ M and the E-commuting monoids NA, NB ⊂ N .
For the former, we can take A (respectively, B) to be the subgroup gener-
ated by the first (resp., last) (n − 2)/2 matrices xi(t). For the latter, we
can fix a matrix m ∈ N and then define NA = NB = F[m], where the latter
means all polynomials in m with coefficients in F that lie in N . How one
chooses m will be explained below in §4.

3. The Kalka-Teicher-Tsaban Attack

In [KTT] a practical linear algebraic attack on the AE is developed. The
attacker (called Eve) attempts to find Bob’s first private key nb ∈ NB . The
attack goes as follows. To attack the AE key agreement protocol, Eve creates
a spurious element

(α, e) ∈ A ⊂ M ⋊G.

Then (α, e) E-commutes with every element in B. In particular it E-
commutes with

(β, g) := (b1, gb1) ◦ · · · ◦ (bℓ, gbℓ),

given by taking the semidirect product of Bob’s second private keys. It
follows that

(Π(α), e) ∗ (β, g) = (Π(α)Π(β), g)

= (Π(β), g) ∗ (α, e) = (Π(β)Π(gα), g) ,
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and, therefore,

(1) π(α) ·Π(β) = Π(β) ·Π(gα).

Now Eve also knows Bob’s public key given by

(2) pB = (nb, e) ∗ (b1, gb1) ∗ · · · ∗ (bℓ, gbℓ) = (nb, e) ∗ (β, g) = (nbΠ(β), g) .

Combining (1) and (2) Eve obtains

Π(α) · n−1

b · pB = n−1

b · pB · Π(gα),

which may be rewritten as

(3) nb · Π(α) = pB · Π(gα) · p−1

B · nb.

The authors of [KTT] then assume that N is a subgroup of GL(n,F) for
some positive integer n and some finite field F, as is done in CBKAP. With
this assumption, and the assumption that it is possible to generate many
spurious elements (α, e) ∈ A ⊂ M ⋊ G, the authors show that it may be
possible for Eve to find nb by linear algebra: Eve uses the (α, e) to generate
many equations of the form

(4) nbyi = y′inb yi, y
′

i ∈ GL(n,F), i = 1, 2, 3, . . . .

With many such equations she can then try to solve for nb.

4. Defeating the Kalka-Teicher-Tsaban Attack

We now describe how the TTP can choose data so that Alice and Bob can
thwart Eve’s attack. The key is to take more care in choosing the matrix
m ∈ GL(n,F) that is used to construct the monoids NA, NB.

First, the TTP chooses E-commuting submonoids A,B by giving a set of
generators for each of these monoids.

Next, the TTP chooses an element (β, 1) out of the generators of B,
chooses constants cℓ ∈ F, and defines a matrix

m =
∑

ℓ

cℓ ·Π(β)
ℓ.

This matrix m is made public.
Then the TTP defines NA = NB = F[m] to be the set of all polynomials

in m with coefficients in F. These two submonoids clearly commute with
each other. Alice and Bob then choose first private keys na, nb by choosing
polynomials in the matrix m.

We claim that this defeats the attack. Indeed, suppose Bob chooses nb =
∑

ℓ νℓm
ℓ with νℓ ∈ F. This nb will be a solution to all the equations of

the form (3) and (4) that Eve can generate. But this does not give much
information about nb, since it is clear that any matrix of the form

nb ·
∑

ℓ

wℓ ·m
ℓ, wℓ ∈ F,

will also be a solution to (3) and (4) for any choice of wℓ ∈ F. In general
this is such a large collection of matrices that the equations (3) and (4) give
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no useful information. Thus Eve cannot feasibly recover Bob’s first private
key via this attack.

Remark. There is a variant protocol that deserves mention, in which the
TTP chooses commuting monoids A,B and gives B to Bob and only makes
A public. Thus B is kept secret and is only known to Bob. The TTP also
creates the matrix m out of a spurious element (β, 1) in B as above, and
makes m public. Using A and the matrix m, Alice can do a key exchange
with Bob. This protocol is what is used in potential RFID applications,
cf. [3, §1.4] and [2].
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