Skip to main content
Article
Analytic formulations for one-dimensional decay of rectangular homoepitaxial islands during coarsening on anisotropic fcc (110) surfaces
Physical Review B
  • Chi-Jen Wang, Iowa State University
  • Yong Han, Iowa State University
  • Holly L. Walen, Iowa State University
  • Selena M. Russell, Iowa State University
  • Patricia A. Thiel, The Ames Laboratory (U.S. Department of Energy) and Iowa State University
  • James W. Evans, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
1-1-2013
DOI
10.1103/PhysRevB.88.155434
Abstract

Submonolayer homoepitaxial fcc (110) systems display behavior reflecting strong anisotropy at lower temperatures, including one-dimensional decay during Ostwald ripening of rectangular islands maintaining constant width in the 〈001〉 direction. To appropriately describe this behavior, we first develop a refined continuum Burton-Cabrera-Frank formalism, which accounts for a lack of equilibration of island shape and importantly also for inhibited incorporation of adatoms at almost-faceted 〈1̄10〉 island edges through effective kinetic coefficients. This formalism is shown to describe accurately the adatom diffusion fluxes between islands and thus island evolution for a complex experimental island configuration, as confirmed by matching results from realistic atomistic simulations for this configuration. This approach also elucidates basic dependencies of flux on island geometry and temperature. Second, a further refinement is presented incorporating separate terrace and edge adatom density fields either in a continuum setting or alternatively in a spatially discrete diffusion equation setting. The second approach allows more flexibility and accuracy in accounting for edge-diffusion kinetics including corner rounding, a lack of equilibration of the edge adatom density atisland edges, and the effect of rare kinks onisland edges. Significantly, it suggests facile two-way corner rounding at the island periphery during island decay, contrasting the previous picture.

Comments

This article is from Physical Review B 88 (2013): 155434, doi: 10.1103/PhysRevB.88.155434, Posted with permission.

Copyright Owner
American Physical Society
Language
en
File Format
application/pdf
Citation Information
Chi-Jen Wang, Yong Han, Holly L. Walen, Selena M. Russell, et al.. "Analytic formulations for one-dimensional decay of rectangular homoepitaxial islands during coarsening on anisotropic fcc (110) surfaces" Physical Review B Vol. 88 Iss. 15 (2013) p. 155434-1 - 155434-10
Available at: http://works.bepress.com/patricia_thiel/119/