Photorefractive polymers have been extensively studied for over two decades and have found applications in holographic displays and optical image processing. The complexity of these materials arises from multiple charge contributions, for example, leading to the formation of competing photorefractive gratings. It has been recently shown that in a photorefractive polymer at relatively moderate applied electric fields the primary charge carriers (holes) establish an initial grating, followed by a subsequent competing grating (electrons) resulting in a decreased two-beam coupling and diffraction efficiencies. In this paper, it is shown that with relatively large sustainable bias fields, the two-beam coupling efficiency is enhanced owing to a decreased electron contribution. These results also explain the cause of dielectric breakdown experienced under large bias fields. Our conclusions are supported by self-pumped transient two-beam coupling and photocurrent measurements as a function of applied bias fields at different wavelengths.
Available at: http://works.bepress.com/partha_banerjee/25/
Permission documentation is on file.