Skip to main content
Article
Discrete Nonlinear Model with Substrate Feedback
Physical Review E (2002)
  • P. G. Kevrekidis, University of Massachusetts - Amherst
  • B. A. Malomed, Tel Aviv University
  • A. R. Bishop, Tel Aviv University
Abstract
We consider a prototypical model in which a nonlinear field (continuum or discrete) evolves on a flexible substrate which feeds back to the evolution of the main field. We identify the underlying physics and potential applications of such a model and examine its simplest one-dimensional Hamiltonian form, which turns out to be a modified Frenkel-Kontorova model coupled to an extra linear equation. We find static kink solutions and study their stability, and then examine moving kinks (the continuum limit of the model is studied too). We observe how the substrate effectively renormalizes properties of the kinks. In particular, a nontrivial finding is that branches of stable and unstable kink solutions may be extended beyond a critical point at which an effective intersite coupling vanishes; passing this critical point does not destabilize the kink. Kink-antikink collisions are also studied, demonstrating alternation between merger and transmission cases.
Publication Date
January 1, 2002
Publisher Statement
DOI: 10.1103/PhysRevE.66.046621
Citation Information
P. G. Kevrekidis, B. A. Malomed and A. R. Bishop. "Discrete Nonlinear Model with Substrate Feedback" Physical Review E Vol. 66 Iss. 4 (2002)
Available at: http://works.bepress.com/panos_kevrekidis/93/