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Abstract.

We study the dynamics of dark-bright solitons in binary mixtures of Bose gases at

finite temperature using a system of two coupled dissipative Gross-Pitaevskii equations.

We develop a perturbation theory for the two-component system to derive an equation

of motion for the soliton centers and identify different temperature-dependent damping

regimes. We show that the effect of the bright (“filling”) soliton component is to

partially stabilize “bare” dark solitons against temperature-induced dissipation, thus

providing longer lifetimes. We also study analytically thermal effects on dark-bright

soliton “molecules” (i.e., two in- and out-of-phase dark-bright solitons), showing that

they undergo expanding oscillations while interacting. Our analytical findings are in

good agreement with results obtained via a Bogoliubov-de Gennes analysis and direct

numerical simulations.
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1. Introduction

Macroscopic nonlinear excitations of atomic Bose-Einstein condensates (BECs) [1, 2]

have been a subject of intense theoretical and experimental research over the last

few years [3]. More specifically, matter-wave dark and bright solitons, that can be

formed in single-component BECs with repulsive or attractive interatomic interactions

respectively, have been observed in a series of experiments while their statics and

dynamics have been extensively studied theoretically in various settings (see, e.g., [4–6]

for recent reviews). Of particular interest are coupled dark-bright (DB) solitons that

may exist in binary mixtures of BECs with repulsive interatomic interactions (such as

ones composed by different hyperfine states of 87Rb atoms [7, 8]): these solitons are

frequently called symbiotic ones, as the bright soliton component (which does not exist

in the system with repulsive interactions [4]) can be supported due to the nonlinear

coupling with the dark soliton component. Such structures have recently been observed

experimentally in a 87Rb BEC mixture using a phase-imprinting method [9] or in

two counter-flowing 87Rb BECs [10, 11], while they have also been studied in various

theoretical works in continuum [10–13] and discrete [14] settings.

The above theoretical studies on atomic DB solitons have been performed in the

ideal case of zero temperature: in fact, finite-temperature induced dissipation of matter-

wave solitons have basically been studied, so far, in the simpler case of dark solitons

in single-component BECs [15–20]. In particular, this problem was first addressed in

Ref. [15] (see also Ref. [16]), where a kinetic-equation approach, together with a study

of the Bogoliubov-de Gennes (BdG) equations, was used. In that work, it was found

that the dark soliton center obeys an equation of motion of a harmonic oscillator, which

incorporates an anti-damping term accounting for the finite temperature effect. The

presence of this term alters the soliton trajectories so that the experimentally observed

dark soliton dynamics can be qualitatively understood: solitons either decay fast at

the rims of the BEC (for high temperatures) [21–23] or perform oscillations of growing

amplitude (for low temperature) [9, 24–26] and eventually decay. A similar equation

of motion for the dark soliton center was also derived in Ref. [17] by applying the

Hamiltonian approach of the perturbation theory for dark matter-wave solitons [6] to

the so-called dissipative Gross-Pitaevskii equation (DGPE). This model incorporates a

damping term (accounting for finite temperature), first introduced phenomenologically

by Pitaevskii [27], and later shown to be relevant from a microscopic perspective (see,

e.g., the review [28]). It is important to note that, as shown in Ref. [17], the analytical

results obtained in the framework of the DGPE were found to be in very good agreement

with numerical results obtained in the framework of the stochastic Gross-Pitaevskii

equation (SGPE); see, e.g., Ref. [29] for a review on the SGPE model. It should also be

mentioned that while the above works chiefly considered finite temperature effects for

the case of a single dark soliton, the DGPE model and the anti-damping-incorporating

ordinary differential equations (ODEs) for the soliton center were also examined in the

case of multiple dark solitons. In particular, the cases of two and three oscillating and
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interacting, anti-damped dark solitons were considered in Ref. [30].

In the present work, we study finite-temperature dynamics of DB solitons in

harmonically confined Bose gases. In particular, we adopt an effective mean-

field description and analyze theoretically and numerically a system of two coupled

DGPEs, describing the evolution of a binary quasi-one-dimensional (1D) BEC at finite

temperature. We extend the considerations of Ref. [17] and develop a Hamiltonian

perturbation theory for the two-component system at hand. This way, we obtain an

equation of motion for the DB soliton center, similar to the one derived in Refs. [15,17].

This equation, which includes an anti-damping term accounting for finite temperature,

provides a characteristic eigenvalue pair (i.e., a pair of solutions of the characteristic

equation associated with the linear equation of motion), which is connected to the

eigenvalue associated with the anomalous mode of the DB soliton. Performing a

Bogoliubov-de Gennes (BdG) analysis, we show that the anomalous mode eigenvalue

becomes complex as the dissipation (temperature-dependent) parameter is introduced,

leading to an instability of the DB soliton pair. The temperature-dependence of the

eigenvalues (determined analytically) is found to be in good agreement with the one of

the anomalous mode eigenvalue (determined numerically).

Furthermore, these considerations are generalized in the case of a DB soliton

“molecule”, composed by two-DB-solitons. In the latter setting, both configurations

featuring in-phase and out-of-phase bright components can be obtained in the trap [31].

We illustrate their dynamical instabilities as a function of temperature and capture them

analytically by means of coupled nonlinear ODEs accounting for the three ingredients

(trap restoring force, interaction between DB solitons and thermally induced anti-

damping). We show that, due to finite temperature, the nature of their interaction

(and collisions) changes: for short times individual solitons behave as repelling particles,

while for longer times they gain kinetic energy and completely overlap at the collision

point. Our analytical considerations and numerical results reveal a fundamental effect:

the partial stabilization that the bright (“filling”) soliton component offers to the

corresponding “bare” dark soliton against temperature-induced anti-damping. This way,

a significantly longer lifetime of the symbiotic (dark-bright) structure can be achieved,

in comparison to its bare dark soliton counterpart.

The paper is structured as follows. In section II we present the model and study

some of its basic properties such as the evolution to the equilibrium state. In section

III we develop the perturbation theory to derive and solve the equation of motion for

the single DB soliton; we also compare our analytical findings to numerical results. In

section IV we generalize relevant considerations to the case of multiple DB solitons, and

in section V we present our conclusions.
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2. The model and its basic properties

2.1. The system of dissipative Gross-Pitaevskii equations

We consider a two-component elongated (along the x-direction) repulsive Bose gas,

composed of two different hyperfine states of the same alkali isotope, and confined in a

highly anisotropic trap (such that the longitudinal and transverse trapping frequencies

are ωx ≪ ω⊥). In such a case, the system can be considered as quasi-1D and, hence,

the coupling constants take their effectively 1D form, namely gjk = 2~ω⊥ajk, where

ajk denote the three s-wave scattering lengths (note that a12 = a21) which account for

collisions between atoms belonging to the same (ajj) or different (ajk, j 6= k) species. Let

us now focus on the experimentally relevant case of a two-component BEC consisting

of two different hyperfine states of 87Rb, such as the states |1,−1〉 and |2, 1〉 used in

the experiment of Ref. [8], or the states |1,−1〉 and |2,−2〉 used in the experiments of

Refs. [10, 11]. In the first case, the scattering lengths take the values a11 = 100.4a0,

a12 = 97.66a0 and a22 = 95.00a0, while in the second case the respective values are

a11 = 100.4a0, a12 = 98.98a0 and a22 = 98.98a0 (where a0 is the Bohr radius). In either

case, it is clear that the scattering lengths and, accordingly, the effectively 1D coupling

constants take approximately the same values, say aij ≈ a and gij ≈ g = 2~ω⊥a,

respectively, which is what we will assume henceforth.

We now consider the case where the two-component Bose gas under consideration

is at finite temperature. In particular, we assume that the thermal modes of energies

> ~ω⊥ are at equilibrium, accounting for a heat bath in contact with the axial part

of the gas, while the modes in the x-direction are highly occupied so that the classical

field approximation is valid [32,33]. Then, extending considerations pertinent to single-

component Bose gases [28,29,32,33] to the two-component case, we may use the following

set of two coupled 1D SGPEs to describe the axial modes of the system:

i~∂tψj = [1− γj(x, t)]

(

− ~
2

2m
∂2xψj + V (x)− µj + g

2
∑

k=1

|ψk|2
)

ψj + ηj(x, t). (1)

Here, ψj(x, t) (j = 1, 2) are complex order parameters characterizing each component

of the binary Bose gas, m is the atomic mass, µj are the chemical potentials,

while V (x) = (1/2)mω2
xx

2 is the external trapping potential. Furthermore, ηj(z, t)

are complex Gaussian noise terms with correlations of the form 〈η∗j (x, t)ηj(x′, t′)〉 =

2~γj(x, t)kBTδ(x−x′)δ(t−t′), where brackets denote averaging over different realizations
of the noise. The strength of the latter can be calculated ab initio by the Keldysh self-

energy [32]; for thermal clouds close to equilibrium, the relevant integrals determining

the dissipation γj(x, t) can be expressed as follows:

γj(x) = π2βg2
∫

dk1
2π

∫

dk2
2π

∫

dk3
2π

2πδ(k1 − k2 − k3)δ(ǫ
(j)
c + ǫ

(j)
1 − ǫ

(j)
2 − ǫ

(j)
3 )

× [N1(1 +N2)(1 +N3) + (1 +N1)N2N3], (2)

where β = 1/kBT , ǫ
(j)
c are the condensate energies, ǫ

(j)
n are the energies of the n-th

excited states, N
(j)
n = [exp(β(E

(j)
n +V (x)+2g

∑2
k=1〈|ψk|2〉−µj))−1]−1 are Bose-Einstein
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distributions, while E
(j)
n and kn =

√

2mEn/~2 denote, respectively, the kinetic energies

and momenta of single particles in the n-th excited state. Physically speaking, Eq. (2)

describes the exchange of atoms between the thermal clouds and the condensates due

to elastic collisions; notice that in the above description we have taken into regard

exchanges up to the third excited state while, to leading order approximation, we

have omitted exchanges between the different hyperfine states (in other words, we have

considered the simplest situation where each condensate component interacts with its

own thermal cloud).

Under the above assumptions, the dissipation terms γj(x) may in principle be

calculated numerically, for several temperatures, as was done in the case of a single-

component Bose gas in Refs. [17]. In this work, it was shown that, sufficiently close

to the trap center (i.e., in the interval [−R/2, R/2], where R is the Thomas-Fermi

radius), the dissipation takes approximately constant values for a relatively wide range

of temperatures. Furthermore, as shown in Refs. [15, 16, 19] (see also the discussion in

Ref. [17,19] and, more recently, in Ref. [20]), the value of γ—which determines the dark

soliton’s life time—scales with temperature as γ ∝ T α, with 1 < α < 4; note that the

case γ ∝ T 4 corresponds to the regime kBT ≪ µ, while the case γ ∝ T corresponds to

the regime kBT ≫ µ (where µ is the chemical potential of the background Bose liquid).

Taking into regard the above findings, below we will consider the situation where

both dissipative terms γj are constant: such an assumption is consistent with our scope,

i.e., to analyze the dynamics of the DB-soliton near the center of the trap. Furthermore,

based on the fact that simulations investigating soliton dynamics in the framework of the

SGPE model were found to be in fairly good agreement with analytical and numerical

results relying on the respective DGPE model, below we will omit the noise terms

ηj(x, t); this way, we will use the following system of two coupled DGPEs to describe

the DB soliton dynamics in the two-component Bose gas at finite temperatures:

(i− γj)~∂tψj =

(

− ~
2

2m
∂2xψj + V (x)− µj + g

2
∑

k=1

|ψk|2
)

ψj . (3)

Note that the above model was recently used in Ref. [34], where the quantum Kelvin-

Helmholtz instability of a two-component BEC was studied.

The system of Eqs. (3) can be expressed in dimensionless form as follows. Measuring

the densities |ψj |2, length, time and energy in units of 2a, a⊥ =
√

~/ω⊥, ω
−1
⊥ and ~ω⊥,

respectively, Eqs. (3) become:

(i− γd)∂tud = − 1

2
∂2xud + V (x)ud + (|ud|2 + |ub|2 − µ)ud, (4)

(i− γb)∂tub = − 1

2
∂2xub + V (x)ub + (|ub|2 + |ud|2 − µ−∆)ub, (5)

where we have used the notation ψ1 = ud and ψ2 = ub, indicating that the component 1

(2) is supposed to support a dark (bright) soliton, and the respective chemical potentials

are now µ1 = µd = µ and µ2 = µb = µ+∆; in our considerations below we assume that

µd > µb, i.e., ∆ = −|∆| < 0. Finally, the external potential in Eqs. (4)-(5) takes the
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form V (x) = (1/2)Ω2x2, where Ω = ωx/ω⊥ ≪ 1 is the normalized trap strength; the

latter, along with the thermally induced damping parameters γd,b, are considered to be

small parameters of the system (these will be treated as formal perturbation parameters

in our analytical approximation – see below).

We should add a comment here about the relevant range of values of the

parameter γ. A number of recent experiments, including the ones in Hamburg [9, 25],

Heidelberg [24,26] and Pullman [10,11], have focused on regimes of very low temperature

where the effect of the term associated with γ is imperceptible (over the experimentally

relevant time scales). The focus of these experiments was on the soliton dynamics

and an effort was made (by operating at T/Tc ≤ 0.1) to correspondingly minimize

the thermal effects. It is easier to appreciate the latter features in the context of the

earlier experiments of the Hannover group [21,23], which were conducted in the regime

of T/Tc ≈ 0.5. In that realm, the relevant values of γ can be estimated to be up to

10−2 [35]. In what follows, we will treat γ generally as a free parameter, in order to

illustrate the available wealth of bifurcation and dynamical phenomena of this system.

Nevertheless, the reader more keen on the physical applications of the model to the

physics of finite-temperature BECs should keep in mind the above values as a guideline

towards the parameter regimes pertinent therein. We finally note that our analysis may

also be used as a theoretical basis for understanding results of future experiments on

dark and dark-bright solitons exploring finite-temperature effects (see, e.g., discussion

in the Supplemental Material of Ref. [10]).

2.2. Relaxation to the ground state of the system

Since our purpose is to study the dissipative dynamics of DB solitons in this setting, it

is natural to consider at first the dynamics of the pertinent background wave functions,

namely a Thomas-Fermi (TF) wave function for the ud component and a zero wave

function for the ub component. In particular, we will show that the coupled DGPEs

Eqs. (4)-(5), similarly to their one-component counterpart (see, e.g., discussion in

Ref. [36]), describe a relaxation process. Namely, as a result of the finite temperature,

the two components, starting (at t = 0) from suitable initial conditions, will evolve so

that, at sufficiently large times, ud will converge towards a TF cloud with the prescribed

value of the chemical potential µ, while ub will vanish.

To show that this is the case indeed, we examine the peak amplitudes Ud,b(t) of

the wave functions ud,b(x = 0, t), corresponding to their (absolute) values at the center

of the trap (i.e., at x = 0, where V (x) = 0 as well), and assume respective phases

θd,b(t). The evolution equations for Ud,b(t) and θd,b(t), which can directly be obtained

by introducing the ansatz ud,b = Ud,b(t) exp[−iθd,b(t)] into Eqs. (4)-(5), are of the form:

U̇d,b + γd,bUd,bθ̇d,b = 0, (6)

γdU̇d − θ̇dUd + (U2
d + U2

b − µ)Ud = 0 (7)

γbU̇b − θ̇bUb + (U2
b + U2

d − µ−∆)Ub = 0, (8)
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where overdots denote time derivatives. Next, utilizing Eqs. (6), we obtain from Eqs. (7)-

(8) the following system:

U̇d = − γ̃d
(

U2
d + U2

b − µ
)

Ud, (9)

U̇b = − γ̃b
(

U2
d + U2

b − µ−∆
)

Ub, (10)

where γ̃d,b ≡ γd,b/(1 + γ2d,b). It is clear that that the system of Eqs. (9)-(10) has a

fixed point (Ud0, Ub0) = (
√
µ, 0) [a similar analysis can be done for the fixed point

(Ud0, Ub0) = (0,
√
µ+∆)]. The evolution of small perturbations Ud1,b1 around this

fixed point can then readily be found introducing the ansatz Ud0(t) =
√
µ + Ud1(t)

and Ub0 = Ub1(t) into Eqs. (9)-(10) and linearizing with respect to Ud1,b1; this way, we

can easily solve the equations for Ud1,b1 and finally obtain the following approximate

expressions for the peak amplitudes of the wave functions:

Ud(t) ≈
√
µ+ (Ud(0)−

√
µ)e−2γ̃dµt, (11)

Ub(t) ≈ Ub(0)e
−γ̃b|∆|t, (12)

where Ud,b(0) are initial conditions. Thus, at sufficiently large times, the peak amplitude

of ud will decay to the value
√
µ, while the one of ub will become zero. Accordingly,

during the relaxation to equilibrium process, one may expect the following type of

evolution towards relaxation. If the ud component is initially a Thomas-Fermi (TF)

cloud of amplitude Ud(0), its density will evolve as,

|ud(x, t)|2 ≈ U2
d (t)− V (x). (13)

On the other hand, if the ub component has initially the form of an arbitrary localized

function, e.g., a Gaussian, of amplitude Ub(0), it will asymptotically approach the trivial

stationary state.

The above predictions can be directly compared to numerical simulations. In

particular, in Fig. 1 we show the evolution of a state characterized by the initial densities

|ud(x, 0)|2 = U2
d (0)− (1/2)Ω2x2 and |ub(x, 0)|2 = U2

b (0) exp [−2(x/d)2], with parameter

values Ud(0) = 0.86, Ub(0) = 0.6, Ω = 0.05 and d = 10; as found by direct numerical

integration of Eqs. (4)-(5), with µ = 1.3, |∆| = 0.1 and γd = γb = 0.05. The figure

clearly shows the validity of our analytical approximations: the ud component develops

into a TF cloud with chemical potential µ = 1.3, with the numerically found density

profile [solid (red) line] being in fairly good agreement with the analytical prediction of

Eq. (13) (dashed line); on the other hand, ub-component [solid (green) line] vanishes at

t ≈ 200, a time consistent with the slow time scale t∗ ≡ (γ̃b|∆|)−1 ≈ 200 suggested by

Eq. (12).

3. Dissipative Dynamics of a Single Dark-Bright Soliton

3.1. Analytical results

Having studied the relaxation process described by Eqs. (4)-(5), we will now proceed

to investigate, in the same framework, the dissipative dynamics of DB solitons. We
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Figure 1. (Color online) Time evolution of a state characterized by the densities

ud(x, 0)|2 = U2
d
(0) − (1/2)Ω2x2 and |ub(x, 0)|2 = U2

b
(0) exp

[

−2(x/w)2
]

, with

parameter values Ud(0) = 0.86, Ub(0) = 0.6, Ω = 0.05 and w = 10. The solid lines

show the density of the dark (red) and bright (green) component, while the dashed line

shows the analytical result of Eq. (11). The other parameter values used in Eqs. (4)-(5)

are µ = 1.3, |∆| = 0.1 and γd = γb = 0.05.

will assume that the dark soliton is on top of an already formed TF cloud with the

equilibrium density |ud,TF |2 = µ − V (x); this way, the density |ud|2 in Eqs. (4)-(5) is

substituted by |ud|2 → |ud,TF |2|ud|2. Furthermore, we introduce the transformations

t→ µt, x→ √
µx, |ub|2 → µ−1|ub|2, and cast Eqs. (4)-(5) into the following form:

i∂tud +
1

2
∂2xud −

(

|ud|2 + |ub|2 − 1
)

ud = Rd, (14)

i∂tub +
1

2
∂2xub −

(

|ub|2 + |ud|2 − µ̃
)

ub = Rb, (15)

where µ̃ = 1 +∆/µ and

Rd ≡ (2µ2)−1[2(1− |ud|2)V (x)ud + V ′(x)∂xud] + γdµ
−1∂tud, (16)

Rb ≡ µ−2[(1− |ud|2)V (x)ub + µγb∂tub]. (17)

while V ′(x) ≡ dV/dx. Equations (14)-(15) can be viewed as a system of two

coupled perturbed nonlinear Schrodinger (NLS) equations, with perturbations given

by Eqs. (16)-(17). In the absence of the perturbations, i.e., at zero temperature

(γb = γd = 0) and for the homogeneous system (V (x) = 0) subject to the boundary

conditions |ud|2 → 1 and |ub|2 → 0 as |x| → ∞, the NLS Eqs. (14)-(15) possess an exact

analytical one-DB-soliton solution of the following form:

ud(x, t) = cosφtanh[D(x− x0(t))] + i sinφ, (18)

ub(x, t) = ηsech[D(x − x0(t))]exp[ikx + iθ(t)], (19)

where φ is the dark soliton’s phase angle, cosφ and η represent the amplitudes of the

dark and bright solitons, and D and x0(t) are associated with the inverse width and the

center position of the DB soliton. Furthermore, k = Dtanφ = const and θ(t) are the
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wavenumber and phase of the bright soliton, respectively. The above parameters of the

DB-soliton are connected through the following equations:

D2 = cos2 φ− η2, (20)

ẋ0 = Dtanφ, (21)

θ(t) =
1

2
(D2 − k2)t + (∆/µ)t, (22)

with ẋ0 denoting the DB soliton velocity. Notice that the amplitude η of the bright

soliton, the chemical potential µ of the dark soliton, as well as the (inverse) width

parameter D of the DB soliton are connected to the number of atoms of the bright

soliton by means of the following equation:

Nb ≡
∫

R

|ub|2dx =
2
√
µη2

D
. (23)

Let us now employ the Hamiltonian approach of the perturbation theory for the

matter-wave solitons to study the dissipative dynamics of DB solitons. We start by

considering the Hamiltonian (total energy) of the system of Eqs. (14)-(15), in the absence

of the perturbations (i.e., for Rb = Rd = 0), namely,

E =
1

2

∫ +∞

−∞

Edx,

E = |∂xud|2 + |∂xub|2 + (|ud|2 + |ub|2 − 1)2 − 2(µ̃− 1)|ub|2. (24)

The energy of the system, when calculated for the DB soliton solution of Eqs. (18)-(19),

takes the following form:

E =
4

3
D3 + χ

(

1

2
D2sec2φ− ∆

µ

)

, χ =
Nb√
µ
. (25)

We now consider an adiabatic evolution of the DB soliton and, particularly, we assume

that, in the presence of the perturbations of Eqs. (16)-(17), the DB soliton parameters

become slowly-varying unknown functions of time t. Thus, the DB soliton parameters

become φ→ φ(t), D → D(t) and, as a result, Eqs. (20)-(21) read:

D2(t) = cos2 φ(t)− χ

2
D(t), (26)

ẋ0(t) = D(t)tanφ(t), (27)

where we have used Eq. (23). The evolution of the parameters φ(t), D(t) and x0(t) can

be found by means of the evolution of the DB soliton energy. In particular, employing

Eq. (25), it is readily found that

dE

dt
= 4ḊD2 + χD sec2 φ(Ḋ +Dφ̇tanφ). (28)

On the other hand, using Eqs. (14)-(15) and their complex conjugates, it can be found

that the evolution of the DB soliton energy, due to the presence of the perturbations,

is given by:

dE

dt
= − 2Re

{
∫

R

(R∗
d∂tud +R∗

b∂tub)dx

}

, (29)

9



where the asterisk denotes complex conjugation. Substituting Rd and Rb into Eq. (29)

and evaluating the integrals, we finally obtain from Eqs. (28)-(29) the following result:

4ḊD2 + χD sec2 φ(Ḋ +Dφ̇tanφ) =
1

µ2

(

2 cos3 φ sinφ− χD sinφ cosφ
)

V ′(x0)

−8

3

γd
µ
D3 sin2 φ− 2

3

γb
µ
χD4tan2φ. (30)

Equation (30), together with Eqs. (26)-(27), constitute a system of equations for the

unknown soliton parameters φ(t), D(t) and x0(t). In the case of a DB soliton near

the center of the trap with an almost “black” dark-soliton-component (i.e., x0 ≈ 0 and

cosφ ≈ 1), the above system has a fixed point x0,eq = 0 and φeq = 0, and

Deq =

√

1 +
(χ

4

)2

− χ

4
. (31)

Considering now small perturbations around the fixed points, i.e., x0 → 0+x0, φ→ 0+φ

and D → Deq +D1, we linearize Eqs. (26)-(27) and Eq. (30) with respect to x0, φ and

D1, and obtain the following results:

D1 = − D̃φ2, D̃ ≡
(

2Deq +
χ

2

)−1

, (32)

φ̇ =
−2 + χDeq

Deq[−8DeqD̃ − χ(2D̃ −Deq)]
V ′(x0)

+

2
3µ
D3

eq (4γd + χγbDeq)φ

Deq[−8DeqD̃ − χ(2D̃ −Deq)]
, (33)

ẋ0 = Deqφ. (34)

Differentiating Eq. (34) with respect to time once, and using Eqs. (33)-(34), we obtain

after some straightforward algebraic manipulations the following equation of the motion

for the DB soliton center x0:

ẍ0 − aẋ0 + ω2
oscx0 = 0, (35)

where the oscillation frequency ωosc and the anti-damping parameter a are respectively

given by:

ω2
osc = Ω2

(

1

2
− χ

χ0

)

, χ0 ≡ 8

√

1 +
(χ

4

)2

, (36)

a =
2

3
µ

(

γd −
1

8
χ2γb

)

+
4

3

χ

χ0
µ

(

γb − γd +
1

8
χ2γb

)

. (37)

We note that in the absence of dissipation [a = 0 in Eq. (35)], Eq. (36) recovers the

results of Ref. [12]: according to this work, if both components are confined in the same

harmonic trap of strength Ω then a DB-soliton oscillates around the trap center with

the frequency ωosc, given in Eq. (36).

10



It is clear that the nature of the soliton trajectories x0(t) as predicted by Eq. (35)

depend on whether the roots of the auxiliary equation s2 − as + ω2
osc = 0 are real or

complex. The roots are given by

s1,2 =
1

2

(

a±
√

a2 − a2cr

)

, acr ≡ 2ωosc, (38)

with the discriminant D ≡ a2−a2cr determining the type of the motion. In particular, we

identify different temperature-dependent damping regimes: the subcritical weak anti-

damping regime (D < 0, a < acr), the critical regime (D = 0, a = acr), and the

super-critical strong antidamping regime (D > 0, a > acr). In the first regime the

soliton performs oscillations of growing amplitude, with x0(t) ∝ exp(at) cos(ωosct), while

in the latter two regimes the soliton follows an exponentially growing trajectory, i.e.,

x0(t) ∝ exp(s1,2t) (with s1,2 ∈ R), and decays at the rims of the condensate cloud (see

also below).

3.2. Numerical results

We now turn to a numerical examination of the above findings. First, we will show

that our analytical predictions are supported by a linear stability analysis around the

stationary DB soliton, say u0 ≡ (u, v)T [see Eqs. (18)-(19) for φ = 0 and x0 = 0]. For

such a state, the right-hand side of Eqs. (4)-(5) still vanishes and, thus, stationary DB

solitons are exact solutions of the problem with γd,b 6= 0. We obtain this solution by

means of a fixed point algorithm and then find the linearization spectrum around the

stationary DB soliton state as follows. We introduce the ansatz

u = u0 + ǫ[exp(λt)a(x) + exp(λ∗t)b∗(x)], (39)

into the DGPEs Eqs. (4)-(5) (here {λ, (a, b)} define an eigenvalue-eigenvector pair, and

ǫ is a formal small parameter), and then solve the ensuing BdG eigenvalue problem.

In Fig. 2, we observe a prototypical realization of a stationary DB soliton in a trap

of strength Ω = 0.1 (for simplicity, we consider the case with γd = γb = γ). Notice

that upon the variations of γ (and hence of temperature) considered in the figure,

the solution profile does not change, as mentioned above; however, the linearization

problem and its eigenvalues significantly depend on the value of γ, as is shown in the

four bottom panels of Fig. 2. In the zero-temperature (Hamiltonian) case of γ = 0, all

eigenvalues are imaginary. Furthermore, the oscillatory motion of a single DB soliton

in the trap [12] (see also recent work in Refs. [10, 11, 31]) is spectrally associated with

the existence of a single anomalous (alias negative Krein sign, “translational”) mode in

the linearization around the stationary soliton. In analogy to the case of dark solitons

(see e.g. Refs. [15, 26, 30]), this anomalous mode possesses a frequency identical to the

frequency of the DB soliton oscillation, i.e., ωAM ≡ Im(λAM) = ωosc.

Our analytical approximation for ωosc is tested against the numerical results for

Im(λAM), both in the case examples of Fig. 2, as well as in the parametric dependence

results of Fig. 3. It is clear from the spectral plots (middle and bottom panels of Fig. 2)

that, as soon as γ 6= 0, the relevant anomalous eigenmode (indicated by red stars

11
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Figure 2. (Color online) The top panel depicts the stationary solution for a single

DB-soliton for µ = 1.5, |∆| = 0.6 and Ω = 0.1. The dark (bright) components are

shown by the dashed green (solid blue) lines. The middle and bottom panels are four

spectral planes, corresponding to different values of γ = γd = γb, for the single dark-

bright soliton stationary states: in the middle left panel γ = 0 (the zero-temperature

Hamiltonian case), in the middle right γ = 0.05, in the bottom left γ = 0.12, and

in the bottom right γ = 0.17. The (red) stars highlight the anomalous mode (of the

Hamiltonian case) eigenvalues.

in Fig. 3) becomes complex, leading to soliton oscillations of growing amplitude; this

behavior, which corresponds to the “subcritical” regime mentioned above, is similar to

the case of dark solitons [17, 30] and in accordance with rigorous results pertaining

to dissipative NLS systems [37]. If γ is increased beyond a critical point, namely

γcr ≈ 0.141, the relevant eigenvalue pair collides with the real axis, leading to the

emergence of a pair of real eigenvalues (cf. bottom right panel of Fig. 2 and Fig. 3).

This corresponds to the “super-critical” regime mentioned above (see also Refs. [17,30]),

where the divergence of the soliton from its center equilibrium is purely exponential.

Notice that the analytical predictions for the relevant unstable eigenvalue (and the

oscillatory or purely exponential divergence from the equilibrium position) in Figs. 2

and 3 are generally fairly accurate, although their accuracy is decreasing as γ gets

larger; this can be understood by the fact that our analytical approximation relies on

the smallness of γ which was treated as a small parameter of the problem within our

perturbation theory approach.

Last but not least, the role of the bright-soliton component in the dynamics

should be highlighted in connection to the case of a dark soliton in a single-component

condensate (where the bright soliton is absent). It can be directly seen from Eq. (37)

that the anti-damping effect is always weaker for the DB soliton in comparison to the

dark one (at least in the case γd = γb = γ we consider herein). Hence, the lifetime of the

DB soliton is always longer than that of the dark soliton and, in fact, it becomes larger,

12
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Figure 3. (Color online) The real part (top) - instability growth rate- and imaginary

part (bottom) -oscillation frequency- of the unstable eigenmode of the linearization

around a stationary DB soliton as a function of the parameter γ (parameter values are

as in Fig. 2). Solid (blue) lines indicate the full numerical result, while dashed (red)

ones the analytical results of Eq. (38). For γ < γcr ≈ 0.141 (subcritical regime), the

complex conjugate pair is responsible for soliton oscillations of growing amplitude. For

γ ≥ γcr (critical/super-critical regimes) the collision of the complex conjugate pair of

eigenvalues creates a real pair, and the dynamics involves purely exponential growth.

The parameter values are µ = 1.5, |∆| = 0.6, and Ω = 0.1.
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Figure 4. (Color online) Comparison of the bifurcation diagrams λr(γ) for a

stationary DB soliton [solid (blue) line] and a “bare” dark soliton [dashed (black)

line] as obtained by the BdG analysis. It is clear that the presence of the bright

(“filling”) component drifts γcr towards larger values, acquiring also smaller values of

the instability growth rate λr as compared to the ones found for the dark soliton. The

parameter values are Ω = 0.1, µ = 1.5 and |∆| = 0.1.
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Figure 5. (Color online) Contour plot showing the space-time evolution of the density

in the single DB soliton case. The top panel represents the dark soliton and the bottom

one the bright soliton, with γ = 0.02 (subcritical regime) and Ω = 0.1. The soliton

is initially placed at x0(0) = 0.4. The dashed line represents the analytical result

of Eq. (35), namely x0(t) = x0(0) exp[(a/2)t] cos(ωosct). The parameter values are

µ = 1.5, |∆| = 0.6, and Ω = 0.1.

as the bright-soliton component “filling” of the dark one becomes stronger. This partial

stabilization of the dark soliton evolution by means of its symbiotic second component

is clearly illustrated in Fig. 4, where the bifurcation diagrams for the DB soliton are

directly compared to the ones corresponding to the “bare” dark soliton. It is clear that

the whole bifurcation diagram for the DB soliton is “drifted” towards larger values of

γ (e.g., γcr = 0.212 for the DB soliton and γcr = 0.155 for the dark soliton), acquiring

also smaller values of the instability growth rate λr as compared to the ones found for

the dark soliton for the same values of the temperature parameter γ. This is a clear

indication that the “filled” dark soliton in a two-component BEC is more robust in the

presence of finite temperature than a “bare” dark soliton in a single-component BEC.

This is one of the principal findings of the present work.

Our analytical predictions were also tested against direct numerical simulations

illustrating the evolution of the single DB soliton, both for the sub-critical case of

oscillatory growth (see Fig. 5), and for the supercritical case of purely exponential

growth (see Fig. 6). In both cases it can be seen that the dashed line corresponding to

the analytical solution of the ODE (35) accurately tracks the evolution of the center of

the DB soliton, which progressively loses its contrast and eventually disappears in the

condensate background, with the system converging to its ground state (see section 2).

It is worth noting that in the results of Figs. 5 and 6 we have used, as initial

condition, a TF cloud with a density at the trap center equal to the chemical potential

µ appearing in the DGPEs (4)-(5). Nevertheless, we have also briefly studied a case
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Figure 6. (Color online) Similar to Fig. 5, but now for the super-critical case of

γ = 0.15, which shows the exponential divergence of the soliton center. The soliton

is initially placed at x0(0) = 1. The dashed line represents the analytical result of

Eq. (35), namely x0(t) =
x0(0)
s2−s1

[s2 exp(s1t)− s1 exp(s2t)].

where the density at x = 0 of the TF cloud was different from µ. The evolution in such

a far from equilibrium scenario, is shown in Fig. 7, where the parameters are as in the

subcritical case of Fig. 5, but with Ud(0) = 0.8. It is readily observed that apart from

the transient period towards equilibrium (i.e., when the density is rearranged so that

it properly corresponds to the relevant value of the chemical potential µ = 1.5), the

agreement between analytical and numerical results is fairly good. I.e., the fast scale of

the background relaxation does not substantially affect the evolution of the DB wave

on the slower time scale of the oscillatory decay of the latter.

4. Two Dark-Bright Soliton States

We now focus on the study of DB soliton “molecules” composed by two-DB-soliton

states. Let us first consider the homogeneous case (Ω = 0), and use the following

ansatz to describe a two-DB-soliton state composed by a pair of two equal-amplitude,

oppositely located (at x = ±x0) single DB solitons:

ψ1(x, t) = (cosφ tanhX− + i sinφ) (cos φ tanhX+ − i sin φ) , (40)

ψ2(x, t) = η sechX− ei[kx+θ(t)] + η sechX+ ei[−kx+θ(t)] ei∆θ, (41)

where X± = D (x± x0(t)), 2x0 is the relative distance between the two solitons, and ∆θ

is the relative phase between the two bright solitons (assumed to be constant); below

we will consider both the out-of-phase case, with ∆θ = π, as well as the in-phase case,

corresponding to ∆θ = 0. Note that, similarly to the case of a single-DB soliton, the

number of atoms Nb of the bright-soliton component in the above two-DB-soliton state
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Figure 7. (Color online) Same as the bottom panel of Fig. 5, but with an initial

density of the TF cloud at the trap center equal to Ud(0) = 0.8.

can be used to connect the DB-soliton parameters; in particular, if the two DB solitons

are well-separated then Nb is approximately twice as large compared to the result of

Eq. (23), namely, Nb ≈ 4η2
√
µ/D.

As was recently shown in Ref. [31], at zero temperature (i.e., γd = γb = 0), the

evolution equation for the DB soliton center (for Ω = 0) reads:

ẍ0 = Fint, (42)

Fint ≡ FDD + FBB + 2FDB. (43)

In the above equations, Fint is the interaction force between the two DB solitons, which

consists of three different components: the interaction forces FDD and FBB between the

two dark and two bright components, respectively, as well as the interaction force FDB

of the dark soliton of the one soliton pair with the bright soliton of the other pair (and

vice-versa). These forces depend on the soliton coordinate x0, as well as on the DB

soliton parameters, as follows [31]:

FDD =
1

χ0

[

1

3
(544− 352D2

eq) + 128Deq

(

D2
eq − 1

)

x0

]

e−4Deqx0, (44)

FBB =
χ

χ0

(

− 6Deq + 4D2
eqx0 − 2χ

)

D2
eq cos∆θe

−2Deqx0

+
χ2

χ0

[

(

1 + 2 cos2∆θ
)

(−8Deqx0 + 6)
]

D2
eqe

−4Deqx0, (45)

FDB =
χ

χ0

(

8Deq cos∆θ
)

e−2Deqx0 − χ

χ0

(208

3
− 64Deqx0

)

Deqe
−4Deqx0 , (46)

where we have assumed that Ḋ(t) ≈ 0 and, thus, D(t) ≈ Deq.
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Figure 8. (Color online) The top panel depicts the stationary solution for an in-

phase two-DB-soliton state for µ = 1.5, |∆| = 0.6 and Ω = 0.1. The dark (bright)

components are shown by the dashed green (solid blue) lines. The middle and bottom

panels are four spectral planes, corresponding to different values of γ, for the two DB-

solitons in an in-phase, stationary configuration: in the middle left panel γ = 0 (the

zero-temperature Hamiltonian case), in the middle right γ = 0.1, in the bottom left

γ = 0.2, and in the bottom right γ = 0.4.

Next, let us consider the case of two DB-solitons in the presence of the harmonic

trap. Then, each of the two solitons is subject to two forces: (a) the restoring force of the

trap, Ftr [in the case of a single DB-soliton, this force induces an in-trap oscillation with

a frequency ωosc —see Eq. (36)], and (b) the pairwise interaction force Fint [cf. Eq. (43)]

with other dark-bright solitons. Thus, taking into regard that Ftr = −ω2
oscx0, one may

write the effective equation of motion for the center x0 of a two-DB-soliton state as

follows:

ẍ0 = Ftr + Fint. (47)

In order to complete the consideration of the case at hand, we will finally study

the finite-temperature effect on a two DB-soliton state in the trap. To do so, we will

combine the thermal effect on each DB soliton in the trap, represented by Eq. (35),

and interaction effects included in Eq. (42). This way, we may use the following

approximation to describe the motion of the centers of the two DB solitons:

ẍ0 − aẋ0 − (Ftr + Fint) = 0. (48)

The equilibrium points xeq, can easily be found as solutions of the transcendental

equation resulting from Eq. (48) letting ẋ0 = ẍ0 = 0 in both the in- and out-of-phase

cases. To study the stability of these equilibrium points in the framework of Eq. (48), we

use the ansatz x0(t) = xeq + δ(t), and obtain a linear equation for the small-amplitude

perturbation δ(t), namely: δ̈ − aδ̇ + ω2
1δ = 0, where the frequency ω1 is given by,

ω2
1 = ω2

osc + ω2
0, ω2

0 = −∂Fint

∂x0

∣

∣

∣

x0=xeq

, (49)
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Figure 9. (Color online) The real (top panel) and imaginary (bottom panel) part of

the two anomalous mode eigenvalues for a two in-phase DB soliton state. Both modes

have complex, for γ 6= 0, and both pairs eventually collide and give rise to exponential

instabilities through eigenvalues on the real axis. Solid (blue) lines yield the numerical

results, while the dashed (red) lines provide the corresponding theoretical predictions

of Eqs. (48)-(49).

where ω2
osc and a are respectively given by Eq. (36) and Eq. (37).

We now test the relevant predictions against BdG simulations, first for the in-

phase case in Figs. 8-9 and then for the out-of-phase case in Figs. 10-11. As expected,

in the case of the in-phase configuration the BdG analysis reveals the existence of two

anomalous modes: the one with the smaller (larger) eigenvalue—in the zero-temperature

case—corresponds to an in- (out-of-) phase motion of the two DB solitons, similarly to

the case of a two-dark-soliton state in a single-component BEC [26, 30]. These two

anomalous mode pairs lead to complex eigenfrequencies for γ 6= 0, and the two-DB-

soliton state performs oscillations of growing amplitude. Similarly to the case of the

single DB soliton, as γ is increased these pairs collide pairwise on the real axis in two

critical points, namely γ1 ≈ 0.153 and γ2 ≈ 0.38. Beyond the second critical point γ2,

the growth of the trajectory of the DB soliton center becomes purely exponential. The

theoretical approximation of the relevant complex (and subsequently real) eigenvalues

depicted by dashed line in Fig. 9 is again fairly accurate, becoming progressively worse

as γ increases.

A similar phenomenology arises in the case of out-of-phase two-DB-soliton states,

as shown in Figs. 10-11. However, there exists a rather nontrivial twist in comparison to

the previous case. In particular, a third pair of complex eigenvalues emerges due to the

fact that a third anomalous mode exists for γ = 0. This mode is no longer a translational

one associated with the in- or out-of-phase motion of the two soliton centers (as before

and as shown in the bottom left and bottom right eigenmodes of Fig. 10). It is instead

a mode associated with the π relative phase of the peaks: if we add the eigenvector of
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Figure 10. (Color online) The top panel depicts the stationary solution for two DB-

solitons in an out-of-phase configuration, with parameters µ = 1.5, |∆| = 0.6 and

Ω = 0.1. The dark (bright) soliton components are shown by the dashed green (solid

blue) lines. The middle panels show three spectral planes, corresponding to different

values of γ, namely from left to right we have γ = 0 (the zero-temperature Hamiltonian

case), γ = 0.02 and γ = 0.2 respectively. In the bottom panel, we compare the bright

soliton component’s stationary solution (solid blue line), against the perturbed states

(dashed red line) obtained by adding to it the respective BdG eigenfunctions. More

specifically “A”, “B” and “C” correspond to the eigenfunctions of the three anomalous

modes’ eigenvalues in ascending order (see text).

this unstable (for γ 6= 0) mode to the two-DB-soliton out-of-phase solution, we observe

that while the center location of the state remains intact, the relative heights of the two

solitons are affected, leading to a symmetry breaking of the configuration. We will not

consider this unstable mode further since its induced instability is weaker than those of

the (in-phase and out-of-phase) translations. Nevertheless, we note that all three pairs

of modes eventually collide on the real axis, eventually leading to pairs of purely real

eigenvalues.

Finally, we turn to direct numerical simulations for both the in-phase two-DB-

soliton state in Fig. 12, and for the out-of-phase two-DB state in Fig. 13. In both cases,

we show only the low-γ, oscillatory growth (subcritical) regime. Despite the complexity

of the resulting system and of the DB soliton interactions, it can still be clearly observed

that the ODE (48) can be used to capture fairly accurately the relevant dynamics even

for the long time evolutions considered in these figures. Here, it should be mentioned

that the temperature-induced dissipation results in an interesting effect. Particularly, as

observed in Figs. 12 and 13, for short times, the individual DB solitons clearly behave

like repelling particles, which can always be characterized by two individual density

minima — even at the collision point. Nevertheless, for longer times, the nature of their

interaction changes: due to dissipation, they gain kinetic energy and completely overlap

at the collision point.
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Figure 11. (Color online) The real part (top panel) and imaginary (bottom panel)

part of the two anomalous mode eigenvalues (corresponding to “A” and “C” in the

middle panel of Fig 10) for an out of phase two DB soliton state. Both modes lead

to Hopf bifurcations, for γ 6= 0, and both pairs eventually collide and give rise to

exponential instabilities through eigenvalues on the real axis. The solid (blue) lines

depict numerical results, while the dashed lines provide the corresponding theoretical

predictions of Eqs. (48)-(49).
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Figure 12. (Color online) Contour plot showing the space-time evolution of the

density in the two dark-bright soliton in-phase state. The top panel represents the

dark solitons and the bottom one the bright solitons, with γ = 0.01. The solitons are

initially placed at x1 = 2.75 and x2 = −2.75. The dashed line represents the result

obtained by numerical solution of Eq. (48).
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Figure 13. (Color online) Contour plot showing the space-time evolution of the

density in the two dark-bright soliton out-of-phase state. The representation of the

solitons and the value of γ is the same as in Fig. 12. The solitons are initially placed at

x1 = 1.76 and x2 = −1.76. The dashed line represents the result obtained by numerical

solution of Eq. (48).

5. Conclusions

In the present work, we presented a systematic analysis of a prototypical model (the

so-called dissipative Gross-Pitaevskii equation) incorporating the effects of temperature

on the dynamics of dark-bright (DB) solitons. This was done both in the case of a single

DB soliton, as well as in the case of DB soliton “molecules”, composed by multiple (in-

or out-of-phase) DB solitons.

We have developed a perturbation theory for the two-component system to

analytically show the following: similarly to dark solitons, dark-bright ones execute

anti-damped oscillations of growing amplitude for sufficiently low temperatures, while

if the relevant parameter becomes sufficiently large, then the decay of the contrast of

the solitons (and their disappearance in the background) becomes exponential.

A fundamental effect revealed by our analysis is that the presence of the bright

(“filling”) component hinders the temperature-induced dissipation associated with the

dark soliton, and offers a significant partial stabilization (i.e., a significantly longer

lifetime) to the corresponding symbiotic DB soliton structure, in comparison to its

“bare” dark soliton counterpart. The above effect relies on the fact that the critical

value of the relevant parameter (labeling the different damping regimes) is increased,

while the instability growth rate is decreased, for the DB solitons. Similar conclusions

were reached in the case of two dark-bright entities, with the added twist that their

relative phase may introduce (in the out-of-phase case) additional anomalous modes

and instability sources in the system. The latter are not associated with in- or out-of-
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phase translational motion of the solitons but rather with a symmetry-breaking in their

relative amplitudes.

As concerns the relevance of our findings with pertinent experimental efforts

we note the following. First, all relevant recent experiments for dark and dark-

bright solitons were conducted at extremely low temperatures, aiming to minimize

corresponding anti-damping effects. In our setting this corresponds to subcritical

dynamics of small γ. Nevertheless, we believe that our findings may be relevant to

future experiments exploring in more detail finite-temperature effects (see Supplemental

Material of Ref. [10]).

A natural direction to extend the present studies is to consider the higher

dimensional setting of vortices [38] and of their two-component generalizations, namely

the vortex-bright solitons [39]. Understanding the thermally induced dynamics and the

modifications of the corresponding precessional motion, especially in the presence of

multiple coherent structures would constitute an interesting topic for future study. On

the other hand, it would certainly be relevant to extend the present studies to more

complex models that provide coupled dynamical equations for the condensate and the

thermal cloud [28] (rather than use a single equation directly incorporating the effects

of the thermal cloud on the condensate without the possibility of “feedback”). Such

studies are in progress and pertinent results will be reported in future publications.

Acknowledgments

P.G.K. gratefully acknowledges support from the National Science Foundation through

grants DMS-0806763 and CMMI-1000337, as well as from the Alexander von Humboldt

Foundation and the Alexander S. Onassis Public Benefit Foundation. The work of D.J.F.

was partially supported by the Special Account for Research Grants of the University

of Athens.

[1] C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, Cambridge University

Press (Cambridge, 2002).

[2] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford,

2003).

[3] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González (eds.) Emergent Nonlinear
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