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Abstract— Penetration of wind energy plants into 

power grids has been growing from installations with a 

few wind turbines to large wind farms with more than 

hundreds of MW capacity. Modeling of these wind farms 

with individual wind turbines increases the complexity 

of the model and consequently leading to long time for 

planning studies. Simplified models which simulate wind 

farms are usually used for performing grid connection 

planning studies to evaluate alternative scenarios. 

This paper presents an aggregation model for a 500 

MW wind farm to simplify steady-state and transient 

simulation studies. The aggregated modeling converts 

each group of wind farm components into a single 

equivalent representation. These groups include 

generators, pad mounted transformers, collector system 

and station transformers. Results of simulation studies 

are presented to show comparisons of aggregated 

equivalent model and detailed model of the wind farm. 

The results include steady-state (power flow, short 

circuit, contingency) and transient analyses. 

Keywords—wind farm, model aggregation, detailed 

model, equivalent collector system. 

I. NOMENCLATURE 

NG:  Number of wind turbine generators. 

𝑃𝑒𝑞_𝐺:  Equivalent real power in MW for all wind 

generators. 

𝑄𝑒𝑞_𝐺  :  Equivalent reactive power in MVAR for all wind 

generators. 

𝑆𝑒𝑞_𝐺  : Equivalent apparent power in MVA for all wind 

generators. 

Zi : Impedance of the ith pad mounted transformer, i = 

1, 2… n 

Zeq_PT : Equivalent Impedance of pad mounted 

transformers. 

NPT: Number of pad mounted transformers. 

𝑆𝑒𝑞_𝑃𝑇: Equivalent apparent power in MVA of the pad 

mount transformers. 

𝑍𝑒𝑞_𝑐:  Equivalent impedance for collector system that 

connecting the equivalent wind turbine to the 

station transformer. 

ZST:  Station transformer impedance. 

NST:  Number of station transformers. 

𝐵𝑒𝑞_𝐶:  Equivalent susceptance for collector system that 

connecting the equivalent wind turbine to the 

station transformer. 

I: Total number of branches in the collector system. 

Zi: Impedance (Ri + jXi) for ith branch. 

Bi: Susceptance for ith branch. 

ni:  Total number of wind turbines connected to the 

branch i. 

II. INTRODUCTIONION 

Wind farm performance in power systems has received 
considerable attention in recent years. Integration of large-
scale wind farms into grids may cause significant 
consequences in system operation. In order to reduce 
computational complexity, analysis time and the risk of 
errors, it is important to obtain an aggregated model for the 
wind farm to avoid complexity of detailed modeling with a 
large number of wind generators and associated collector 
system. Aggregated modeling of the wind farm converts all 
wind farm components including generators, transformers, 
underground cable, overhead lines (if any) and station 
transformers into single equivalent representation of each 
group of the components.  

Aggregation models of various types of wind turbine 
generators (WTG) and the wind speed modeling is 
performed in [1] to study high penetration of large-scale 
wind farms in smart grid. Dynamic modelling of fixed speed 
WTG is simulated in [2]. The significance of integrating the 
shaft system modelling into grid-connected wind turbines is 
described in [3]. An equivalent collector system with 
different configurations for a wind farm is developed in [4]. 
The impact of aggregation model on power quality was 
described in [5]. An aggregated wind farm model for 
analyzing power quality issues, with a case study, is 
described in [6]. Model aggregation of large wind farms for 
dynamic studies is presented in [7], where a large off-shore 
wind farm of 150 wind turbines is simulated by three 
equivalent clustered generators. Model aggregation of wind 
farms is presented in [8] based on the perturbation theory of 
model aggregation for ensembles of identical dynamical 
systems. It guides the construction of an aggregate model of 
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a wind farm and provides bounds for its accuracy. In [9] the 
MaWind-tool for the aggregation of wind farm models is 
proposed based on mathematical approach to represent wind 
generation in system analysis. Simplified model of wind 
farms are presented in [10] to study voltage dip transients. 
Aggregated models of large wind parks with different 
configurations are developed in [11] for power system 
studies. Detailed models of doubly-fed induction generator 
and full converter schemes are analyzed. Aggregated models 
for wind farms are presented for use in power system 
transient stability studies [12]. A method for dynamic 
weighted aggregation equivalent model is developed in [13] 
based on the conventional aggregated dynamic equivalent 
modelling, considering the weighting factors for each 
generator which are calculated according to the Weibull 
distribution of wind speeds. A proposed equivalence method 
for distributed multiple wind farms in a power system is 
presented in [14], based on dynamic analysis of wind farms 
for determining coherence of different generators. A method 
for dynamic aggregation of doubly-fed induction generators 
is presented in [15] for stability analysis of wind farms. 
Permanent magnet synchronous generators wind farm 
aggregation algorithm is presented in [16] based on the 
principles of power equivalence. Model aggregation of a 
wind farm based on probabilistic clustering is presented in 
[17]. Adequacy of dynamic aggregated modelling of wind 
farms is presented in [18]. An alternative technique to obtain 
equivalent models of dynamical systems is to use system 
identification. [19], [20]. Parameter identification of multi-
machine equivalent models of a wind farm consisting of 
doubly fed induction generators based on measured data is 
presented in [21]. 

The main objective of this paper is the development of an 
aggregate model of a large-scale wind farm for steady-state 
and transient studies at the planning stage, where specific 
type of wind generators is still under study. The model 
represents all wind farm components including wind turbine 
generators, pad mounted transformers, collector system and 
station transformers. The following assumptions [6] are 
considered while representing the aggregation modeling: 

• All wind turbine generators shall have the same 
parameters and wind speed. 

• Each wind turbine has the same voltage, current, and 
power under all operating conditions.  

Simulations studies of detailed and aggregation models 
are performed and compared using DIgSILENT software 
[22]. The results include steady-state and transient analyses. 

The arrangement of the paper is as follows. Section I 
outlines the previously performed research on the 
aggregation technique of wind farms. Section II illustrates 
the concept of the aggregation techniques and an illustrative 
example is presented. Section III presents the application of 
model aggregation to a 500 MW wind farm consisting of 200 
wind turbine generators, each with a rating of 2.5 MW. The 
wind farm is connected to a 220 kV power grid. Section IV 
provides a comparison between the detailed modeling and 
aggregated modeling. Section V summarizes the main 
conclusions. 

 

 

III. AGGREGATION MODELING METHODOLOGY 

A. Aggregation Modelling in Power Systems 

Besides wind farms, aggregation modeling of power 
systems has been used in many applications.  Aggregation of 
static and dynamic loads which usually represented in the 
power system studies as induction motors are described in 
[23] and [24]. Modelling and aggregation of LED lamps load 
is developed in [25] for harmonic analysis in a distribution 
network. Studies are presented in [26] to demonstrate a 
proposed structure-preservation aggregate modelling of two-
stage inverters in large PV system. Model aggregation for a 
multi-machine power system with thermal and hydro 
generators is described in [27] based on frequency response 
analysis. 

B. Aggregation Modelling of Wind Turbine Generators 

Figure (1) illustrates the aggregation modelling method, 
in which all wind farm components are turned into a single 
equivalent representation. 

 
Fig.1: Aggregation technique to represent large wind farm 

into a single equivalent representation. 

In order to construct the aggregation model for wind a 
farm having a large number of wind turbine generators into a 
single machine equivalent representation as described in 
Figure (2). The aggregation technique shall be expressed as 
per the following equations: 

𝑃𝑒𝑞_𝐺 = 𝑁𝐺  ×  𝑃𝐺    (1) 

𝑄𝑒𝑞_𝐺 = 𝑁𝐺  ×  𝑄𝐺    (2) 

𝑆𝑒𝑞_𝐺 = 𝑁𝐺  ×  𝑆𝐺   (3) 

 

 

 

 

 

 

Fig.2: Aggregation of WTG and pad mounted transformer. 

C. Equivalent Model of Pad Mounted Transformers 

In order to convert the pad mount transformers to a single 
equivalent transformer representation, the equivalent 
apparent power in (MVA) and the equivalent impedance 
shall be as follows: 

𝑆𝑒𝑞_𝑃𝑇 =  𝑁𝑃𝑇 ×  𝑆𝑃𝑇    (4) 

𝑍𝑒𝑞_𝑃𝑇 =
𝑍𝑃𝑇

𝑁𝑃𝑇
   (5) 

 



 

 

D. Equivalent Model of the Collector System 

The configuration of the wind power plant, as well as the 
size, type and arrangement of underground cables and 
overhead lines (if any) all have an impact on the performance 
of the collector system within the wind power plant. 

National Renewable Energy Laboratory (NREL) created 
a simple approach that can be used for calculating the 
equivalent impedance for the collector system [28] as the 
following: 

𝑍𝑒𝑞_𝑐 =
1

𝑁𝐺
2  ∑ 𝑍𝑖𝑛𝑖

2𝐼
𝑖=1    (6) 

𝑍𝑒𝑞_𝑐 =
1

𝑁𝐺
2  ∑ (𝐼

𝑖=1 𝑅 × 𝑛2 + X × 𝑛2)   (7) 

𝐵𝑒𝑞_𝐶 = ∑ 𝐵𝑖
𝐼
𝑖=1    (8) 

E. Equivalent Model of Station Transformers 

Figure (3) shows an equivalent representation of the 
station transformers, the equivalent impedance shall be 
expressed as per the following equation: 

 

Fig.3: Aggregation of station transformer. 

𝑍𝑒𝑞_𝑆𝑇 =
𝑍𝑆𝑇

𝑁𝑆𝑇
   (9) 

F. Illustrative Wind Farm Example 

An illustrative example for a collector system of a 
medium-scale wind farm with 40 MW capacity is presented 
to demonstrate the technique for calculating an equivalent 
collector system. Figure (4) shows the layout of the wind 
farm which consist of 16 WTG, each has a 2.5 MW rating, 
16 pad mounted transformers, rating is 3.2 MVA, 0.69/20 kV 
and a station transformer with rating 50 MVA. Table I 
summaries calculations of the equivalent collector system, 
where: 

𝑍𝑒𝑞_𝑐 =
∑ (𝐼

𝑖=1 R × n2 + 𝑗 X × n2)

𝑁𝐺
2 =

222.044 + 𝑗123.375

162
 

𝑍𝑒𝑞_𝑐 =  0.8673 + 𝑗 0.4819 Ω 

𝐵𝑒𝑞_𝐶 = ∑ 𝐵𝑖
𝐼
𝑖=1 =  7596.370 µS 

IV. AGGREGATION MODELING FOR 500 MW 

WIND FARM 

A. System Description and Modelling 

As a case study, aggregation modelling for a large-scale 
wind farm with 500 MW capacity connected to a 220 kV 
power grid is performed. The 220 kV power grid is 
simulated by an equivalent generator with capacity 20 GW. 

 

Fig.4: Layout for 40 MW wind farm 

TABLE I.     EQUIVALENT COLLECTOR SYSTEM FOR 40 MW WTG. 

Branch 

R 

(Ω) 

X 

(Ω) 

B 

(μS) 
n 𝑹 × 𝒏𝟐 𝑿 × 𝒏𝟐 

F
r
o
m

 

T
o
 

1 2 0.2092 0.1744 122.522 1 0.3138 0.1744 

2 3 0.2092 0.1744 122.522 2 1.2552 0.6974 

3 4 0.2092 0.1744 122.522 3 2.8242 1.5692 

4 5 0.2092 0.1744 122.522 4 5.0208 2.7897 

5 6 0.1046 0.0872 245.044 5 3.9225 2.1795 

6 7 0.1046 0.0872 245.044 6 5.6484 3.1385 

7 8 0.1046 0.0872 245.044 7 7.6881 4.2718 

8 201 0.1046 0.4068 1143.540 8 46.8608 26.0378 

9 10 0.2092 0.1744 122.522 1 0.3138 0.1744 

10 11 0.2092 0.1744 122.522 2 1.2552 0.6974 

11 12 0.2092 0.1744 122.522 3 2.8242 1.5692 

12 13 0.2092 0.1744 122.522 4 5.0208 2.7897 

13 14 0.1046 0.0872 245.044 5 3.9225 2.1795 

14 15 0.1046 0.0872 245.044 6 5.6484 3.1385 

15 16 0.1046 0.0872 245.044 7 7.6881 4.2718 

16 201 0.1046 0.4068 1143.540 8 46.8608 26.0378 

201 300 0.0418 0.1627 2858.849 16 74.9773 41.6586 

Figure (5)  shows the configuration of the 500 MW wind 
farm. It consists of 200 × 2.5 MW capacity WTGs and five 
125 MVA, 20/220 kV station transformers which connect the 
wind farm to the 220 kV transmission system. The 
equivalent collector system for the 500 MW wind farm is 
obtained by using equations (7) and (8) and the same criteria 
as indicated in the illustrative example described in Section 
II. The results are: Zeq_c  = (0.0752+ j 0.0418) Ω and Beq_C  = 

87807.505 μS.  



 

 

Fig.5: Detailed model for 500 MW wind farm. 

 Figure (6) shows the simulation of the 500 MW wind 
farm aggregation model using the DIgSILENT PowerFactory 
software. The simulated model will be utilized for further 
steady state analysis and transient analysis such as load flow, 
short circuit, contingency analysis, and transient stability 
analysis. 

 

 

Fig.5: Aggregated modeling simulation in DIgSILENT. 

TABLE II.     BUS VOLTAGES FOR AGGREGATED MODEL 

Bus name Voltage in (p.u.) 

220 kV (Agrregated) 1.00 

PCC (Agrregated) 1.00 

20 kV BB.1 1.08 

20 kV BB.2 0.99 

 

B. Load Flow Analysis 

Load flow calculations are performed to acquire voltages 
at various buses, loading of transformers and overhead lines. 
Tables II, III, and IV reveal that the voltages for all bus and 
line loadings shown in Figure (5) are acceptable for all 
operating conditions. 

TABLE III.    LINE LOADING FOR AGGREGATED MODEL 

Line name Line loading (%) 

WF Grid Connection L1 33.6 

WF Grid Connection L2 33.6 

WF Grid Connection L3 33.6 

Equivelent Collector System 73.7 

TABLE IV.    TRANSFORMER LOADING FOR AGGREGATED MODEL 

Transformer name Transformer loading  

Equivelent Station Transformer 73.7% 

Equivelent Pad Mounted Transformer 75.4% 

C. Short Circuit Analysis 

The purpose for this analysis is to calculate the short 
circuit fault current at various buses and to determine the 
short circuit withstand current ratings of the busbars. Values 
of the short circuit currents are shown in Table V when a 
three-phase short circuit is applied at point of common 
coupling (PCC). The calculations are based on the method C 
of the IEC 60909 standard [29] using the equivalent 
frequency in calculating the peak short circuit current.  

TABLE V.    SHORT CIRCUIT CURRENT MAGNITUDE FOR AGGREGATED 

MODEL 

Bus Name Short circuit current (KA) 

PCC (Agrregated) 46.033 

 



 

 

D. Contingancy analysis 

(N-1) contingency analysis is performed to investigate 
the effects of a single component outage such as a 
transmission line, power transformer, or generating unit on 
power system operation. The calculated branch flows of 
transmission line, maximum loading of transformers and 
voltages at network nodes are compared to permissible 
deviations from nominal values. 

The contingency analysis performed on the aggregated 
model reveals that all transmission lines and transformers are 
within their permissible thermal capability limitations 
ensuring the security and reliability of the system. Table VI 
shows the lines loading in percentage in the case of WF Grid 
connection line L1 outage. 

TABLE VI.    LINE LOADING FOR (N-1) CONTINGENCY IN CASE OF ONE 

LINE OUTAGE  

Line name 
Max line loading in  

(N-1) contingency (%) 

WF Grid Connection L2 50.4 

WF Grid Connection L3 50.4 

Equivelent Collector System 73.7 

 

E. Modelling of Small-Scale and Medium-Scale Wind 

Farms 

In simulation studies of small-scale wind farms with 

limited number of wind turbine generators detailed models 

can be conveniently used. In the case of studies of medium-

scale wind farms (in the range of 20-50 MW), detailed or 

aggregated models may be used. Grid impact studies of a 50 

MW wind farm are performed using a detailed model [30]. 

Grid code compliance studies for integrating a 50 MW wind 

farm into a power grid are described in [31]. Power quality 

studies of the same wind farm are presented in [32], where 

detailed model is employed.  

V. COMPARISON BETWEEN DETAILED 

MODELING AND AGGREGATED MODELING 

The detailed modeling for 500 MW wind farm shown in 
Figure (5) is simulated in DIgSILENT PowerFactory 
software to assess the level of accuracy and efficacy of the 
aggregated model.  

Comparisons between the aggregated model and the 
detail model are performed in terms of steady-state and 
transient conditions. Table VII shows voltage a comparison 
between detailed and aggregated model. Table VIII  shows a 
comparison between the WF grid connection lines loading in 
each model. 

TABLE VII.    COMPARSION BETWEEN BUS VOLTAGES FOR DETAILED 

MODEL AND AGGREGATED MODEL 

Bus Name 
Voltage in (p.u.) 

Detailed Model Aggregation Model 

PCC 1.0002 1.0014 

TABLE VIII.    COMPARSION BETWEEN LINE LOADING FOR DETAILED 

MODEL AND AGGREGATED MODEL 

Line Name 
Loading (%) 

Detailed Model Aggregation Model 

WF Grid Connection lines 33.5 33.6 

 

A 3-phase short circuit is also applied based on IEC 
60909 standard at point of common coupling (PCC) in both 
the aggregated and detailed models. Table IX shows a 
comparison between short circuit current values of both 
detailed and aggregated model. 

TABLE IX.    COMPARSION OF SHORT CIRCUIT CURRENT BETWEEN 

DETAILED MODEL AND AGGREGATED MODEL 

Bus Name 
Short circuit current (KA) 

Detailed Model Aggregation Model 

PCC 47.39 46.03 

Table X shows a comparison of the calculated power 
losses of the collector system in the aggregated model and 
the detailed model. 

TABLE X.    COMPARSION OF POWER LOSSES BETWEEN DETAILED MODEL 

AND AGGREGATED MODEL 

Power Losses 

Feeder Name 
Detailed Model 

Aggregation 

Model 

MW MVAR MW MVAR 

Collector system 41 13.3 39.9 16.1 

Transient stability analysis is used to further investigating 
the system dynamic responses when it is subjected to a large 
disturbance.  

 

Fig.6: Comparison between voltage response of detailed 

model and aggregated model. 

 

Fig.7: Comparison between frequency response of detailed 

model and aggregated model. 



 

 

Three phase short circuit of 120 ms period is applied at 
the PCC terminals followed by one line outage of the WF 
grid connection lines. 

Figures (7) and (8) show the responses of the voltage and 

frequency, respectively, at the PCC in both detailed model 

and aggregated model. Figures (9) and (10) show 

comparisons of active and reactive power responses of the 

detailed and aggregated models. 

 

Fig.8: Comparison between active power in (MW) between 

aggregated and detailed model. 

 

Fig.9: Comparison between Reactive power in (MVAR) 

between aggregated and detailed model. 

It can be observed form above simulation studies that the 
system responses of the aggregated model are closely 
identical to that of the detailed wind farm model in the cases 
of steady-state operation and transient conditions. 

CONCLUSION 

The paper has provided an overview on the methodology 
of aggregation technique for large-scale wind farms. The 
aggregation concept has been applied to convert wind farm 
components into a single equivalent representation. The 
aggregated model will assist in planning simulation studies 
for connecting wind farms to power systems. The aggregated 
wind turbine model consists of a single WTG, a single pad 
mounted transformer, a single station transformer, an 
equivalent line of the collector system, and four buses. The 
aggregated model, developed here, provides a simple model 
representing a detailed wind farm model of 200 WTG, 200 

pad mounted transformer, 5 station transformers and 206 
buses. This implies a 98% reduction in the size of wind farm 
model that offers a significant reduction in the simulation 
time and estimating the impact of the wind farm on the grid 
under steady-state operations and transient conditions. The 
simulation of the detailed model and aggregated model of the 
500 MW wind farm has been performed by using the 
DIgSILENT PowerFactory software. The results have 
proved the validity of the aggregated model of the wind 
farm. The aggregated model is intended to be employed in 
future studies concerning planning of large wind farms grid 
connection studies. 
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