
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

February 1, 2018

Neighborhood beautification Graph layout
through message passing
Severino F. Galan
Ole J Mengshoel

Available at: https://works.bepress.com/ole_mengshoel/72/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/72/

Journal of Visual Languages and Computing 44 (2018) 72–88

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

View Points

Neighborhood beautification: Graph layout through message passing

Severino F. Galán

a , ∗, Ole J. Mengshoel b

a Artificial Intelligence Dept., UNED, C/ Juan del Rosal, 16, Madrid 28040, Spain
b Carnegie Mellon University, NASA Research Park, Moffett Field, CA 94035, USA

a r t i c l e i n f o

Article history:

Received 18 March 2016

Revised 15 June 2016

Accepted 29 November 2017

Available online 1 December 2017

Keywords:

Graph drawing

Aesthetic graph layout

Neighborhood interaction

Message passing

a b s t r a c t

Graph layout algorithms are used to compute aesthetic and useful visualizations of graphs. In general, for

graphs with up to a few hundred nodes, force-directed layout algorithms produce good layouts. Unfortu-

nately, for larger graphs, they often get stuck at local minima and have high computational complexity.

In this paper, we introduce a novel message passing technique for graph layout. The key idea of our

message passing technique is that an aesthetic layout can be obtained if each node independently sug-

gests aesthetic placements of its neighbors. In other words, every node sends messages to its neighbors,

indicating new and better positions for them. As a result, the new technique, which we call Neighbor-

hood Beautification , provides a new perspective that turns out to give a useful trade-off between the

excellent layout quality reached by force-directed methods and the fast runtime achieved by algebraic

methods. Neighborhood Beautification reduces, in many cases, the computational cost of force-directed

algorithms, since only interactions between neighboring nodes are considered. Experimentally, we show

that Neighborhood Beautification produces high-quality layouts for grid-like graphs but is outperformed

by force-directed algorithms in the case of more complex graphs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Graphs are widely used in artificial intelligence, computer en-

gineering, computer science, mathematics, and statistics to model

objects and connections between them. They have been success-

fully applied in areas like automata theory, automatic planning,

databases, electrical power networks, machine learning, network

security, probabilistic graphical models, social networks, software

engineering, and VLSI technology [26] . In order to easily under-

stand and manipulate the data represented by graphs, aesthetic

and useful visualizations, including layouts, of them are needed.

Many graph layout methods have been developed [12,35,49] . Ob-

jectives that have been considered in developing such methods in-

clude [12,47] : minimization of edge crossings, uniformity of edge

lengths, even distribution of nodes, and maximization of symme-

tries.

The present work deals with the problem of graph layout in

the sense of nicely drawing undirected graphs whose edges are

straight lines. This problem reduces to appropriately positioning

nodes in a two dimensional plane. A popular approach to this

problem is the force-directed technique, where the graph is asso-

∗ Corresponding author.

E-mail addresses: seve@dia.uned.es (S.F. Galán), ole.mengshoel@sv.cmu.edu (O.J.

Mengshoel).

ciated with a system of interacting physical objects. This approach

defines the energy of the system such that, when a minimum is

achieved, the layout tends to be nice and useful. Given initial po-

sitions for the interacting physical objects, the system evolves by

reducing its energy. Variants of this approach differ in how the

energy is defined [11,14,20,37] . Force-directed graph layout can be

combined with other methods for initializing the position of the

nodes, for example, treemap-based methods [44] .

Although force-directed methods are intuitive, easy to imple-

ment, and produce acceptable results for graphs of medium size

(up to a few hundred nodes), they also have important disadvan-

tages:

• The number of iterations needed to produce a good layout can

be quite high. For example, since graphs are usually initial-

ized with random positions for their nodes, in the case of large

graphs the convergence to a global minimum is often too slow

or even hard to achieve due to the presence of many local

but non-global minima. Therefore, layout of large graphs re-

quires the use of techniques in addition to force-directed meth-

ods. The multi-level technique [30,31,43,55] (see Section 2.2),

which works regardless of the initial positions of the nodes and

only requires the graph structure, is a convenient option for

large graph drawing. Using this technique, a sequence of graphs

(G

0 , G

1 , . . . , G

l−1 , G

l) is first generated, so that G

0 is the original

graph and G

k +1 is obtained by grouping nodes of G

k . The coars-

https://doi.org/10.1016/j.jvlc.2017.11.008

1045-926X/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jvlc.2017.11.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jvlc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2017.11.008&domain=pdf
mailto:seve@dia.uned.es
mailto:ole.mengshoel@sv.cmu.edu
https://doi.org/10.1016/j.jvlc.2017.11.008

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 73

ening continues until a graph G

l with only a small number of

nodes is reached. Since the optimized layout for the coarsest

graph can be more easily obtained, then two additional consec-

utive phases (placement and refinement) are performed itera-

tively. In the placement phase, the optimized layout of a coarser

graph G

k +1 is transformed to a finer layout G

k . In the refine-

ment phase (or single-level layout), typically a force-directed

method is used to improve the layout resulting from the place-

ment phase.

• The computational complexity of each iteration of a force-

directed method is usually O(M + N

2) , where M and N are the

number of edges and nodes in the graph respectively. This com-

plexity derives from the fact that every node changes its posi-

tion at each iteration, and this change depends on the attractive

and repulsive forces exerted by the rest of the nodes. Whereas

the attractive (mechanical) forces take place between neighbor-

ing nodes and are calculated in O(M) time for the whole graph,

the repulsive (electrical) forces occur between any pair of nodes

and are determined in O(N

2) time. Since the quadratic com-

plexity of repulsive forces makes force-directed methods im-

practical for large graphs, these forces can be approximated by

grouping sufficiently distant nodes, which reduces the complex-

ity to O(N · log N) [4,28,34,48,52] . Alternatively, Fruchterman

and Reingold [20] use a grid variant of their force-directed algo-

rithm that ignores the repulsive forces between distant nodes.

Although this variant calculates the repulsive forces in O(N)

time for sparse graphs with uniform node distribution over the

grid squares, for general graphs this calculation may become

more expensive.

This work presents a novel message passing technique for graph

layout named Neighborhood Beautification , which provides a new

perspective on graph layout similar to how message passing has

provided new perspectives on areas such as decoding [42] and

compressive sensing [13] . The underlying idea of this novel tech-

nique is that a globally aesthetic layout of a graph can be achieved

if every set formed by a node and its neighbors is independently

laid out in an aesthetic way. An iteration of the neighborhood

beautification method consists of three message passing phases

that address the following aesthetic criteria in turn: minimize edge

crossings, maximize edge length uniformity, and maximize angu-

lar resolution. In these three iterated phases, messages are passed

from every node in the graph to each of its neighbors. A message

contains information about the desired position for the receiving

node from the viewpoint of the sending node under one of the

three aesthetic criteria. Neighborhood Beautification can be applied

as a single-level graph layout method, similar to force-directed al-

gorithms, or as a graph layout method for the refinement phase of

the multi-level technique.

The usefulness of a graph layout method is usually estab-

lished by taking into account both its computational cost (in

terms of time and memory) and the quality of the resulting lay-

outs. The Neighborhood Beautification method takes O(M + N · � ·
log �) time for each iteration in the worst case 1 (see Section 3.4),

since only interactions between neighboring nodes are consid-

ered; therefore, the high complexity associated with the calcula-

tion of repulsive forces in force-directed algorithms is reduced in

many cases. In the experiments of this paper, we find that al-

though the Neighborhood Beautification method in general needs

more iterations than force-directed algorithms, it usually offers

shorter computation time. As far as the layout quality is concerned,

Neighborhood Beautification provides promising results for grid-

like graphs compared to force-directed algorithms, although for

complex graphs the quality of layouts produced by force-directed

1 The symbol � denotes the maximum degree of the graph.

algorithms is superior in general. In this work, we extensively eval-

uate the performance of the Neighborhood Beautification method

in terms of running time and layout quality.

Since Neighborhood Beautification relies on message passing

between neighbors, a distributed implementation [2,25] could be

constructed that is enabled by the graph structure. Yet, in this

work we do not implement a distributed version of Neighborhood

Beautification, but leave it to future work. Further, Neighborhood

Beautification is implemented in this work as a sequential algo-

rithm. As mentioned in Section 5 , an interesting future research

direction is its implementation in the context of parallel comput-

ing [33,45,50] .

The rest of this paper is organized as follows. Section 2 re-

views several widely used methods for single-level and multi-level

layout of graphs. Section 3 explains our Neighborhood Beautifi-

cation method in detail. Section 4 describes a series of experi-

ments for evaluating the Neighborhood Beautification method. Fi-

nally, Section 5 summarizes the main results of our work and enu-

merates future research directions.

2. Related work

We consider graphs whose nodes have unconstrained positions

and whose edges are straight lines. Existing algorithms for aesthet-

ically laying out such graphs can broadly be classified as single-

level or multi-level. Single-level methods exclusively operate on

the original graph to be laid out, whereas multi-level methods use

additional auxiliary graphs obtained from transforming the origi-

nal graph. Single-level graph layout can be carried out in several

ways: force-directed [11,14,20,37] , incrementally [10,51] , or alge-

braically [8,32,39,40] . Although the algebraic methods are signifi-

cantly faster than the force-directed methods, they frequently pro-

duce graph layouts of inferior quality compared to graph layouts

obtained using force-directed methods [27 , Section 1.3.3].

Due to their importance and widespread use, this section re-

views two force-directed approaches: (1) the spring-embedder

model, proposed by Eades [14] and later modified by Fruchterman

and Reingold [20] , and (2) Kamada and Kawai’s model [37] . We

also review the multi-level technique for graph layout [30,31,55] ,

an approach successfully used for large graphs, and where a force-

directed method is used as a subroutine.

2.1. Force-directed graph layout

To tackle the graph layout problem, force-directed algorithms

are inspired by a physical analogy. These algorithms consider

forces acting on the nodes and iteratively transform the graph lay-

out from its initial configuration (usually with random positions

for the nodes) until a configuration is reached where the net force

acting on each node is null. Equivalently, they associate a poten-

tial energy with a layout and aim to find a layout whose energy

is locally optimal. Kobourov has written an excellent and detailed

survey of different force-directed algorithms for graph layout [38] .

2.1.1. The spring embedder model

The spring embedder model was defined by Eades [14] as a

system of electrically charged rings connected by springs. The me-

chanical forces provoke the attraction between every pair of neigh-

boring nodes, whereas the electrical forces make every pair of non-

neighboring nodes repel each other.

The attractive force exerted by a spring is modeled by the fol-

lowing formula:

F att = c 1 · log

(
d

c 2

)
, (1)

74 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

where c 1 and c 2 are constants, and d is the length of the spring.

The repulsive force acting between two non-neighboring nodes is

defined as follows:

F rep =

c 3
d 2

, (2)

where c 3 is a constant and d is the distance between the nodes.

Whereas attractive forces mean that neighboring nodes are drawn

close to each other, repulsive forces imply that nodes are spread

well out in the drawing area [7 , Section 4.1].

The spring embedder model iteratively updates the positions of

the nodes. At each iteration, every node is moved proportionally to

the net force acting on it as indicated by these formulas: {
x ′ (u) = x (u) + c 4 · F x (u)
y ′ (u) = y (u) + c 4 · F y (u)

,

where (x (u), y (u)) are the Cartesian coordinates of node u, c 4 is a

constant, and F (u) is the net force acting on node u resulting from

considering both attractive and repulsive forces. The time complex-

ity of the calculation of forces in each iteration of this model is

O(M + N

2) . Here, the quadratic term N

2 , associated with the calcu-

lation of repulsive forces, makes this model most useful for graphs

with up to a few hundred nodes.

Fruchterman and Reingold [20] modified the spring embedder

model of Eades by introducing new and computationally more ef-

ficient formulas for Eqs. (1) and (2) , without changing the qual-

itative character of the force model. Additionally, in order to re-

duce the O(N

2) time complexity associated with the calculation

of the repulsive forces in the Eades model, they introduced a grid

variant of their algorithm. This grid variant ignores repulsive forces

between distant nodes by dividing the space into squares, so that

each node is only affected by repulsive forces from nodes in its

own and neighboring squares. In this way, the repulsive forces for

the whole graph are calculated in O(N) time for sparse graphs

with a uniform node distribution over the grid squares. Unfor-

tunately, this calculation may become more expensive when this

condition is not met in general graphs.

Other more recent methods of reducing the quadratic complex-

ity associated with the calculation of repulsive forces in the Eades

model are inspired by the N -body problem studied in physics.

These methods [28,34,48,52] approximate the repulsive forces by

applying two main phases: firstly, the drawing space is partitioned

by creating a quadtree of rectangles and, secondly, the quadtree is

traversed to approximate the net force acting on each node. Nodes

inside a distant enough rectangle are grouped together and treated

as a supernode located at the center of mass of the grouped nodes.

In this way, the repulsive forces in the graph are calculated in

O(N · log N) time.

Another variant of the spring embedder model is the GEM al-

gorithm [17] , which improves the graph layout convergence by de-

tecting rotations and oscillations of the nodes. However, the run-

ning time for each iteration of GEM is O(M + N

2) .

2.1.2. Kamada and Kawai’s model

The model of Kamada and Kawai [37] is based on the idea

that a graph layout is aesthetic when the pairwise geometric dis-

tances between the nodes in the layout match the pairwise graph-

theoretic distances. In this model, every pair of nodes is connected

by a spring that obeys Hooke’s law. The natural length of each

spring is proportional to the graph-theoretic distance between the

two nodes connected by the spring. In this way, the total energy

of the system is defined as follows:

E = c ·
∑

u, v ∈ V

(
� (u, v)

d min (u, v)
− L

)2

, (3)

where c is a constant, V is the set of nodes in the graph, � (u, v)

is the current length of the spring connecting nodes u and v, L is

the desired length of a single edge in the layout, and d min (u, v) is

the shortest path distance between nodes u and v . The Newton–

Raphson method is used to iteratively minimize the energy E of

the graph layout.

Kamada and Kawai’s model requires a preprocessing step. It cal-

culates the shortest path distance d min (u, v) between every pair of

nodes in the original graph. The computational complexity of this

model is dominated by the preprocessing step, and thus the algo-

rithm has a time complexity of O(N · M) and a space complexity of

O(N

2) . This quickly becomes an obstacle to lay out large graphs.

Stress majorization [24] is a variant of Kamada and Kawai’s

model. Instead of using the Newton–Raphson method to iteratively

minimize the energy function, techniques from the field of multidi-

mensional scaling are employed to improve computation speed. In

multidimensional scaling, the energy function defined in Eq. (3) is

known as the stress function. Under stress majorization, the stress

function is usually defined such that c = 1 and L = 1 in Eq. (3) .

Nonetheless, stress majorization needs to carry out the same pre-

processing step as Kamada and Kawai’s model in order to calculate

the all-pairs shortest paths for the nodes in the graph.

The maximal entropy stress model [23] avoids the preprocess-

ing step by only considering springs between neighboring nodes

and resolving the remaining degrees of freedom via maximization

of the entropy of the layout. The sparse stress model [46] stabi-

lizes the sparse stress function restricted to 1-neighborhoods with

aggregated long-range influences inspired by the use of Barnes &

Hut approximation [4] .

2.2. The multi-level technique for graph layout

The multi-level technique [30,31,55] has become the standard

method for graph layout of general large graphs. This technique

operates regardless of the initial positions of the nodes and only

requires the graph structure. Multi-level graph layout utilizes aux-

iliary graphs (one for each level) whose nodes represent subsets

of nodes in the original graph, although some authors have used

node filtrations [21,22] as an alternative way to create the auxil-

iary graphs.

The multi-level technique for graph layout consists of three

phases:

1. Coarsening: A sequence of graphs (G

0 , G

1 , . . . , G

l−1 , G

l) is gen-

erated, so that G

0 is the original graph and G

k +1 is obtained

by grouping nodes of G

k for 0 ≤ k ≤ l − 1 . The coarsening con-

tinues until a graph G

l with only a small number of nodes

is reached. (For example, Walshaw typically coarsens down to

two nodes in [55] .) In order for this process to be efficient,

the coarsening phase is designed so that l = O(log (N)) . Once

the optimized layout for the coarsest graph has been obtained,

then two additional phases (placement and refinement) are

performed iteratively. Specifically, the sequence of placement

followed by refinement is repeated l times.

2. Placement: The optimized layout of a coarser graph G

k +1 is

transformed to a finer layout G

k . Typically, given a supernode in

G

k +1 , its nodes in G

k are assigned random positions near that

of the supernode.

3. Refinement (or single-level layout): A force-directed method

(see Section 2.1) is often used to improve the layout obtained

after the placement phase. Only a few iterations of the force-

directed method are usually needed in this phase in order to

optimize the layout for the current level.

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 75

Fig. 1. Pseudocode for the NB algorithm.

3. Neighborhood beautification graph layout by message

passing

The present work introduces a novel approach to graph lay-

out named Neighborhood Beautification (NB). This approach per-

forms message passing between neighboring nodes in the graph.

Every node sends a message to each of its neighbors with a recom-

mended position for the neighbor. Therefore, the messages passed

by a sending node u to its neighboring nodes N (u) reflect node u ’s

preferences about local beauty in the graph layout. The set of mes-

sages received by a node, along with its current position, deter-

mine its next position in the graph layout.

Fig. 1 shows the top-level steps of the NB algorithm. Normally,

an initial layout is provided with random positions for the nodes,

and this layout is progressively improved after each iteration of

NB. In each iteration, three phases are carried out in the following

order: (1) minimization of edge crossings , (2) minimization of edge

length differences , and (3) maximization of angular resolution . Each

of these phases operates by visiting all the nodes in the graph,

sending messages from each visited node to its neighbors, and pro-

cessing a node’s incoming messages.

There are two ways of organizing message passing in each NB

phase:

1. In synchronous NB, the nodes of the graph are visited in an

arbitrary order that is fixed between iterations. Each visited

node sends its outgoing messages and, once the last message

has been sent in the graph, every node processes its incoming

messages. For a node u , its new position is determined by the

barycenter of the set formed by u ’s current position along with

the recommended positions of its incoming messages.

2. In asynchronous NB, the nodes of the graph are visited in a ran-

dom order, which varies from iteration to iteration. Each vis-

ited node sends its outgoing messages, which are immediately

processed by its neighbors as they arrive: The new position

for each neighbor is the recommended position in its incoming

message. 2

In this work, we use synchronous message passing for each of

the three NB phases, since we found in experiments that it pro-

duces better results. In the rest of the present section, we first dis-

cuss each of the three NB phases in turn. Section 3.1 discusses how

NB minimizes edge crossings, which helps to unfold and untangle

the current layout. Section 3.2 explains how NB keeps edge lengths

uniform, which facilitates nodes to be uniformly distributed in the

layout. Section 3.3 describes how NB maximizes angular resolu-

tion, which improves the global orientation of the layout. Finally,

an analysis is included in Section 3.4 .

3.1. Phase 1: minimization of edge crossings

The first phase of NB aims to reduce the number of edge cross-

ings in a graph layout by making edges shorter. The reduction of

the number of crossings is a side effect of shortening edges, while

other approaches [5,6] augment force-directed techniques with ex-

plicit (and computationally more costly) calculations and intelli-

gent removal of crossings. The reduction can be achieved locally if

every node sends a message to each of its neighbors recommend-

ing the following translation in the plane:

m

u, v
1

=

(
x ′ (v) , y ′ (v)

)
2 Asynchronous NB is similar to Kamada and Kawai’s method (see Section 2.1.2)

in that the layout is updated by considering one node at a time. However, there

are important differences. In Kamada and Kawai’s method, the current node is

moved so that the global layout energy is minimized. In asynchronous NB, on the

other hand, the randomly chosen current node locally sends messages that move

its neighbors according to a specific aesthetic criterion.

76 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

Fig. 2. Graph layout before one of the nodes (square) sends messages to its neigh-

bors (circles) in Phase 1 of NB (left) and the resulting graph layout after these mes-

sages have been processed by the neighbors with k 1 = 0 . 5 in Phase 1 of NB (right).

Note how the number of edge crossings (rhombuses) has been reduced.

such that {
x ′ (v) = x (v) + k 1 · (x (u) − x (v))
y ′ (v) = y (v) + k 1 · (y (u) − y (v)) ,

where u is the sending node, v is the receiving node, m

u, v
1

is the

Phase-1 message sent from u to v containing the new recom-

mended coordinates for v from the viewpoint of u , and k 1 ∈ (0,

1) is a constant. Normally, values of k 1 ≈ 1 produce edge crossing

minimization in a fewer number of NB iterations. Note that, when

k 1 ≈ 1, this phase operates in a similar way to Tutte’s barycentric

method [53] , which places each free node at the barycenter of its

neighbors. A difference is that we include the position of the re-

ceiving node in the calculation of the barycenter.

The idea behind message m

u, v
1

is that the neighbor v should ap-

proach the sending node u proportionally to a constant k 1 . In this

way, as a consequence of promoting shorter edges, a decrease is

expected in the number of crossings resulting from the intersec-

tion of, on the one hand, the edges having the sending node as

an end node and, on the other hand, the rest of the edges in the

graph layout. For example, consider the two graph layouts in Fig. 2 ,

where the following elements have been depicted: the sending

node (as a square), the receiving nodes (as circles), the edges con-

necting the sending node and the receiving nodes (as highlighted

lines), and the intersections of the highlighted edges with the rest

of the edges (as rhombuses). The left panel shows the graph layout

prior to message passing from the sending node. The right panel il-

lustrates the resulting graph layout after the receiving nodes have

processed their incoming messages with k 1 = 0 . 5 . Whereas eleven

crossings appear in the left graph layout, only six of them remain

in the right graph layout.

3.2. Phase 2: minimization of edge length differences

The second phase of NB is designed to make the edge lengths

in the graph layout more uniform. Keeping edge lengths approxi-

mately uniform is a generally accepted aesthetics for obtaining at-

tractive drawings of undirected graphs [12] . Similar to Phase 1, the

smoothing of edge lengths can be done locally if every node sends

a message to each of its neighbors recommending a translation in

the plane.

We say desired edge length to denote the desired length for the

edges in the current layout. (The “current layout” is the one re-

sulting from Phase 1.) The desired edge length can be defined in

several ways:

1. It can be established locally for each sending node and its

neighbors in the graph. For example, it can be calculated as the

length to the nearest (or, alternatively, farthest) neighbor. We

discarded a local definition of the desired edge length because

we found that it produces severe distortions in the graph lay-

out.

2. It can be set up globally in the graph. 3 An option that produces

satisfactory layout results (regardless of the particular graph

at hand) consists of defining the desired edge length as the

longest edge length present in the current layout. In this way,

in contrast to Phase 1, the receiving node is separated from the

sending node so that the new length between them approaches

the desired edge length. This is the option that we use in the

experimental part of this work (see Section 4). We experimen-

tally found that other variants of this option, like setting the

desired edge length to the shortest or to the mean edge length

in the current layout, produce final layouts of poorer quality,

mainly in terms of uniformity of edge length.

Let u be a sending node and v a receiving node. A message

passed in this phase is defined as follows:

m

u, v
2

=

(
x ′ (v) , y ′ (v)

)
such that {

x ′ (v) = x (v) + k 2 · (d desired − d(u, v)) · x (v) −x (u)
d(u, v)

y ′ (v) = y (v) + k 2 · (d desired − d(u, v)) · y (v) −y (u)
d(u, v)

,

where m

u, v
2

is the Phase-2 message sent from u to v containing

the new recommended coordinates for v from the viewpoint of u,

k 2 ∈ (0, 1] is a constant, d desired is the desired edge length, and d (u,

v) is the Euclidean distance from u to v .

When k 2 = 1 , the goal of the messages passed by a sending

node u to its neighbors is to place the neighbors at a distance

from the sending node equal to the desired edge length, without

changing the directions of the neighbors relative to the sending

node. The greater k 2 is, the more uniformity is achieved after this

phase. This phase is similar to Kamada and Kawai’s spring model

(see Section 2.1.2), with the difference that we place springs only

between neighboring nodes and all of them have the same natu-

ral length equal to d desired . For example, consider the two graph

layouts in Fig. 3 , where the sending node is depicted as a square

and the receiving nodes are depicted as circles. The left panel

shows the graph layout prior to message passing from the send-

ing node. The right panel shows the graph layout resulting from

those incoming messages being processed by the receiving nodes

for k 2 = 1 and for a desired edge length globally set to the longest

edge length in the current graph layout. Fig. 3 shows that uni-

form edge lengths are achieved in the neighborhood of the sending

node.

It is important to note that, in Phases 1 and 2 of NB, the two

messages sent in opposite directions through each edge contain

symmetric values and, therefore, just one of the two messages

needs to be calculated. In other words, if node v is translated (δx ,

δy) under message m

u, v
i

then u would be translated (−δx , −δy) un-

der message m

v ,u
i

for i ∈ {1, 2}.

3.3. Phase 3: maximization of angular resolution

Let u be a node whose neighbors are denoted by N (u) and

whose degree is denoted by deg (u) = | N(u) | . Phase 3 of NB aims

3 An efficient option is to allow the user to enter the value of the desired edge

length, which will remain unchanged throughout the execution of the NB algorithm.

This option has the disadvantage that the final layout quality will depend on the

specific desired edge length employed, and the user will need to manually tune

this parameter for each particular graph.

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 77

Fig. 3. Graph layout before one of the nodes (square) sends messages to its neigh-

bors (circles) in Phase 2 of NB (left) and the resulting graph layout after these mes-

sages have been processed by the neighbors with k 2 = 1 in Phase 2 of NB (right).

to place N (u) such that the angle between the edges from u to any

pair of consecutive neighbors is equal to 360 o / deg (u) . This aes-

thetics criterion has received several names in the literature, for

instance, maximizing the minimum angle between edges leaving

a node [47] or maximizing the uniformity of the angles around

each node [54] . Several force-directed graph layout methods im-

plement this criterion [9,15,36,41] . Eades et al. [15] construct graph

drawings with large crossing angles between non-adjacent edges.

(Note that NB only operates with angles between adjacent edges.)

Lin and Yen [41] define a repulsive force between adjacent edges,

but it has the disadvantage of taking as input a reasonable graph

layout computed by another force-directed method. The work of

Chernobelskiy et al. [9] is applied in the context of Lombardi-

style graph drawings. In a Lombardi drawing of a graph, nodes are

represented as points, edges are represented as circular arcs be-

tween their endpoints, and every node has perfect angular resolu-

tion. Finally, Huang et al. [36] create a sine force in order to in-

crease the angular resolution of nodes. The sine force makes the

angle between two neighboring edges approach the optimal angle

360 o / deg (u) .

When deg (u) < 2 , no message is sent from node u . Intuitively,

this is because the angular resolution is not adjustable in this case.

Given a sending node u , with deg (u) ≥ 2 , and an ordering of its

neighbors
(
v 1 , v 2 , . . . , v deg (u) −1 , v deg (u)

)
by angle with respect to u ,

the messages passed in this phase are defined as follows:

m

u, v i
3

=

(
x ′ (v i) , y ′ (v i)

)
such that {(

x ′ (v i) , y ′ (v i)
)

= rotate
(
v i , k 3 ·

(
angle (v i , v i +1) − 360 o

deg (u)

))
if angle (v i , v i +1) >

360 o

deg (u) (
x ′ (v i) , y ′ (v i)

)
= (x (v i) , y (v i)) otherwise

Here, m

u, v i
3

is the Phase-3 message sent from u to v i (with i ∈

{ 1 , . . . , deg (u) }) containing the new recommended coordinates for

v i from the viewpoint of u , angle (v i , v i +1) is the angle between

edges 〈 u, v i 〉 and 〈 u, v i +1 〉 , rotate (v i , α) computes the new coor-

dinates for v i after being rotated an angle α around u , and k 3 ∈ (0,

1] is a constant. Note that moving a node means reducing its angle

with the next node; since the goal is to progressively make angles

more uniform to the value 360 o / deg (u) , the only way to achieve

that goal is to only move nodes with angle to the next node greater

than 360 o / deg (u) . If rotating a node v i towards v i +1 causes the an-

gle between v i −1 and v i to become greater than 360 o / deg (u) , the

node v i −1 will be rotated towards v i in the next iteration of NB.

Messages in Phase 3 operate under the following conditions:

• Any coordinate system is valid for this phase. For example, 0 o

could represent North and angles could increase clockwise, or

0 o could represent East and angles could increase counterclock-

wise.

• The ordering of the neighbors v i , defined earlier in this sec-

tion, can be done either by increasing angle or by decreasing

angle. If angles are assumed to increase clockwise, this gives

rise respectively to two types of rotations: clockwise and coun-

terclockwise. We experimentally found that Phase 3 is more ef-

fective if the type of rotation is selected uniformly at random,

over “clockwise” and “counterclockwise”, every time a sending

node u executes this phase.

• Message m

u, v i
3

is sent before message m

u, v i +1

3
.

• Message m

u, v i
3

with i = deg (u) uses v i +1 = v 1 . Note that v 1 has

already been rotated under message m

u, v 1
3

.

Although the goal of the messages passed by a sending node to

its neighbors is to make angles (with respect to the sending node)

between the neighboring nodes more uniform, in general this goal

can only be achieved after several iterations of NB. One iteration of

Phase 3 increases the angle uniformity of the neighboring nodes

but, even if k 3 = 1 , it is unlikely that complete uniformity is ob-

tained after just one iteration. For example, consider the two graph

layouts in Fig. 4 , where the sending node is depicted as a square

and the receiving nodes are depicted as circles. The left graph lay-

out constitutes the state prior to message passing from the send-

ing node. The messages are sent in the order (v 1 , v 2 , v 3). The right

graph layout depicts the resulting state after all of the incoming

messages have been processed by the receiving nodes for k 3 = 1 .

Fig. 4 reflects that just one of the receiving nodes, v 2 , was rotated.

The rest of the neighboring nodes might be rotated in subsequent

iterations of NB, however.

Once message passing and processing has taken place in all of

the nodes in Phase 3, and before the next NB iteration is started

in Phase 1, an optional scaling of the resulting graph layout can be

carried out so that it conforms to the drawing frame. If this scal-

ing is not applied, the graph layout will typically become smaller

after each iteration; in such a case, it will be necessary to apply

the scaling after the final NB iteration in order to obtain a proper

visualization of the final graph layout.

3.4. Discussion and analysis

In the three NB phases, the idea behind the messages sent by

a node u to its neighbors is that these messages contain infor-

mation about suggested new locations representing appealing lo-

cations for the neighbors from the viewpoint of u . Therefore, NB

promotes a local concept of good layout (abbreviated as “beauty”)

by making node u interact only with its immediate neighborhood.

Thus, in Fig. 2 only the crossings caused by u ’s edges are for sim-

plicity considered, and the rest of incident edges to u ’s neighbors

are ignored. After the translations depicted in Fig. 2 , it is possible

that u ’s neighbors connected to other nodes increase the number

of crossings for their incident edges. However, as the experimental

evaluation of this work has demonstrated, in general the global ef-

fect after an iteration of Phase 1 is a reduction of the total number

of crossings in the layout.

Phase 2 stretches edges as shown in Fig. 3 , which could re-

introduce crossings in the layout. Nonetheless, the goal of Phase

1 is precisely to keep that from happening in Phase 2 by making

k 1 as close to unity as possible.

78 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

Fig. 4. Graph layout before one of the nodes (square) sends messages to its neighbors (circles) in Phase 3 of NB (left) and the resulting graph layout after these messages

have been processed by the neighbors with k 3 = 1 and order (v 1 , v 2 , v 3) in Phase 3 of NB (right).

Although Phase 1 shortens edges and Phase 2 lengthens them,

they are not necessarily opposing phases but instead typically have

complementary effects. Phase 1 uniformly reduces edge lengths

throughout the layout, whereas Phase 2 extends edge lengths de-

pending on how similar they are to the largest edge length in

the layout. In this way, edges whose lengths are close to that of

the longest edge are greatly shortened in Phase 1 while left al-

most unchanged in Phase 2. This is confirmed by the fact that the

best results in Section 4 are obtained when k 1 ≈ 1 for most of the

graphs, while k 2 is much more graph dependent and adopts values

throughout the whole real interval (0 , 1] .

If Phase 2 is considered in isolation, it could be argued that

modifying the target edge length would only mean a global scal-

ing of the current layout. In other words, if a layout with target

length equal to unity is scaled by a factor k , then this would be the

same as applying a target length equal to k . However, even though

scaling by k could have that effect locally if just one node and its

neighbors are considered, the result is quite different globally after

all the messages have been sent, as explained in Section 3.2 (point

2). Note that when nodes receive more than one message, setting

up a long target length can even “destroy” the current layout. In

general, specifying a desired edge length in Phase 2 has an influ-

ence on the final layout quality.

The reason why only too large angles are decreased but too

small angles are not enlarged in Phase 3 (see Fig. 4) is that the

ordering of edges by angle needs to be preserved in this phase. 4

When an edge is rotated, that can only be guaranteed if angles be-

tween consecutive edges are decreased and not enlarged when ap-

proaching the ideal angle 360 o / deg (u) , where u denotes the cur-

rent node.

The computational complexity of an iteration of the first and

second NB phases is O(M) , since simple operations are carried out

for each pair of neighboring nodes. However, the third NB phase

contributes with additional complexity derived from the ordering

of angles. In this phase, each node u orders its neighbors by angle,

which takes O(deg (u) · log deg (u)) . In the worst case of a regu-

lar graph where all degrees are the same, the overall complexity

of angle ordering in the third NB phase is O(N · � · log �) , where

� denotes the maximum degree of the graph. Thus, the computa-

tional complexity for an iteration of NB is O(M + N · � · log �) in

the worst case. In comparison to the complexity for an iteration

of the best force-directed algorithms, which is O(M + N · log N) as

shown in Section 2.1 , note that a reduction is obtained by NB when

large graphs with low � are considered; nonetheless, as the graph

4 Since Phase 3 acts locally in a neighborhood, it is impossible to determine the

optimum edge ordering for the neighborhood with respect to the global graph.

Therefore, in order to avoid unexpected disruptive changes in the layout, Phase 3

preserves the current edge ordering when maximizing angular resolution.

gets more connected and �≈ N , the complexity of NB becomes

higher in the worst case. Interestingly, the angle orderings are typ-

ically more and more similar as NB progresses. This can be used to

improve the efficiency of the ordering process. In this way, like in

Phases 1 and 2, the complexity of angle ordering becomes O(M)

as the execution of NB progresses.

4. Experimental evaluation

There are two main aspects to be considered when the perfor-

mance of a graph layout algorithm is evaluated: (1) the quality of

the layouts obtained by the algorithm and (2) the computational

resources needed to compute layouts. We explore these two as-

pects in the following two sections. The experiments were carried

out on an Intel Core i5 processor (2.67 GHz) with 8Gb of memory

and running Windows 7.

4.1. Graph layout quality

We experimentally evaluate the quality of the graph layouts

computed by NB by applying it, first, as a single-level method for

graph layout and, second, as the method used in the refinement

phase of the multi-level approach. As a single-level method, we

execute a number of NB iterations on a set of graphs of small

or medium size which are initially assigned random positions for

their nodes. In the context of the refinement stage of the multi-

level approach, NB is executed for a given number of iterations

on a set of large graphs in which only their structure (nodes and

edges) is required and the initial positions of the nodes are not

needed. We implemented the NB algorithm within NetLogo [56] ,

an agent-based modeling and programming environment, due to

the fact that it is particularly well suited for modeling and inspect-

ing complex systems developing over time.

Figs. 5 and 6 contain twelve graphs (widely used in the graph

layout literature) to which NB has been applied as a single-level

method. Graphs 5 a and b are two types of grids, which are suc-

cessfully unfolded by means of NB. For graph 5 c, most of the

previous graph layout methods produce a non-planar layout (see

[20]); however, NB (like [11]) is able to generate a layout that is

free of edge crossings. Graph 5 d represents a view from a reg-

ular dodecahedron with twelve pentagonal faces. Graphs 5 e and

f, which appear in [11] and [41] respectively, constitute two lay-

outs for trees. Finally, the six graphs in Fig. 6 are selected because

they have a higher number of nodes than the six graphs in Fig. 5 .

The NB parameters used for obtaining the graph layouts depicted

in Figs. 5 and 6 are summarized in Table 1 . The parameter val-

ues for k 1 , k 2 , and k 3 were selected via manual fine-tuning, such

that those values efficiently leading to a good layout are preferred.

NB was executed for the minimum number of iterations producing

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 79

Fig. 5. Layouts for six simple graphs computed by NB used as a single-level method. The graphs are initially assigned random positions for their nodes. Additional informa-

tion about the graphs and NB parameters is in Table 1 .

Table 1

NB parameters used for the graph layouts depicted in Figs. 5 and 6 .

Graph Name Nodes Edges k 1 k 2 k 3 NB iterations

5 a grid_7x7 49 84 0.999999 1 0.1 200

5 b grid_19x5 95 166 0.999999 1 0.1 400

5 c Davidson&Harel_fig1b 19 45 0.5 0.5 0.1 200

5 d Davidson&Harel_fig8e 20 30 0.999999 1 0.1 50

5 e Davidson&Harel_fig11b 21 20 0.999999 0.8 0.4 200

5 f Lin&Yen_fig4a 22 21 0.5 0.5 1 150

6 a grid_20x20_singlefolded 399 760 0.999999 0.2 0.1 10 0 0

6 b grid_20x20_doublefolded 397 760 0.999999 0.1 0.1 10 0 0

6 c cylinder_rnd_10x10 97 178 0.999999 0.2 0.2 100

6 d cylinder_rnd_32x32 985 1866 0.999999 0.2 0.2 10 0 0

6 e Sierpinski_4 123 243 0.999999 0.5 0.05 20 0 0

6 f flower_1 210 3057 0.999999 0.5 0.05 16,0 0 0

80 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

Fig. 6. Layouts for six more complex graphs computed by NB used as a single-level method. The graphs are initially assigned random positions for their nodes. Additional

information about the graphs and NB parameters is in Table 1 .

good layout results in each case. (“Good” was visually determined

by comparing the current graph layout with the layout obtained

at convergence, after a high number of iterations.) The direction of

rotation (clockwise or counterclockwise) was randomly selected as

explained in Section 3.3 . The optional scaling of the layout after

each iteration was carried out for the twelve graphs.

Figs. 7 and 8 contain twelve large graph layouts obtained by

NB using the multi-level approach. We use a simple coarsening

method in which every node is grouped with one randomly chosen

neighbor so that clusters for the next level are formed by at most

two nodes of the current level. Regarding the placement method,

we employ the typical technique that assigns each node a ran-

dom position near its supernode. While Fig. 7 contains six grid-

like layouts, Fig. 8 depicts six layouts with complex structures. The

corresponding graphs are available from the University of Florida

Sparse Matrix Collection. 5 The layouts shown in Figs. 7 and 8 were

5 http://www.cise.ufl.edu/research/sparse/matrices

obtained by using the NB parameters shown in Table 2 . The pa-

rameter values for k 1 , k 2 , and k 3 were selected via manual fine-

tuning, such that those values efficiently leading to a good lay-

out are preferred. The refinement stage of the multi-level approach

was executed for the minimum number of NB iterations producing

good layout results in each case. The direction of rotation (clock-

wise or counterclockwise) was randomly selected as explained in

Section 3.3 . The optional scaling of the layout resulting after each

iteration was carried out for the twelve graphs. Compared to other

layouts obtained for the same graphs by state-of-the-art methods,

the grid-like layouts in Fig. 7 are of very good quality, while the

complex layouts in Fig. 8 are slightly less aesthetic.

4.2. Running time evaluation

Due to efficiency reasons and in order to compare the running

times of NB with those of other state-of-the-art layout methods,

http://www.cise.ufl.edu/research/sparse/matrices

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 81

Fig. 7. Layouts for six grid-like large graphs computed by NB using the multi-level approach. Additional information about the graphs and NB parameters is in Table 2 .

Table 2

NB parameters used for the graph layouts depicted in Figs. 7 and 8 .

Graph Name Nodes Edges Levels k 1 k 2 k 3
NB iterations for each

refinement stage

7 a 516 516 729 10 0.999999 0.5 0.5 70

7 b grid_rnd_32 985 1834 12 0.999999 0.25 0.5 50

7 c grid_40x40_singlefolded 1599 3120 12 0.999999 0.2 0.2 50

7 d grid_40x40_doublefolded 1597 3120 12 0.999999 0.2 0.2 100

7 e 4970 4970 7400 14 0.999999 0.1 0.75 30

7 f crack 10,240 30,380 18 0.999999 0.5 0.05 50

8 a Sierpinski_6 1095 2187 12 0.999999 0.25 0.025 30

8 b Sierpinski_8 9843 19,683 16 0.999999 0.05 0.4 100

8 c data 2851 15,093 13 0.999999 0.2 0.4 100

8 d add32 4960 9462 25 0.999999 0.03 0.5 5

8 e 4elt 15,606 45,878 19 0.999999 0.01 0.8 10

8 f cti 16,840 48,232 14 0.999999 0.1 0.01 100

82 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

Fig. 8. Layouts for six complex large graphs computed by NB under the multi-level approach. Additional information about the graphs and NB parameters is in Table 2 .

we implemented NB in OGDF, 6 a publicly available C++ class library

for the automatic layout of graphs. The following layout algorithms

from the literature, as implemented in C++ in OGDF, were used in

comparative experiments:

1. FR : The original algorithm of Fruchterman and Reingold

[20] that calculates exact repulsive forces (see Section 2.1.1).

2. FRg : The grid-variant algorithm of Fruchterman and Reingold

[20] that uses approximate repulsive forces (see Section 2.1.1).

3. GEM : The algorithm of Frick, Ludwig, and Mehldau [17] that de-

tects rotations and oscillations of the nodes (see Section 2.1.1).

6 http://www.ogdf.net

4. FM

3 s : The fast multipole multi-level method of Hachul and

Jünger [28] , used as a single-level method, that approximates

the repulsive forces through techniques inspired by the N -body

problem (see Section 2.1.1).

5. KK : The algorithm of Kamada and Kawai [37] that is based

on calculating the pairwise geometric distances between nodes

(see Section 2.1.2).

6. SM : The algorithm of Gansner, Koren, and North [24] that

is based on the stress majorization technique and consti-

tutes a variant of the algorithm by Kamada and Kawai (see

Section 2.1.2).

We considered fourteen graphs (see Table 3) with different

characteristics as described in [27] . Graphs #1 through #3 and

graphs #6 through #11 are instances of several types of grid-like

http://www.ogdf.net

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 83

Table 3

Running times in seconds (rounded to two decimal places) for NB, used as a single-level algorithm, and six other layout algorithms when applied to fourteen

graphs with different characteristics. The best running time for each graph is highlighted in bold. The graphs are ordered by decreasing number of nodes.

Graph Name Nodes Edges NB FR FRg GEM FM

3 s KK SM

#1 grid_40x40 1600 3120 269.99 1250.87 195.03 1039.87 709.54 367.34 573.09

#2 grid_40x40_singlefolded 1599 3120 260.21 1177.59 199.18 749.19 705.35 664.56 674.20

#3 grid_40x40_doublefolded 1597 3120 326.12 1327.42 223.70 800.93 723.38 811.50 402.55

#4 ug_380 1104 3231 3.65 4.42 12.16 9.76 14.12 35.94 7.86

#5 Sierpinski_6 1095 2187 351.07 487.76 220.77 404.11 748.99 349.16 234.50

#6 cylinder_rnd_32x32 985 1866 37.77 344.25 82.25 299.71 276.08 103.39 92.72

#7 grid_rnd_32 985 1834 126.94 306.08 144.92 272.58 259.54 123.07 167.18

#8 516 516 729 37.19 95.79 62.04 81.55 106.28 123.13 69.21

#9 grid_20x20 400 760 12.88 49.35 21.14 38.65 27.39 13.42 11.99

#10 grid_20x20_singlefolded 399 760 12.17 39.22 22.74 31.57 28.20 15.77 14.90

#11 grid_20x20_doublefolded 397 760 10.52 46.52 25.30 34.14 32.84 23.08 13.22

#12 flower_1 210 3057 48.09 0.18 16.51 2.36 4.68 2.95 2.17

#13 Sierpinski_4 123 243 1.13 5.64 5.62 1.42 4.60 1.13 1.06

#14 spider_A 100 160 0.65 0.31 12.89 1.17 3.07 0.99 2.32

graphs. Graph #4 has a high maximum degree whose value is 856.

Graph #12 is formed by seven complete subgraphs with 30 nodes.

Graphs #5 and #13 are Sierpinski graphs. Finally, graph #14 is a

spider graph.

In order to measure the running times reported in Table 3 , we

generated initial layouts for each graph by assigning random posi-

tions to its nodes in the drawing frame. The generation of random

initial positions for the nodes was carried out with different seeds

for each new generated graph layout.

Every layout algorithm uses a number of parameters that need

to be set up before execution, so that an aesthetic layout is com-

puted in a short time. For each layout algorithm, we initially em-

ployed the default parameters included in OGDF. When these pa-

rameters were insufficient to produce an aesthetic layout, we man-

ually tuned the parameters in order to improve the quality of the

layout. Since this manual tuning process is a time-consuming task,

we only generated five drawings for each entry in Table 3 , where

the mean running times for them are reported. 7

The results in Table 3 demonstrate the consistently strong per-

formance achieved by NB, which is always among the two best

methods in terms of running time, except in the cases of flower_1

and Sierpinski_6. While FRg achieves good running-time perfor-

mance, it produces layouts of poor quality due to the fact that

it uses an inaccurate approximation of the repulsive forces. Fig. 9

shows four examples of the FRg layouts obtained in our experi-

ments, whose quality is inferior to that of the corresponding four

layouts for NB illustrated in Fig. 6 a, b, e, and f. The quality of the

layouts obtained through NB is much better than that produced by

FRg, and is comparable to that of the rest of the methods included

in Table 3 .

4.3. Quantitative evaluation

In this section, the evaluation carried out in the preceding two

sections is extended to larger graphs. Instead of visual inspec-

tion, we carry out a quantitative evaluation of graph layout qual-

ity by using three measures: relative edge-crossing number, normal-

ized standard deviation of the edge length , and angular resolution .

The relative edge-crossing number [29] , denoted as ρ1 , represents

the mean number of crossings per edge. The normalized standard

deviation of the edge length [29] , denoted as ρ2 , is defined as fol-

7 The high number of parameters that were used in the set of experiments re-

ported in Table 3 can be calculated as follows: 7 algorithms × around 5 parameters

per algorithm × 14 graphs × 5 random initializations per graph = around 2450

parameters.

Fig. 9. Layouts computed by FRg for four graphs.

lows:

ρ2 =

√ ∑

e ∈ E

(l �(e) − l av
�

) 2

M · (l av
�

) 2
,

where E is the set of M edges, l �(e) is the length of edge e in lay-

out �, and l av
�

is the mean edge length in layout �. Finally, the

angular resolution [16,36] , denoted as ρ3 , is the average over the

nodes of the difference between the smallest angle and the opti-

mal angle (360 o / deg (u) at node u). Note that the smaller the val-

ues of the three measures, the higher the quality of the graph lay-

out.

We compare NB used as a multi-level algorithm with FM

3 (an

outstanding state-of-the-art multi-level algorithm which was used

as single level in Section 4.2) and PivotMDS [9] (an algebraic algo-

rithm). The default parameter values included in OGDF were em-

ployed for FM

3 and PivotMDS. In the case of NB, we employed the

following parameter values: k 1 = 0 . 999999 , k 2 = 0 . 03 , k 3 = 0 . 5 ,

and 200 iterations per level, since in Section 4.1 these k i values

were appropriate for complex graphs like add32 (see Table 2).

We consider graphs of the following types in this section:

• Complex graphs generated with the Barabási–Albert model [3] ,

which expands graphs through the addition of new nodes such

that each new node is linked according to a probabilistic rule

named preferential attachment. The random scale-free graphs

84 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

Table 4

Experimental results for the relative edge-crossing number (ρ1). The best value of

ρ1 for each graph is highlighted in bold.

Name Nodes Edges ρPivotMDS
1 ρFM 3

1 ρNB
1

BarabasiAlbert10 0 0 10 0 0 999 0.730 0.072 3.498

BarabasiAlbert50 0 0 50 0 0 4999 0.723 0.217 12.282

BarabasiAlbert10 0 0 0 10 0 0 0 9999 1.585 0.308 29.225

BarabasiAlbert150 0 0 150 0 0 14999 1.089 0.391 34.325

BarabasiAlbert20 0 0 0 20 0 0 0 19999 1.054 0.473 52.118

BarabasiAlbert250 0 0 250 0 0 24999 1.878 0.506 82.331

BarabasiAlbert30 0 0 0 30 0 0 0 29999 1.107 0.559 79.693

BarabasiAlbert350 0 0 350 0 0 34999 1.574 0.593 74.795

BarabasiAlbert40 0 0 0 40 0 0 0 39999 1.400 0.749 83.237

BarabasiAlbert450 0 0 450 0 0 44999 1.190 1.011 108.495

BarabasiAlbert50 0 0 0 50 0 0 0 49999 1.464 1.177 139.410

ego-Facebook 4039 88234 607.772 912.846 792.546

email-Enron 36692 183831 − 2289.258 2266.903

loc-Brightkite 58228 214078 − 2157.611 2242.809

p2p-Gnutella04 10876 39994 1719.878 1485.615 3873.022

p2p-Gnutella05 8842 31837 1220.879 1227.381 1440.326

p2p-Gnutella06 8717 31525 1370.663 1131.227 2162.801

fe_sphere 16386 49152 1.057 1.120 1.059

G57 50 0 0 10 0 0 0 1.335 0.803 0.732

grid2 3296 6432 0.210 0.001 0.0 0 0

netz4504 1961 2578 0.111 0.025 0.0 0 0

rajat03 7602 12551 1.106 0.594 0.819

rbd3200l 3200 7840 0.389 0.415 0.400

saylr4 3564 9376 2.327 2.345 2.303

generated by this model are similar to social networks or ci-

tation networks, for example. We denote as BarabasiAlbert N a

graph with N nodes generated with the Barabási-Albert model.

• Complex real-world graphs taken from the Stanford Large Net-

work Dataset Collection. 8 This is a collection of large networks

from domains such as social networks, computer networks, or

communication networks, among others.

• Grid-like large graphs taken from the University of Florida

Sparse Matrix Collection. We have selected graphs from the do-

mains of computational fluid dynamics, circuit simulation, and

2D/3D problems.

Tables 4 through 7 contain the results obtained for the rela-

tive edge-crossing number (ρ1), the normalized standard deviation

of the edge length (ρ2), the angular resolution (ρ3), and the run-

ning time (t) for PivotMDS, FM

3 , and NB over the set of complex

and grid-like graphs described in this section. The two groups of

graphs (complex versus grid-like) are separated by a double hori-

zontal line in the four tables. An entry “-” in the PivotMDS column

means that no output was produced by OGDF because the input

was a disconnected graph, and PivotMDS only works for connected

graphs.

Regarding the number of edge crossings, the results for ρ1 in

Table 4 show that NB behaves worse than PivotMDS and FM

3 for

the complex graphs. However, the opposite is found for the grid-

like graphs, where NB obtains the best results for ρ1 in general. As

far as the uniformity of the edge lengths is concerned, the results

for ρ2 in Table 5 indicate that no algorithm outperforms the other

two. For the last quality measure, angular resolution, the results

for ρ3 in Table 6 show that NB is superior for grid-like algorithms,

while there is no clear pattern for the complex graphs. Finally, the

running times in Table 7 demonstrate that NB lies between Pivot-

MDS and FM

3 in terms of computational efficiency. Nonetheless,

due to the influence of the angle ordering operation in NB, the

running time increases in a graph like egoFacebook which has a

high M / N rate. In summary, NB offers important advantages for

8 https://snap.stanford.edu/data/

Table 5

Experimental results for the normalized standard deviation of the edge length (ρ2).

The best value of ρ2 for each graph is highlighted in bold.

Name Nodes Edges ρPivotMDS
2 ρFM 3

2 ρNB
2

BarabasiAlbert10 0 0 10 0 0 999 0.279 0.400 0.999

BarabasiAlbert50 0 0 50 0 0 4999 0.482 0.566 0.662

BarabasiAlbert10 0 0 0 10 0 0 0 9999 0.458 0.608 0.518

BarabasiAlbert150 0 0 150 0 0 14999 0.398 0.603 0.456

BarabasiAlbert20 0 0 0 20 0 0 0 19999 0.454 0.682 0.466

BarabasiAlbert250 0 0 250 0 0 24999 1.062 0.675 0.458

BarabasiAlbert30 0 0 0 30 0 0 0 29999 0.528 0.696 0.453

BarabasiAlbert350 0 0 350 0 0 34999 0.454 0.774 0.447

BarabasiAlbert40 0 0 0 40 0 0 0 39999 0.451 0.716 0.418

BarabasiAlbert450 0 0 450 0 0 44999 0.155 0.790 0.425

BarabasiAlbert50 0 0 0 50 0 0 0 49999 0.142 0.891 0.466

ego-Facebook 4039 88234 2.352 0.700 0.661

email-Enron 36692 183831 − 0.577 3.164

loc-Brightkite 58228 214078 − 0.513 3.138

p2p-Gnutella04 10876 39994 0.540 0.389 0.556

p2p-Gnutella05 8842 31837 0.580 0.383 0.598

p2p-Gnutella06 8717 31525 0.542 0.387 0.502

fe_sphere 16386 49152 0.246 0.196 0.244

G57 50 0 0 10 0 0 0 0.937 0.443 0.434

grid2 3296 6432 0.350 0.236 0.385

netz4504 1961 2578 0.360 0.191 0.392

rajat03 7602 12551 0.678 0.607 0.760

rbd3200l 3200 7840 0.490 0.330 0.497

saylr4 3564 9376 0.570 0.373 0.774

Table 6

Experimental results for the angular resolution (ρ3). The best value of ρ3 for each

graph is highlighted in bold. (The entry ∗ for ego-Facebook and PivotMDS has been

removed since almost half of the edges turned out to be of length zero.)

Name Nodes Edges ρPivotMDS
3 ρFM 3

3 ρNB
3

BarabasiAlbert10 0 0 10 0 0 999 42.191 40.817 35.736

BarabasiAlbert50 0 0 50 0 0 4999 41.976 42.139 43.537

BarabasiAlbert10 0 0 0 10 0 0 0 9999 43.443 43.769 41.100

BarabasiAlbert150 0 0 150 0 0 14999 43.604 44.297 43.650

BarabasiAlbert20 0 0 0 20 0 0 0 19999 43.499 44.581 42.842

BarabasiAlbert250 0 0 250 0 0 24999 42.951 43.617 42.982

BarabasiAlbert30 0 0 0 30 0 0 0 29999 43.957 44.782 43.187

BarabasiAlbert350 0 0 350 0 0 34999 42.620 43.685 43.533

BarabasiAlbert40 0 0 0 40 0 0 0 39999 42.951 44.357 43.834

BarabasiAlbert450 0 0 450 0 0 44999 42.552 44.463 42.860

BarabasiAlbert50 0 0 0 50 0 0 0 49999 43.389 45.183 43.052

ego-Facebook 4039 88234 ∗ 23.079 21.252

email-Enron 36692 183831 − 64.896 57.818

loc-Brightkite 58228 214078 − 60.871 49.925

p2p-Gnutella04 10876 39994 48.043 59.282 56.351

p2p-Gnutella05 8842 31837 47.941 59.329 52.212

p2p-Gnutella06 8717 31525 49.569 59.990 55.294

fe_sphere 16386 49152 27.739 18.516 19.292

G57 50 0 0 10 0 0 0 57.057 33.400 15.227

grid2 3296 6432 35.265 18.578 10.253

netz4504 1961 2578 22.675 14.985 8.867

rajat03 7602 12551 86.062 84.649 63.141

rbd3200l 3200 7840 39.829 48.388 40.098

saylr4 3564 9376 53.715 53.504 45.661

grid-like graphs but is outperformed by other state-of-the-art al-

gorithms when applied to complex graphs.

To conclude this section, we consider in Fig. 10 the layouts for

four graphs as produced by PivotMDS, FM

3 , and NB. The two up-

per rows correspond to examples of complex graphs (BarabasiAl-

bert10 0 0 and p2p-Gnutella05), while the two lower rows are ex-

amples of grid-like graphs (grid2 and netz4504). Intuitively, NB

produces nice layouts with no edge crossings for the two grid-like

graphs, and less nice layouts for the other two graphs.

https://snap.stanford.edu/data/

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 85

Fig. 10. Four examples of the graph layouts produced by PivotMDS (left-hand column), FM

3 (center column), and NB used as a multi-level algorithm (right-hand column).

Table 7

Experimental results for the running time (t). The best running time for each graph

is highlighted in bold.

Name Nodes Edges t PivotMDS t FM 3 t NB

BarabasiAlbert10 0 0 10 0 0 999 2.153 34.320 7.941

BarabasiAlbert50 0 0 50 0 0 4999 10.421 182.270 39.187

BarabasiAlbert10 0 0 0 10 0 0 0 9999 20.951 351.937 79.450

BarabasiAlbert150 0 0 150 0 0 14999 31.683 565.517 121.711

BarabasiAlbert20 0 0 0 20 0 0 0 19999 42.042 689.046 161.616

BarabasiAlbert250 0 0 250 0 0 24999 53.055 901.526 206.529

BarabasiAlbert30 0 0 0 30 0 0 0 29999 64.147 1036.010 251.316

BarabasiAlbert350 0 0 350 0 0 34999 75.130 1216.040 293.062

BarabasiAlbert40 0 0 0 40 0 0 0 39999 86.174 1409.490 334.137

BarabasiAlbert450 0 0 450 0 0 44999 98.108 1615.710 375.711

BarabasiAlbert50 0 0 0 50 0 0 0 49999 109.169 1698.360 423.463

ego-Facebook 4039 88234 13.291 89.372 262.658

email-Enron 36692 183831 − 912.823 881.215

loc-Brightkite 58228 214078 − 2270.020 1582.980

p2p-Gnutella04 10876 39994 26.832 356.008 245.826

p2p-Gnutella05 8842 31837 27.830 276.089 190.523

p2p-Gnutella06 8717 31525 21.216 274.779 188.464

fe_sphere 16386 49152 54.647 377.130 198.338

G57 50 0 0 10 0 0 0 12.636 104.083 49.140

grid2 3296 6432 6.958 73.772 31.528

netz4504 1961 2578 4.056 47.877 16.302

rajat03 7602 12551 17.067 273.687 79.528

rbd3200l 3200 7840 21.965 81.198 34.398

saylr4 3564 9376 7.737 77.704 40.981

4.4. Discussion of experiments

In order to get a deeper understanding of how NB works, it

is interesting to study the effects of applying each of NB’s three

phases. For example, consider the grid_7x7 graph depicted in

Fig. 5 a, which was generated from an initial random layout af-

ter 200 NB iterations with constants k 1 = 0 . 999999 , k 2 = 1 , and

k 3 = 0 . 1 as indicated in Table 1 . If we repeat the experiment on

the random layout in Fig. 11 a by applying only Phase 1 (with

k 1 = 0 . 999999), we obtain the layout shown in Fig. 11 b. Note that

the application of Phase 1 alone has eliminated the crossings of

the initial random layout of Fig. 11 a. Although Phase 1 also pro-

duced more uniform edge lengths and angles, further improve-

ment is clearly needed. If we repeat the experiment for the lay-

out in Fig. 11 b as initial layout by applying only Phase 1 (with

k 1 = 0 . 999999) and Phase 2 (with k 2 = 1), the layout depicted in

Fig. 11 c is obtained. Now, the edge lengths are more uniform in the

layout, but the edge angles are inconsistent. Finally, if we repeat

the experiment for the layout in Fig. 11 c as initial layout by apply-

ing Phase 1 (with k 1 = 0 . 999999), Phase 2 (with k 2 = 1), and Phase

3 (with k 3 = 0 . 1), then the layout in Fig. 11 d is generated. In this

layout, edge angles are nearly uniform, and an aesthetic graph lay-

out has been produced. Consequently, all of the three phases turn

out to be necessary to produce the good layout shown in Fig. 11 d.

In general, as long as the three phases are executed together

within each iteration of the NB algorithm (see Fig. 1), we observed

86 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

Fig. 11. A grid_7 × 7 graph layout: (a) with random starting positions for the nodes, (b) after the execution of 200 NB iterations with Phase 1 on the random graph layout,

(c) after the execution of 200 NB iterations with Phases 1 and 2 on the graph layout in (b), and (d) after the execution of 200 NB iterations with Phases 1, 2, and 3 on the

graph layout in (c).

Fig. 12. A grid_7 × 7 graph layout (left) and a Davidson&Harel_fig11b graph layout

(right) after the execution of 200 NB iterations with only Phase 1, then 200 NB

iterations with only Phase 2, and then 200 NB iterations with only Phase 3.

empirically that the order of the three phases does not significantly

change the quality of the layouts produced. However, if the three

phases are iterated separately, the layouts become much poorer, as

illustrated in Fig. 12 a for a grid_7 × 7 graph with random starting

positions for its nodes. Note that Figs. 12 a and 11 d correspond to

two different layouts of the same graph. Another example of poor

behavior with separate NB phases is included in Fig. 12 b for the

Davidson&Harel_fig11b graph (see Fig. 5 e).

In all of the single-level experiments conducted in this section,

we observed that the layouts progressively converge from their ini-

tial state (with random node positions) to their final state (shown

in Figs. 5 and 6) with no significant occurrence of iterations pro-

ducing a sudden worsening of the graph layout quality. The conver-

gence speed is influenced by the graph at hand and by the values

assigned to the NB parameters.

Our experiments suggest that NB produces high-quality results

for grid-like layouts, whereas it achieves somewhat less aesthetic

layouts for certain complex graphs, for instance, those in Fig. 8 c

through f. The reason behind this is that the local interactions de-

fined by the three NB phases match the neighborhood structure for

the inner nodes of a grid layout. The running times of NB are im-

pacted in a similar way. In our experiments, NB running times are

very competitive for grid-like graphs and become somewhat less

competitive for certain complex graphs. An extreme case of this is

the flower_1 graph in Table 3 .

As stated in Section 2 , algebraic layout algorithms are signifi-

cantly faster than force-directed layout algorithms, and we do not

claim that NB is faster than algebraic layout algorithms. In gen-

eral, our experiments show that NB occupies an intermediate po-

sition between algebraic and force-directed methods in terms of

running time. Regarding final graph layout quality, as mentioned

in Section 2 , algebraic layout algorithms often yield graph layouts

of inferior quality compared to those produced by force-directed

methods. Some examples of layouts obtained from algebraic meth-

ods can be found in Figures 7.15 through 7.17 and Figures 7.19

through 7.23 of [[27] , Section 7.7]. In these figures, the algebraic

methods ACE and HDE cannot clearly visualize the structure of

many challenging graphs. In related work [1] , the ACE and HDE

algorithms did not perform well on any of the evaluation datasets

with the exception of the crack graph, and appeared to only work

well on graphs with a mesh-like structure. Other specific examples

of layouts produced by algebraic methods are shown in [32,39,40] ,

which in general are of lower quality than the ones obtained by

force-directed algorithms. In terms of layout quality, similarly to

running time, NB tends to be in an intermediate position between

algebraic and force-directed methods.

NB may seem very similar to Kamada and Kawai’s graph lay-

out method at first glance. However, there are key differences as

mentioned in Section 3 and as reflected in Table 3 . For instance,

Table 3 shows that Kamada and Kawai’s method is faster than NB

S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88 87

only in 3 of 14 graphs. On the other hand, the method of Kamada

and Kawai often produces graph layouts of better quality than that

of the graph layouts computed by NB.

Currently, NB needs an expert user to fine-tune the parameters

and determine the number of iterations by visual inspection. There

does not seem to be a clear default setting (see Tables 1–3).

5. Conclusion and future research

In this work, we have developed and evaluated a novel

message-oriented graph layout method, Neighborhood Beautifica-

tion (NB), that adopts a message-passing perspective. This per-

spective is different from but complementary to the algebraic and

force-directed perspectives of existing state-of-the-art graph layout

algorithms. The new NB method is based on the idea of neighbor-

hood beautification, in which each node tries to improve the layout

of its immediate neighbors through message passing. The objective

of the messages sent by a node is to aesthetically place its neigh-

bors in the graph.

In the case of grid-like graphs, NB yields graph layouts of com-

parable quality to those obtained by the best force-directed algo-

rithms and offers important advantages regarding running time for

most of the tested graphs. Although NB is slower than algebraic

algorithms, it achieves better layout quality, especially when NB

is integrated with multi-level algorithms for large graphs. In other

words, NB gives a nice trade-off between layout quality and run-

time. Another advantage of NB is that it can be used either as a

single-level layout method or within a multi-level approach.

The present work opens up the following research directions:

• An interesting topic for future research is to tune the NB pa-

rameters automatically.

• Since NB relies on message passing between neighbors, an ef-

ficient distributed implementation [2,25] could be developed

that is enabled by the graph structure and has the advantage

of avoiding excessive communication.

• The use of parallel computing in the context of NB could be

investigated in order to improve its computation time for larger

graphs [33,45,50] .

• This article deals with static graph drawing. However, dynamic

graph drawing [18,19] aims to produce aesthetic and useful

views of graphs whose structure may change over time. An im-

portant aesthetic criterion that needs to be met in dynamic

graph drawing is to preserve the user’s mental map of the lay-

out. The decentralized nature of NB contributes to its robust-

ness against local changes in the graph structure; as a con-

sequence, NB could be directly employed for dynamic graph

drawing in order to maintain the stability of the layouts in an

efficient manner, thus preserving the mental map.

References

[1] D. Archambault , T. Munzner , D. Auber , Topolayout: multi-level graph layout by
topological features, IEEE Trans. Vis. Comput. Graph. 13(2) (2007) 305–317 .

[2] A. Arleo , W. Didimo , G. Liotta , F. Montecchiani , A million edge drawing for
a fistful of dollars, in: E. di Giacomo, A. Lubiw (Eds.), Graph Drawing: 23rd

International Symposium (GD 2015), Springer, 2015, pp. 44–51 .

[3] A.-L. Barabási , R. Albert , Emergence of scaling in random networks, Science
286(5439) (1999) 509–512 .

[4] J. Barnes , P. Hut , A hierarchical O(N logN) force-calculation algorithm, Nature
324 (1986) 4 46–4 49 .

[5] A. Barsky , T. Munzner , J. Gardy , R. Kincaid , Cerebral: visualizing multiple ex-
perimental conditions on a graph with biological context, IEEE Trans. Vis. Com-

put. Graph. 14(6) (2008) 1253–1260 .
[6] F. Bertault , A force-directed algorithm that preserves edge-crossing properties,

Inf. Process. Lett. 74 (1–2) (20 0 0) 7–13 .

[7] U. Brandes , Drawing on Physical Analogies, in: M. Kaufmann, D. Wagner (Eds.),
Drawing Graphs, Springer, 2001, pp. 71–86 .

[8] U. Brandes , C. Pich , Eigensolver methods for progressive multidimensional scal-
ing of large data, in: M. Kaufmann, D. Wagner (Eds.), Graph Drawing: 14th In-

ternational Symposium (GD 2006), Springer, 2007, pp. 42–53 .

[9] R. Chernobelskiy , K. Cunningham , M.T. Goodrich , S.G. Kobourov , L. Trott ,
Force-directed Lombardi-style graph drawing, in: W. Didimo, M. Patrignani

(Eds.), Graph Drawing: 20th International Symposium (GD 2012), Springer,
2012, pp. 320–331 .

[10] J.D. Cohen , Drawing graphs to convey proximity: an incremental arrangement
method, ACM Trans. Comput.-Hum. Interact. 4(3) (1997) 197–229 .

[11] R. Davidson , D. Harel , Drawing graphs nicely using simulated annealing, ACM

Trans. Graph. 15(4) (1996) 301–331 .

[12] G. di Battista , P. Eades , R. Tamassia , I.G. Tollis , Graph Drawing: Algorithms for

the Visualization of Graphs, Prentice-Hall, 1999 .
[13] D.L. Donoho , A. Maleki , A. Montanari , Message-passing algorithms for com-

pressed sensing, Proc. Natl. Acad. Sci. 16(45) (2009) 18914–18919 .
[14] P. Eades , A heuristic for graph drawing, Congressus Numerant. 42 (1984)

149–160 .
[15] P. Eades, W. Huang, S.-H. Hong, A force-directed method for large crossing an-

gle graph drawing, 2010, arXiv:1012.4559 .

[16] B. Finkel , R. Tamassia , Curvilinear graph drawing using the force-directed
method, in: J. Pach (Ed.), Graph Drawing: 12th International Symposium (GD

2004), Springer, 2005, pp. 448–453 .
[17] A . Frick , A . Ludwig , H. Mehldau , A fast adaptive layout algorithm for undi-

rected graphs, in: R. Tamassia, I.G. Tollis (Eds.), Graph Drawing: 2nd Interna-
tional Symposium (GD 1994), Springer, 1994, pp. 388–403 .

[18] C. Friedrich , P. Eades , Graph drawing in motion, J. Graph Algorithms Appl. 6(3)

(2002) 353–370 .
[19] Y. Frishman , A. Tal , Online dynamic graph drawing, IEEE Trans. Vis. Comput.

Graph. 14(4) (2008) 727–740 .
[20] T. Fruchterman , E. Reingold , Graph drawing by force-directed placement, Soft-

ware 21(11) (1991) 1129–1164 .
[21] P. Gajer , M.T. Goodrich , S.G. Kobourov , A fast multi-dimensional algorithm for

drawing large graphs, Comput. Geom. Theory Appl. 29(1) (2004) 3–18 .

[22] P. Gajer , S.G. Kobourov , GRIP: graph drawing with intelligent placement, J.
Graph. Algorithms Appl. 6(3) (2002) 203–224 .

[23] E.R. Gansner , Y. Hu , S. North , A maxent-stress model for graph layout, IEEE
Trans. Vis. Comput. Graph. 19(6) (2013) 927–940 .

[24] E.R. Gansner , Y. Koren , S. North , Graph drawing by stress majorization, in:
J. Pach (Ed.), Graph Drawing: 12th International Symposium (GD 2004),

Springer, 2005, pp. 239–250 .

[25] C. Gotsman , Y. Koren , Distributed graph layout for sensor networks, J. Graph
Algorithms Appl. 9(3) (2005) 327–346 .

[26] , Handbook of Graph Theory, in: J.L. Gross, J. Yellen, P. Zhang (Eds.), Chapman
and Hall/CRC, 2013 .

[27] S. Hachul , A Potential-Field-Based Multilevel Algorithm for Drawing Large
Graphs, Faculty of Mathematics and Natural Sciences, University of Cologne,

Cologne, Germany, 2005 Ph.D. thesis .

[28] S. Hachul , M. Jünger , Drawing large graphs with a potential-field-based mul-
tilevel algorithm, in: J. Pach (Ed.), Graph Drawing: 12th International Sympo-

sium (GD 2004), Springer, 2005, pp. 285–295 .
[29] S. Hachul , M. Jünger , Large-graph layout algorithms at work: an experimental

study, J. Graph Algorithms Appl. 11(2) (2007) 345–369 .
[30] R. Hadany , D. Harel , A multi-scale algorithm for drawing graphs nicely, Dis-

crete Appl. Math. 113(1) (2001) 3–21 .
[31] D. Harel , Y. Koren , A fast multi-scale method for drawing large graphs, J. Graph

Algorithms Appl. 6(3) (2002) 179–202 .

[32] D. Harel , Y. Koren , Graph drawing by high-dimensional embedding, J. Graph.
Algorithms Appl. 8(2) (2004) 195–214 .

[33] A. Hinge , D. Auber , Distributed graph layout with Spark, in: E. Banissi,
T.G. Wyeld (Eds.), Proceedings of the 19th International Conference on Infor-

mation Visualization, IEEE, 2015, pp. 271–276 .
[34] Y. Hu , Efficient, high-quality force-directed graph drawing, Math. J. 10(1)

(2006) 37–71 .

[35] Y. Hu , L. Shi , Visualizing large graphs, Wiley Interdiscip. Rev. Comput. Stat. 7(2)
(2015) 115–136 .

[36] W. Huang , P. Eades , S.-H. Hong , C.-C. Lin , Improving multiple aesthetics pro-
duces better graph drawings, J. Vis. Lang. Comput. 24(4) (2013) 262–272 .

[37] T. Kamada , S. Kawai , An algorithm for drawing general undirected graphs, Inf.
Process. Lett. 31 (1989) 7–15 .

[38] S.G. Kobourov , Force-directed drawing algorithms, in: R. Tamassia (Ed.),

Handbook of Graph Drawing and Visualization, CRC Press, 2013, pp. 383–
408 .

[39] Y. Koren , Graph drawing by subspace optimization, in: O. Deussen, C. Hansen,
D.A. Keim, D. Saupe (Eds.), Proceedings of the 6th Joint Eurographics -

IEEE TCVG Symposium on Visualization (VisSym’04), Eurographics Association,
2004, pp. 65–74 .

[40] Y. Koren , L. Carmel , D. Harel , Drawing huge graphs by algebraic multigrid op-

timization, Multiscale Model. Simul. 1(4) (2003) 645–673 .
[41] C.-C. Lin , H.-C. Yen , A new force-directed graph drawing method based on

edge-edge repulsion, J. Vis. Lang. Comput. 23(1) (2012) 29–42 .
[42] R.J. McEliece , D.J.C. Mackay , J.-F. Cheng , Turbo decoding as an instance of

Pearl’s belief propagation algorithm, IEEE J. Sel. Areas Commun. 16(2) (1998)
140–152 .

[43] H. Meyerhenke , M. Nöllenburg , C. Schulz , Drawing large graphs by multilevel

maxent-stress optimization, in: E. di Giacomo, A. Lubiw (Eds.), Graph Drawing:
23rd International Symposium (GD 2015), Springer, 2015, pp. 30–43 .

[44] C. Muelder , K.-L. Ma , A treemap based method for rapid layout of large graphs,
in: I. Fujishiro, H. Li, K.-L. Ma (Eds.), 2008 IEEE Pacific Visualization Symposium

(PacificVis 2008), IEEE, 2008, pp. 231–238 .

http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0001
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0001
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0001
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0001
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0002
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0002
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0002
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0002
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0002
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0003
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0003
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0003
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0004
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0004
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0004
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0005
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0005
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0005
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0005
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0005
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0007
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0007
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0008
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0008
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0009
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0009
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0009
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0010
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0010
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0010
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0010
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0010
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0010
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0011
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0011
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0012
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0012
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0012
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0026a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0026a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0026a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0026a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0026a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0013
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0013
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0013
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0013
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0014
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0014
http://arxiv.org/abs/1012.4559
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0015
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0015
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0015
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0016
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0016
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0016
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0016
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0017
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0017
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0017
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0018
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0018
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0018
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0019
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0019
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0019
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0020
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0020
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0020
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0020
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0021
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0021
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0021
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0022
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0022
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0022
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0022
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0023
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0023
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0023
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0023
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0024
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0024
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0024
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0025
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0026
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0026
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0027
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0027
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0027
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0028
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0028
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0028
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0029
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0029
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0029
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0030
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0030
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0030
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0031
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0031
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0031
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0032
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0032
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0032
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0033
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0033
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0034
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0034
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0034
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0035
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0035
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0035
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0035
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0035
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0036
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0036
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0036
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0037
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0037
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0038
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0038
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0039
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0039
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0039
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0039
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0040
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0040
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0040
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0041
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0041
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0041
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0041
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0042
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0042
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0042
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0042
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0043
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0043
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0043

88 S.F. Galán, O.J. Mengshoel / Journal of Visual Languages and Computing 44 (2018) 72–88

[45] C. Mueller , D. Gregor , A. Lumsdaine , Distributed force-directed graph layout
and visualization, in: A. Heirich, B. Raffin, L.P. dos Santos (Eds.), Proceedings

of the 6th Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV’06), Eurographics Association, 2006, pp. 83–90 .

[46] M. Ortmann , M. Klimenta , U. Brandes , A sparse stress model, in: Y. Hu, M. Nöl-
lenburg (Eds.), Graph Drawing: 24th International Symposium (GD 2016),

Springer, 2016, pp. 18–32 .
[47] H.C. Purchase , Metrics for graph drawing aesthetics, J. Vis. Lang. Comput. 13

(2002) 501–516 .

[48] A. Quigley , P. Eades , FADE: Graph drawing, clustering, and visual abstraction,
in: J. Marks (Ed.), Graph Drawing: 8th International Symposium (GD 20 0 0),

Springer, 2001, pp. 197–210 .
[49] R. Tamassia (Ed.), Handbook of Graph Drawing and Visualization, CRC Press,

2013 .
[50] A. Tikhonova , K.-L. Ma , A scalable parallel force-directed graph layout algo-

rithm, in: J. Favre, K.-L. Ma, D. Weiskopf (Eds.), Proceedings of the 8th Euro-

graphics Symposium on Parallel Graphics and Visualization (EGPGV’08), Euro-
graphics Association, 2008, pp. 25–32 .

[51] D. Tunkelang , A practical approach to drawing undirected graphs, Technical Re-
port CMU-CS-94-161, School of Computer Science, Carnegie Mellon University,

1994 .
[52] D. Tunkelang , A Numerical Approach to General Graph Drawing, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1999 Ph.D. the-
sis .

[53] W.T. Tutte , How to draw a graph, Proc. London Math. Soc. 13(1) (1963)
743–767 .

[54] D. Vrajitoru , Hybrid multiobjective optimization genetic algorithms for graph

drawing, in: Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2007), ACM Press, 2007, p. 912 .

[55] C. Walshaw , A multilevel algorithm for force-directed graph drawing, J. Graph
Algorithms Appl. 7(3) (2003) 253–285 .

[56] U. Wilensky, NetLogo, (http://ccl.northwestern.edu/netlogo/). Center for Con-
nected Learning and Computer Science, Northwestern University, Evanston, IL,

1999.

http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0044a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0045
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0045
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0046
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0046
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0046
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0047a
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0047
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0047
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0047
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0048
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0048
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0049
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0049
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0050
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0050
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0051
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0051
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0052
http://refhub.elsevier.com/S1045-926X(16)30047-7/sbref0052
http://ccl.northwestern.edu/netlogo/

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	February 1, 2018

	Neighborhood beautification Graph layout through message passing
	Neighborhood beautification: Graph layout through message passing
	1 Introduction
	2 Related work
	2.1 Force-directed graph layout
	2.1.1 The spring embedder model
	2.1.2 Kamada and Kawai’s model

	2.2 The multi-level technique for graph layout

	3 Neighborhood beautification graph layout by message passing
	3.1 Phase 1: minimization of edge crossings
	3.2 Phase 2: minimization of edge length differences
	3.3 Phase 3: maximization of angular resolution
	3.4 Discussion and analysis

	4 Experimental evaluation
	4.1 Graph layout quality
	4.2 Running time evaluation
	4.3 Quantitative evaluation
	4.4 Discussion of experiments

	5 Conclusion and future research
	 References

