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a b s t r a c t 

Graph layout algorithms are used to compute aesthetic and useful visualizations of graphs. In general, for 

graphs with up to a few hundred nodes, force-directed layout algorithms produce good layouts. Unfortu- 

nately, for larger graphs, they often get stuck at local minima and have high computational complexity. 

In this paper, we introduce a novel message passing technique for graph layout. The key idea of our 

message passing technique is that an aesthetic layout can be obtained if each node independently sug- 

gests aesthetic placements of its neighbors. In other words, every node sends messages to its neighbors, 

indicating new and better positions for them. As a result, the new technique, which we call Neighbor- 

hood Beautification , provides a new perspective that turns out to give a useful trade-off between the 

excellent layout quality reached by force-directed methods and the fast runtime achieved by algebraic 

methods. Neighborhood Beautification reduces, in many cases, the computational cost of force-directed 

algorithms, since only interactions between neighboring nodes are considered. Experimentally, we show 

that Neighborhood Beautification produces high-quality layouts for grid-like graphs but is outperformed 

by force-directed algorithms in the case of more complex graphs. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Graphs are widely used in artificial intelligence, computer en- 

gineering, computer science, mathematics, and statistics to model 

objects and connections between them. They have been success- 

fully applied in areas like automata theory, automatic planning, 

databases, electrical power networks, machine learning, network 

security, probabilistic graphical models, social networks, software 

engineering, and VLSI technology [26] . In order to easily under- 

stand and manipulate the data represented by graphs, aesthetic 

and useful visualizations, including layouts, of them are needed. 

Many graph layout methods have been developed [12,35,49] . Ob- 

jectives that have been considered in developing such methods in- 

clude [12,47] : minimization of edge crossings, uniformity of edge 

lengths, even distribution of nodes, and maximization of symme- 

tries. 

The present work deals with the problem of graph layout in 

the sense of nicely drawing undirected graphs whose edges are 

straight lines. This problem reduces to appropriately positioning 

nodes in a two dimensional plane. A popular approach to this 

problem is the force-directed technique, where the graph is asso- 
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ciated with a system of interacting physical objects. This approach 

defines the energy of the system such that, when a minimum is 

achieved, the layout tends to be nice and useful. Given initial po- 

sitions for the interacting physical objects, the system evolves by 

reducing its energy. Variants of this approach differ in how the 

energy is defined [11,14,20,37] . Force-directed graph layout can be 

combined with other methods for initializing the position of the 

nodes, for example, treemap-based methods [44] . 

Although force-directed methods are intuitive, easy to imple- 

ment, and produce acceptable results for graphs of medium size 

(up to a few hundred nodes), they also have important disadvan- 

tages: 

• The number of iterations needed to produce a good layout can 

be quite high. For example, since graphs are usually initial- 

ized with random positions for their nodes, in the case of large 

graphs the convergence to a global minimum is often too slow 

or even hard to achieve due to the presence of many local 

but non-global minima. Therefore, layout of large graphs re- 

quires the use of techniques in addition to force-directed meth- 

ods. The multi-level technique [30,31,43,55] (see Section 2.2 ), 

which works regardless of the initial positions of the nodes and 

only requires the graph structure, is a convenient option for 

large graph drawing. Using this technique, a sequence of graphs 

(G 

0 , G 

1 , . . . , G 

l−1 , G 

l ) is first generated, so that G 

0 is the original 

graph and G 

k +1 is obtained by grouping nodes of G 

k . The coars- 
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ening continues until a graph G 

l with only a small number of 

nodes is reached. Since the optimized layout for the coarsest 

graph can be more easily obtained, then two additional consec- 

utive phases (placement and refinement) are performed itera- 

tively. In the placement phase, the optimized layout of a coarser 

graph G 

k +1 is transformed to a finer layout G 

k . In the refine- 

ment phase (or single-level layout), typically a force-directed 

method is used to improve the layout resulting from the place- 

ment phase. 

• The computational complexity of each iteration of a force- 

directed method is usually O(M + N 

2 ) , where M and N are the 

number of edges and nodes in the graph respectively. This com- 

plexity derives from the fact that every node changes its posi- 

tion at each iteration, and this change depends on the attractive 

and repulsive forces exerted by the rest of the nodes. Whereas 

the attractive (mechanical) forces take place between neighbor- 

ing nodes and are calculated in O(M) time for the whole graph, 

the repulsive (electrical) forces occur between any pair of nodes 

and are determined in O(N 

2 ) time. Since the quadratic com- 

plexity of repulsive forces makes force-directed methods im- 

practical for large graphs, these forces can be approximated by 

grouping sufficiently distant nodes, which reduces the complex- 

ity to O(N · log N) [4,28,34,48,52] . Alternatively, Fruchterman 

and Reingold [20] use a grid variant of their force-directed algo- 

rithm that ignores the repulsive forces between distant nodes. 

Although this variant calculates the repulsive forces in O(N) 

time for sparse graphs with uniform node distribution over the 

grid squares, for general graphs this calculation may become 

more expensive. 

This work presents a novel message passing technique for graph 

layout named Neighborhood Beautification , which provides a new 

perspective on graph layout similar to how message passing has 

provided new perspectives on areas such as decoding [42] and 

compressive sensing [13] . The underlying idea of this novel tech- 

nique is that a globally aesthetic layout of a graph can be achieved 

if every set formed by a node and its neighbors is independently 

laid out in an aesthetic way. An iteration of the neighborhood 

beautification method consists of three message passing phases 

that address the following aesthetic criteria in turn: minimize edge 

crossings, maximize edge length uniformity, and maximize angu- 

lar resolution. In these three iterated phases, messages are passed 

from every node in the graph to each of its neighbors. A message 

contains information about the desired position for the receiving 

node from the viewpoint of the sending node under one of the 

three aesthetic criteria. Neighborhood Beautification can be applied 

as a single-level graph layout method, similar to force-directed al- 

gorithms, or as a graph layout method for the refinement phase of 

the multi-level technique. 

The usefulness of a graph layout method is usually estab- 

lished by taking into account both its computational cost (in 

terms of time and memory) and the quality of the resulting lay- 

outs. The Neighborhood Beautification method takes O(M + N · � ·
log �) time for each iteration in the worst case 1 (see Section 3.4 ), 

since only interactions between neighboring nodes are consid- 

ered; therefore, the high complexity associated with the calcula- 

tion of repulsive forces in force-directed algorithms is reduced in 

many cases. In the experiments of this paper, we find that al- 

though the Neighborhood Beautification method in general needs 

more iterations than force-directed algorithms, it usually offers 

shorter computation time. As far as the layout quality is concerned, 

Neighborhood Beautification provides promising results for grid- 

like graphs compared to force-directed algorithms, although for 

complex graphs the quality of layouts produced by force-directed 

1 The symbol � denotes the maximum degree of the graph. 

algorithms is superior in general. In this work, we extensively eval- 

uate the performance of the Neighborhood Beautification method 

in terms of running time and layout quality. 

Since Neighborhood Beautification relies on message passing 

between neighbors, a distributed implementation [2,25] could be 

constructed that is enabled by the graph structure. Yet, in this 

work we do not implement a distributed version of Neighborhood 

Beautification, but leave it to future work. Further, Neighborhood 

Beautification is implemented in this work as a sequential algo- 

rithm. As mentioned in Section 5 , an interesting future research 

direction is its implementation in the context of parallel comput- 

ing [33,45,50] . 

The rest of this paper is organized as follows. Section 2 re- 

views several widely used methods for single-level and multi-level 

layout of graphs. Section 3 explains our Neighborhood Beautifi- 

cation method in detail. Section 4 describes a series of experi- 

ments for evaluating the Neighborhood Beautification method. Fi- 

nally, Section 5 summarizes the main results of our work and enu- 

merates future research directions. 

2. Related work 

We consider graphs whose nodes have unconstrained positions 

and whose edges are straight lines. Existing algorithms for aesthet- 

ically laying out such graphs can broadly be classified as single- 

level or multi-level. Single-level methods exclusively operate on 

the original graph to be laid out, whereas multi-level methods use 

additional auxiliary graphs obtained from transforming the origi- 

nal graph. Single-level graph layout can be carried out in several 

ways: force-directed [11,14,20,37] , incrementally [10,51] , or alge- 

braically [8,32,39,40] . Although the algebraic methods are signifi- 

cantly faster than the force-directed methods, they frequently pro- 

duce graph layouts of inferior quality compared to graph layouts 

obtained using force-directed methods [ 27 , Section 1.3.3]. 

Due to their importance and widespread use, this section re- 

views two force-directed approaches: (1) the spring-embedder 

model, proposed by Eades [14] and later modified by Fruchterman 

and Reingold [20] , and (2) Kamada and Kawai’s model [37] . We 

also review the multi-level technique for graph layout [30,31,55] , 

an approach successfully used for large graphs, and where a force- 

directed method is used as a subroutine. 

2.1. Force-directed graph layout 

To tackle the graph layout problem, force-directed algorithms 

are inspired by a physical analogy. These algorithms consider 

forces acting on the nodes and iteratively transform the graph lay- 

out from its initial configuration (usually with random positions 

for the nodes) until a configuration is reached where the net force 

acting on each node is null. Equivalently, they associate a poten- 

tial energy with a layout and aim to find a layout whose energy 

is locally optimal. Kobourov has written an excellent and detailed 

survey of different force-directed algorithms for graph layout [38] . 

2.1.1. The spring embedder model 

The spring embedder model was defined by Eades [14] as a 

system of electrically charged rings connected by springs. The me- 

chanical forces provoke the attraction between every pair of neigh- 

boring nodes, whereas the electrical forces make every pair of non- 

neighboring nodes repel each other. 

The attractive force exerted by a spring is modeled by the fol- 

lowing formula: 

F att = c 1 · log 

(
d 

c 2 

)
, (1) 
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where c 1 and c 2 are constants, and d is the length of the spring. 

The repulsive force acting between two non-neighboring nodes is 

defined as follows: 

F rep = 

c 3 
d 2 

, (2) 

where c 3 is a constant and d is the distance between the nodes. 

Whereas attractive forces mean that neighboring nodes are drawn 

close to each other, repulsive forces imply that nodes are spread 

well out in the drawing area [ 7 , Section 4.1 ]. 

The spring embedder model iteratively updates the positions of 

the nodes. At each iteration, every node is moved proportionally to 

the net force acting on it as indicated by these formulas: {
x ′ (u ) = x (u ) + c 4 · F x (u ) 
y ′ (u ) = y (u ) + c 4 · F y (u ) 

, 

where ( x ( u ), y ( u )) are the Cartesian coordinates of node u, c 4 is a 

constant, and F ( u ) is the net force acting on node u resulting from 

considering both attractive and repulsive forces. The time complex- 

ity of the calculation of forces in each iteration of this model is 

O(M + N 

2 ) . Here, the quadratic term N 

2 , associated with the calcu- 

lation of repulsive forces, makes this model most useful for graphs 

with up to a few hundred nodes. 

Fruchterman and Reingold [20] modified the spring embedder 

model of Eades by introducing new and computationally more ef- 

ficient formulas for Eqs. (1) and (2) , without changing the qual- 

itative character of the force model. Additionally, in order to re- 

duce the O(N 

2 ) time complexity associated with the calculation 

of the repulsive forces in the Eades model, they introduced a grid 

variant of their algorithm. This grid variant ignores repulsive forces 

between distant nodes by dividing the space into squares, so that 

each node is only affected by repulsive forces from nodes in its 

own and neighboring squares. In this way, the repulsive forces for 

the whole graph are calculated in O(N) time for sparse graphs 

with a uniform node distribution over the grid squares. Unfor- 

tunately, this calculation may become more expensive when this 

condition is not met in general graphs. 

Other more recent methods of reducing the quadratic complex- 

ity associated with the calculation of repulsive forces in the Eades 

model are inspired by the N -body problem studied in physics. 

These methods [28,34,48,52] approximate the repulsive forces by 

applying two main phases: firstly, the drawing space is partitioned 

by creating a quadtree of rectangles and, secondly, the quadtree is 

traversed to approximate the net force acting on each node. Nodes 

inside a distant enough rectangle are grouped together and treated 

as a supernode located at the center of mass of the grouped nodes. 

In this way, the repulsive forces in the graph are calculated in 

O(N · log N) time. 

Another variant of the spring embedder model is the GEM al- 

gorithm [17] , which improves the graph layout convergence by de- 

tecting rotations and oscillations of the nodes. However, the run- 

ning time for each iteration of GEM is O(M + N 

2 ) . 

2.1.2. Kamada and Kawai’s model 

The model of Kamada and Kawai [37] is based on the idea 

that a graph layout is aesthetic when the pairwise geometric dis- 

tances between the nodes in the layout match the pairwise graph- 

theoretic distances. In this model, every pair of nodes is connected 

by a spring that obeys Hooke’s law. The natural length of each 

spring is proportional to the graph-theoretic distance between the 

two nodes connected by the spring. In this way, the total energy 

of the system is defined as follows: 

E = c ·
∑ 

u, v ∈ V 

(
� (u, v ) 

d min (u, v ) 
− L 

)2 

, (3) 

where c is a constant, V is the set of nodes in the graph, � ( u, v ) 

is the current length of the spring connecting nodes u and v, L is 

the desired length of a single edge in the layout, and d min ( u, v ) is 

the shortest path distance between nodes u and v . The Newton–

Raphson method is used to iteratively minimize the energy E of 

the graph layout. 

Kamada and Kawai’s model requires a preprocessing step. It cal- 

culates the shortest path distance d min ( u, v ) between every pair of 

nodes in the original graph. The computational complexity of this 

model is dominated by the preprocessing step, and thus the algo- 

rithm has a time complexity of O(N · M) and a space complexity of 

O(N 

2 ) . This quickly becomes an obstacle to lay out large graphs. 

Stress majorization [24] is a variant of Kamada and Kawai’s 

model. Instead of using the Newton–Raphson method to iteratively 

minimize the energy function, techniques from the field of multidi- 

mensional scaling are employed to improve computation speed. In 

multidimensional scaling, the energy function defined in Eq. (3) is 

known as the stress function. Under stress majorization, the stress 

function is usually defined such that c = 1 and L = 1 in Eq. (3) . 

Nonetheless, stress majorization needs to carry out the same pre- 

processing step as Kamada and Kawai’s model in order to calculate 

the all-pairs shortest paths for the nodes in the graph. 

The maximal entropy stress model [23] avoids the preprocess- 

ing step by only considering springs between neighboring nodes 

and resolving the remaining degrees of freedom via maximization 

of the entropy of the layout. The sparse stress model [46] stabi- 

lizes the sparse stress function restricted to 1-neighborhoods with 

aggregated long-range influences inspired by the use of Barnes & 

Hut approximation [4] . 

2.2. The multi-level technique for graph layout 

The multi-level technique [30,31,55] has become the standard 

method for graph layout of general large graphs. This technique 

operates regardless of the initial positions of the nodes and only 

requires the graph structure. Multi-level graph layout utilizes aux- 

iliary graphs (one for each level) whose nodes represent subsets 

of nodes in the original graph, although some authors have used 

node filtrations [21,22] as an alternative way to create the auxil- 

iary graphs. 

The multi-level technique for graph layout consists of three 

phases: 

1. Coarsening: A sequence of graphs (G 

0 , G 

1 , . . . , G 

l−1 , G 

l ) is gen- 

erated, so that G 

0 is the original graph and G 

k +1 is obtained 

by grouping nodes of G 

k for 0 ≤ k ≤ l − 1 . The coarsening con- 

tinues until a graph G 

l with only a small number of nodes 

is reached. (For example, Walshaw typically coarsens down to 

two nodes in [55] .) In order for this process to be efficient, 

the coarsening phase is designed so that l = O( log (N)) . Once 

the optimized layout for the coarsest graph has been obtained, 

then two additional phases (placement and refinement) are 

performed iteratively. Specifically, the sequence of placement 

followed by refinement is repeated l times. 

2. Placement: The optimized layout of a coarser graph G 

k +1 is 

transformed to a finer layout G 

k . Typically, given a supernode in 

G 

k +1 , its nodes in G 

k are assigned random positions near that 

of the supernode. 

3. Refinement (or single-level layout): A force-directed method 

(see Section 2.1 ) is often used to improve the layout obtained 

after the placement phase. Only a few iterations of the force- 

directed method are usually needed in this phase in order to 

optimize the layout for the current level. 
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Fig. 1. Pseudocode for the NB algorithm. 

3. Neighborhood beautification graph layout by message 

passing 

The present work introduces a novel approach to graph lay- 

out named Neighborhood Beautification (NB). This approach per- 

forms message passing between neighboring nodes in the graph. 

Every node sends a message to each of its neighbors with a recom- 

mended position for the neighbor. Therefore, the messages passed 

by a sending node u to its neighboring nodes N ( u ) reflect node u ’s 

preferences about local beauty in the graph layout. The set of mes- 

sages received by a node, along with its current position, deter- 

mine its next position in the graph layout. 

Fig. 1 shows the top-level steps of the NB algorithm. Normally, 

an initial layout is provided with random positions for the nodes, 

and this layout is progressively improved after each iteration of 

NB. In each iteration, three phases are carried out in the following 

order: (1) minimization of edge crossings , (2) minimization of edge 

length differences , and (3) maximization of angular resolution . Each 

of these phases operates by visiting all the nodes in the graph, 

sending messages from each visited node to its neighbors, and pro- 

cessing a node’s incoming messages. 

There are two ways of organizing message passing in each NB 

phase: 

1. In synchronous NB, the nodes of the graph are visited in an 

arbitrary order that is fixed between iterations. Each visited 

node sends its outgoing messages and, once the last message 

has been sent in the graph, every node processes its incoming 

messages. For a node u , its new position is determined by the 

barycenter of the set formed by u ’s current position along with 

the recommended positions of its incoming messages. 

2. In asynchronous NB, the nodes of the graph are visited in a ran- 

dom order, which varies from iteration to iteration. Each vis- 

ited node sends its outgoing messages, which are immediately 

processed by its neighbors as they arrive: The new position 

for each neighbor is the recommended position in its incoming 

message. 2 

In this work, we use synchronous message passing for each of 

the three NB phases, since we found in experiments that it pro- 

duces better results. In the rest of the present section, we first dis- 

cuss each of the three NB phases in turn. Section 3.1 discusses how 

NB minimizes edge crossings, which helps to unfold and untangle 

the current layout. Section 3.2 explains how NB keeps edge lengths 

uniform, which facilitates nodes to be uniformly distributed in the 

layout. Section 3.3 describes how NB maximizes angular resolu- 

tion, which improves the global orientation of the layout. Finally, 

an analysis is included in Section 3.4 . 

3.1. Phase 1: minimization of edge crossings 

The first phase of NB aims to reduce the number of edge cross- 

ings in a graph layout by making edges shorter. The reduction of 

the number of crossings is a side effect of shortening edges, while 

other approaches [5,6] augment force-directed techniques with ex- 

plicit (and computationally more costly) calculations and intelli- 

gent removal of crossings. The reduction can be achieved locally if 

every node sends a message to each of its neighbors recommend- 

ing the following translation in the plane: 

m 

u, v 
1 

= 

(
x ′ (v ) , y ′ (v ) 

)
2 Asynchronous NB is similar to Kamada and Kawai’s method (see Section 2.1.2 ) 

in that the layout is updated by considering one node at a time. However, there 

are important differences. In Kamada and Kawai’s method, the current node is 

moved so that the global layout energy is minimized. In asynchronous NB, on the 

other hand, the randomly chosen current node locally sends messages that move 

its neighbors according to a specific aesthetic criterion. 
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Fig. 2. Graph layout before one of the nodes (square) sends messages to its neigh- 

bors (circles) in Phase 1 of NB (left) and the resulting graph layout after these mes- 

sages have been processed by the neighbors with k 1 = 0 . 5 in Phase 1 of NB (right). 

Note how the number of edge crossings (rhombuses) has been reduced. 

such that {
x ′ (v ) = x (v ) + k 1 · (x (u ) − x (v )) 
y ′ (v ) = y (v ) + k 1 · (y (u ) − y (v )) , 

where u is the sending node, v is the receiving node, m 

u, v 
1 

is the 

Phase-1 message sent from u to v containing the new recom- 

mended coordinates for v from the viewpoint of u , and k 1 ∈ (0, 

1) is a constant. Normally, values of k 1 ≈ 1 produce edge crossing 

minimization in a fewer number of NB iterations. Note that, when 

k 1 ≈ 1, this phase operates in a similar way to Tutte’s barycentric 

method [53] , which places each free node at the barycenter of its 

neighbors. A difference is that we include the position of the re- 

ceiving node in the calculation of the barycenter. 

The idea behind message m 

u, v 
1 

is that the neighbor v should ap- 

proach the sending node u proportionally to a constant k 1 . In this 

way, as a consequence of promoting shorter edges, a decrease is 

expected in the number of crossings resulting from the intersec- 

tion of, on the one hand, the edges having the sending node as 

an end node and, on the other hand, the rest of the edges in the 

graph layout. For example, consider the two graph layouts in Fig. 2 , 

where the following elements have been depicted: the sending 

node (as a square), the receiving nodes (as circles), the edges con- 

necting the sending node and the receiving nodes (as highlighted 

lines), and the intersections of the highlighted edges with the rest 

of the edges (as rhombuses). The left panel shows the graph layout 

prior to message passing from the sending node. The right panel il- 

lustrates the resulting graph layout after the receiving nodes have 

processed their incoming messages with k 1 = 0 . 5 . Whereas eleven 

crossings appear in the left graph layout, only six of them remain 

in the right graph layout. 

3.2. Phase 2: minimization of edge length differences 

The second phase of NB is designed to make the edge lengths 

in the graph layout more uniform. Keeping edge lengths approxi- 

mately uniform is a generally accepted aesthetics for obtaining at- 

tractive drawings of undirected graphs [12] . Similar to Phase 1, the 

smoothing of edge lengths can be done locally if every node sends 

a message to each of its neighbors recommending a translation in 

the plane. 

We say desired edge length to denote the desired length for the 

edges in the current layout. (The “current layout” is the one re- 

sulting from Phase 1.) The desired edge length can be defined in 

several ways: 

1. It can be established locally for each sending node and its 

neighbors in the graph. For example, it can be calculated as the 

length to the nearest (or, alternatively, farthest) neighbor. We 

discarded a local definition of the desired edge length because 

we found that it produces severe distortions in the graph lay- 

out. 

2. It can be set up globally in the graph. 3 An option that produces 

satisfactory layout results (regardless of the particular graph 

at hand) consists of defining the desired edge length as the 

longest edge length present in the current layout. In this way, 

in contrast to Phase 1, the receiving node is separated from the 

sending node so that the new length between them approaches 

the desired edge length. This is the option that we use in the 

experimental part of this work (see Section 4 ). We experimen- 

tally found that other variants of this option, like setting the 

desired edge length to the shortest or to the mean edge length 

in the current layout, produce final layouts of poorer quality, 

mainly in terms of uniformity of edge length. 

Let u be a sending node and v a receiving node. A message 

passed in this phase is defined as follows: 

m 

u, v 
2 

= 

(
x ′ (v ) , y ′ (v ) 

)
such that {

x ′ (v ) = x (v ) + k 2 · (d desired − d(u, v )) · x (v ) −x (u ) 
d(u, v ) 

y ′ (v ) = y (v ) + k 2 · (d desired − d(u, v )) · y (v ) −y (u ) 
d(u, v ) 

, 

where m 

u, v 
2 

is the Phase-2 message sent from u to v containing 

the new recommended coordinates for v from the viewpoint of u, 

k 2 ∈ (0, 1] is a constant, d desired is the desired edge length, and d ( u, 

v ) is the Euclidean distance from u to v . 

When k 2 = 1 , the goal of the messages passed by a sending 

node u to its neighbors is to place the neighbors at a distance 

from the sending node equal to the desired edge length, without 

changing the directions of the neighbors relative to the sending 

node. The greater k 2 is, the more uniformity is achieved after this 

phase. This phase is similar to Kamada and Kawai’s spring model 

(see Section 2.1.2 ), with the difference that we place springs only 

between neighboring nodes and all of them have the same natu- 

ral length equal to d desired . For example, consider the two graph 

layouts in Fig. 3 , where the sending node is depicted as a square 

and the receiving nodes are depicted as circles. The left panel 

shows the graph layout prior to message passing from the send- 

ing node. The right panel shows the graph layout resulting from 

those incoming messages being processed by the receiving nodes 

for k 2 = 1 and for a desired edge length globally set to the longest 

edge length in the current graph layout. Fig. 3 shows that uni- 

form edge lengths are achieved in the neighborhood of the sending 

node. 

It is important to note that, in Phases 1 and 2 of NB, the two 

messages sent in opposite directions through each edge contain 

symmetric values and, therefore, just one of the two messages 

needs to be calculated. In other words, if node v is translated ( δx , 

δy ) under message m 

u, v 
i 

then u would be translated (−δx , −δy ) un- 

der message m 

v ,u 
i 

for i ∈ {1, 2}. 

3.3. Phase 3: maximization of angular resolution 

Let u be a node whose neighbors are denoted by N ( u ) and 

whose degree is denoted by deg (u ) = | N(u ) | . Phase 3 of NB aims 

3 An efficient option is to allow the user to enter the value of the desired edge 

length, which will remain unchanged throughout the execution of the NB algorithm. 

This option has the disadvantage that the final layout quality will depend on the 

specific desired edge length employed, and the user will need to manually tune 

this parameter for each particular graph. 
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Fig. 3. Graph layout before one of the nodes (square) sends messages to its neigh- 

bors (circles) in Phase 2 of NB (left) and the resulting graph layout after these mes- 

sages have been processed by the neighbors with k 2 = 1 in Phase 2 of NB (right). 

to place N ( u ) such that the angle between the edges from u to any 

pair of consecutive neighbors is equal to 360 o / deg (u ) . This aes- 

thetics criterion has received several names in the literature, for 

instance, maximizing the minimum angle between edges leaving 

a node [47] or maximizing the uniformity of the angles around 

each node [54] . Several force-directed graph layout methods im- 

plement this criterion [9,15,36,41] . Eades et al. [15] construct graph 

drawings with large crossing angles between non-adjacent edges. 

(Note that NB only operates with angles between adjacent edges.) 

Lin and Yen [41] define a repulsive force between adjacent edges, 

but it has the disadvantage of taking as input a reasonable graph 

layout computed by another force-directed method. The work of 

Chernobelskiy et al. [9] is applied in the context of Lombardi- 

style graph drawings. In a Lombardi drawing of a graph, nodes are 

represented as points, edges are represented as circular arcs be- 

tween their endpoints, and every node has perfect angular resolu- 

tion. Finally, Huang et al. [36] create a sine force in order to in- 

crease the angular resolution of nodes. The sine force makes the 

angle between two neighboring edges approach the optimal angle 

360 o / deg (u ) . 

When deg (u ) < 2 , no message is sent from node u . Intuitively, 

this is because the angular resolution is not adjustable in this case. 

Given a sending node u , with deg (u ) ≥ 2 , and an ordering of its 

neighbors 
(
v 1 , v 2 , . . . , v deg (u ) −1 , v deg (u ) 

)
by angle with respect to u , 

the messages passed in this phase are defined as follows: 

m 

u, v i 
3 

= 

(
x ′ (v i ) , y ′ (v i ) 

)
such that {(

x ′ (v i ) , y ′ (v i ) 
)

= rotate 
(
v i , k 3 ·

(
angle (v i , v i +1 ) − 360 o 

deg (u ) 

))
if angle (v i , v i +1 ) > 

360 o 

deg (u ) (
x ′ (v i ) , y ′ (v i ) 

)
= ( x (v i ) , y (v i ) ) otherwise 

Here, m 

u, v i 
3 

is the Phase-3 message sent from u to v i (with i ∈ 

{ 1 , . . . , deg (u ) } ) containing the new recommended coordinates for 

v i from the viewpoint of u , angle (v i , v i +1 ) is the angle between 

edges 〈 u, v i 〉 and 〈 u, v i +1 〉 , rotate (v i , α) computes the new coor- 

dinates for v i after being rotated an angle α around u , and k 3 ∈ (0, 

1] is a constant. Note that moving a node means reducing its angle 

with the next node; since the goal is to progressively make angles 

more uniform to the value 360 o / deg (u ) , the only way to achieve 

that goal is to only move nodes with angle to the next node greater 

than 360 o / deg (u ) . If rotating a node v i towards v i +1 causes the an- 

gle between v i −1 and v i to become greater than 360 o / deg (u ) , the 

node v i −1 will be rotated towards v i in the next iteration of NB. 

Messages in Phase 3 operate under the following conditions: 

• Any coordinate system is valid for this phase. For example, 0 o 

could represent North and angles could increase clockwise, or 

0 o could represent East and angles could increase counterclock- 

wise. 

• The ordering of the neighbors v i , defined earlier in this sec- 

tion, can be done either by increasing angle or by decreasing 

angle. If angles are assumed to increase clockwise, this gives 

rise respectively to two types of rotations: clockwise and coun- 

terclockwise. We experimentally found that Phase 3 is more ef- 

fective if the type of rotation is selected uniformly at random, 

over “clockwise” and “counterclockwise”, every time a sending 

node u executes this phase. 

• Message m 

u, v i 
3 

is sent before message m 

u, v i +1 

3 
. 

• Message m 

u, v i 
3 

with i = deg (u ) uses v i +1 = v 1 . Note that v 1 has 

already been rotated under message m 

u, v 1 
3 

. 

Although the goal of the messages passed by a sending node to 

its neighbors is to make angles (with respect to the sending node) 

between the neighboring nodes more uniform, in general this goal 

can only be achieved after several iterations of NB. One iteration of 

Phase 3 increases the angle uniformity of the neighboring nodes 

but, even if k 3 = 1 , it is unlikely that complete uniformity is ob- 

tained after just one iteration. For example, consider the two graph 

layouts in Fig. 4 , where the sending node is depicted as a square 

and the receiving nodes are depicted as circles. The left graph lay- 

out constitutes the state prior to message passing from the send- 

ing node. The messages are sent in the order ( v 1 , v 2 , v 3 ). The right 

graph layout depicts the resulting state after all of the incoming 

messages have been processed by the receiving nodes for k 3 = 1 . 

Fig. 4 reflects that just one of the receiving nodes, v 2 , was rotated. 

The rest of the neighboring nodes might be rotated in subsequent 

iterations of NB, however. 

Once message passing and processing has taken place in all of 

the nodes in Phase 3, and before the next NB iteration is started 

in Phase 1, an optional scaling of the resulting graph layout can be 

carried out so that it conforms to the drawing frame. If this scal- 

ing is not applied, the graph layout will typically become smaller 

after each iteration; in such a case, it will be necessary to apply 

the scaling after the final NB iteration in order to obtain a proper 

visualization of the final graph layout. 

3.4. Discussion and analysis 

In the three NB phases, the idea behind the messages sent by 

a node u to its neighbors is that these messages contain infor- 

mation about suggested new locations representing appealing lo- 

cations for the neighbors from the viewpoint of u . Therefore, NB 

promotes a local concept of good layout (abbreviated as “beauty”) 

by making node u interact only with its immediate neighborhood. 

Thus, in Fig. 2 only the crossings caused by u ’s edges are for sim- 

plicity considered, and the rest of incident edges to u ’s neighbors 

are ignored. After the translations depicted in Fig. 2 , it is possible 

that u ’s neighbors connected to other nodes increase the number 

of crossings for their incident edges. However, as the experimental 

evaluation of this work has demonstrated, in general the global ef- 

fect after an iteration of Phase 1 is a reduction of the total number 

of crossings in the layout. 

Phase 2 stretches edges as shown in Fig. 3 , which could re- 

introduce crossings in the layout. Nonetheless, the goal of Phase 

1 is precisely to keep that from happening in Phase 2 by making 

k 1 as close to unity as possible. 
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Fig. 4. Graph layout before one of the nodes (square) sends messages to its neighbors (circles) in Phase 3 of NB (left) and the resulting graph layout after these messages 

have been processed by the neighbors with k 3 = 1 and order ( v 1 , v 2 , v 3 ) in Phase 3 of NB (right). 

Although Phase 1 shortens edges and Phase 2 lengthens them, 

they are not necessarily opposing phases but instead typically have 

complementary effects. Phase 1 uniformly reduces edge lengths 

throughout the layout, whereas Phase 2 extends edge lengths de- 

pending on how similar they are to the largest edge length in 

the layout. In this way, edges whose lengths are close to that of 

the longest edge are greatly shortened in Phase 1 while left al- 

most unchanged in Phase 2. This is confirmed by the fact that the 

best results in Section 4 are obtained when k 1 ≈ 1 for most of the 

graphs, while k 2 is much more graph dependent and adopts values 

throughout the whole real interval (0 , 1] . 

If Phase 2 is considered in isolation, it could be argued that 

modifying the target edge length would only mean a global scal- 

ing of the current layout. In other words, if a layout with target 

length equal to unity is scaled by a factor k , then this would be the 

same as applying a target length equal to k . However, even though 

scaling by k could have that effect locally if just one node and its 

neighbors are considered, the result is quite different globally after 

all the messages have been sent, as explained in Section 3.2 (point 

2). Note that when nodes receive more than one message, setting 

up a long target length can even “destroy” the current layout. In 

general, specifying a desired edge length in Phase 2 has an influ- 

ence on the final layout quality. 

The reason why only too large angles are decreased but too 

small angles are not enlarged in Phase 3 (see Fig. 4 ) is that the 

ordering of edges by angle needs to be preserved in this phase. 4 

When an edge is rotated, that can only be guaranteed if angles be- 

tween consecutive edges are decreased and not enlarged when ap- 

proaching the ideal angle 360 o / deg (u ) , where u denotes the cur- 

rent node. 

The computational complexity of an iteration of the first and 

second NB phases is O(M) , since simple operations are carried out 

for each pair of neighboring nodes. However, the third NB phase 

contributes with additional complexity derived from the ordering 

of angles. In this phase, each node u orders its neighbors by angle, 

which takes O( deg (u ) · log deg (u )) . In the worst case of a regu- 

lar graph where all degrees are the same, the overall complexity 

of angle ordering in the third NB phase is O(N · � · log �) , where 

� denotes the maximum degree of the graph. Thus, the computa- 

tional complexity for an iteration of NB is O(M + N · � · log �) in 

the worst case. In comparison to the complexity for an iteration 

of the best force-directed algorithms, which is O(M + N · log N) as 

shown in Section 2.1 , note that a reduction is obtained by NB when 

large graphs with low � are considered; nonetheless, as the graph 

4 Since Phase 3 acts locally in a neighborhood, it is impossible to determine the 

optimum edge ordering for the neighborhood with respect to the global graph. 

Therefore, in order to avoid unexpected disruptive changes in the layout, Phase 3 

preserves the current edge ordering when maximizing angular resolution. 

gets more connected and �≈ N , the complexity of NB becomes 

higher in the worst case. Interestingly, the angle orderings are typ- 

ically more and more similar as NB progresses. This can be used to 

improve the efficiency of the ordering process. In this way, like in 

Phases 1 and 2, the complexity of angle ordering becomes O(M) 

as the execution of NB progresses. 

4. Experimental evaluation 

There are two main aspects to be considered when the perfor- 

mance of a graph layout algorithm is evaluated: (1) the quality of 

the layouts obtained by the algorithm and (2) the computational 

resources needed to compute layouts. We explore these two as- 

pects in the following two sections. The experiments were carried 

out on an Intel Core i5 processor (2.67 GHz) with 8Gb of memory 

and running Windows 7. 

4.1. Graph layout quality 

We experimentally evaluate the quality of the graph layouts 

computed by NB by applying it, first, as a single-level method for 

graph layout and, second, as the method used in the refinement 

phase of the multi-level approach. As a single-level method, we 

execute a number of NB iterations on a set of graphs of small 

or medium size which are initially assigned random positions for 

their nodes. In the context of the refinement stage of the multi- 

level approach, NB is executed for a given number of iterations 

on a set of large graphs in which only their structure (nodes and 

edges) is required and the initial positions of the nodes are not 

needed. We implemented the NB algorithm within NetLogo [56] , 

an agent-based modeling and programming environment, due to 

the fact that it is particularly well suited for modeling and inspect- 

ing complex systems developing over time. 

Figs. 5 and 6 contain twelve graphs (widely used in the graph 

layout literature) to which NB has been applied as a single-level 

method. Graphs 5 a and b are two types of grids, which are suc- 

cessfully unfolded by means of NB. For graph 5 c, most of the 

previous graph layout methods produce a non-planar layout (see 

[20] ); however, NB (like [11] ) is able to generate a layout that is 

free of edge crossings. Graph 5 d represents a view from a reg- 

ular dodecahedron with twelve pentagonal faces. Graphs 5 e and 

f, which appear in [11] and [41] respectively, constitute two lay- 

outs for trees. Finally, the six graphs in Fig. 6 are selected because 

they have a higher number of nodes than the six graphs in Fig. 5 . 

The NB parameters used for obtaining the graph layouts depicted 

in Figs. 5 and 6 are summarized in Table 1 . The parameter val- 

ues for k 1 , k 2 , and k 3 were selected via manual fine-tuning, such 

that those values efficiently leading to a good layout are preferred. 

NB was executed for the minimum number of iterations producing 
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Fig. 5. Layouts for six simple graphs computed by NB used as a single-level method. The graphs are initially assigned random positions for their nodes. Additional informa- 

tion about the graphs and NB parameters is in Table 1 . 

Table 1 

NB parameters used for the graph layouts depicted in Figs. 5 and 6 . 

Graph Name Nodes Edges k 1 k 2 k 3 NB iterations 

5 a grid_7x7 49 84 0.999999 1 0.1 200 

5 b grid_19x5 95 166 0.999999 1 0.1 400 

5 c Davidson&Harel_fig1b 19 45 0.5 0.5 0.1 200 

5 d Davidson&Harel_fig8e 20 30 0.999999 1 0.1 50 

5 e Davidson&Harel_fig11b 21 20 0.999999 0.8 0.4 200 

5 f Lin&Yen_fig4a 22 21 0.5 0.5 1 150 

6 a grid_20x20_singlefolded 399 760 0.999999 0.2 0.1 10 0 0 

6 b grid_20x20_doublefolded 397 760 0.999999 0.1 0.1 10 0 0 

6 c cylinder_rnd_10x10 97 178 0.999999 0.2 0.2 100 

6 d cylinder_rnd_32x32 985 1866 0.999999 0.2 0.2 10 0 0 

6 e Sierpinski_4 123 243 0.999999 0.5 0.05 20 0 0 

6 f flower_1 210 3057 0.999999 0.5 0.05 16,0 0 0 
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Fig. 6. Layouts for six more complex graphs computed by NB used as a single-level method. The graphs are initially assigned random positions for their nodes. Additional 

information about the graphs and NB parameters is in Table 1 . 

good layout results in each case. (“Good” was visually determined 

by comparing the current graph layout with the layout obtained 

at convergence, after a high number of iterations.) The direction of 

rotation (clockwise or counterclockwise) was randomly selected as 

explained in Section 3.3 . The optional scaling of the layout after 

each iteration was carried out for the twelve graphs. 

Figs. 7 and 8 contain twelve large graph layouts obtained by 

NB using the multi-level approach. We use a simple coarsening 

method in which every node is grouped with one randomly chosen 

neighbor so that clusters for the next level are formed by at most 

two nodes of the current level. Regarding the placement method, 

we employ the typical technique that assigns each node a ran- 

dom position near its supernode. While Fig. 7 contains six grid- 

like layouts, Fig. 8 depicts six layouts with complex structures. The 

corresponding graphs are available from the University of Florida 

Sparse Matrix Collection. 5 The layouts shown in Figs. 7 and 8 were 

5 http://www.cise.ufl.edu/research/sparse/matrices 

obtained by using the NB parameters shown in Table 2 . The pa- 

rameter values for k 1 , k 2 , and k 3 were selected via manual fine- 

tuning, such that those values efficiently leading to a good lay- 

out are preferred. The refinement stage of the multi-level approach 

was executed for the minimum number of NB iterations producing 

good layout results in each case. The direction of rotation (clock- 

wise or counterclockwise) was randomly selected as explained in 

Section 3.3 . The optional scaling of the layout resulting after each 

iteration was carried out for the twelve graphs. Compared to other 

layouts obtained for the same graphs by state-of-the-art methods, 

the grid-like layouts in Fig. 7 are of very good quality, while the 

complex layouts in Fig. 8 are slightly less aesthetic. 

4.2. Running time evaluation 

Due to efficiency reasons and in order to compare the running 

times of NB with those of other state-of-the-art layout methods, 

http://www.cise.ufl.edu/research/sparse/matrices
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Fig. 7. Layouts for six grid-like large graphs computed by NB using the multi-level approach. Additional information about the graphs and NB parameters is in Table 2 . 

Table 2 

NB parameters used for the graph layouts depicted in Figs. 7 and 8 . 

Graph Name Nodes Edges Levels k 1 k 2 k 3 
NB iterations for each 

refinement stage 

7 a 516 516 729 10 0.999999 0.5 0.5 70 

7 b grid_rnd_32 985 1834 12 0.999999 0.25 0.5 50 

7 c grid_40x40_singlefolded 1599 3120 12 0.999999 0.2 0.2 50 

7 d grid_40x40_doublefolded 1597 3120 12 0.999999 0.2 0.2 100 

7 e 4970 4970 7400 14 0.999999 0.1 0.75 30 

7 f crack 10,240 30,380 18 0.999999 0.5 0.05 50 

8 a Sierpinski_6 1095 2187 12 0.999999 0.25 0.025 30 

8 b Sierpinski_8 9843 19,683 16 0.999999 0.05 0.4 100 

8 c data 2851 15,093 13 0.999999 0.2 0.4 100 

8 d add32 4960 9462 25 0.999999 0.03 0.5 5 

8 e 4elt 15,606 45,878 19 0.999999 0.01 0.8 10 

8 f cti 16,840 48,232 14 0.999999 0.1 0.01 100 
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Fig. 8. Layouts for six complex large graphs computed by NB under the multi-level approach. Additional information about the graphs and NB parameters is in Table 2 . 

we implemented NB in OGDF, 6 a publicly available C++ class library 

for the automatic layout of graphs. The following layout algorithms 

from the literature, as implemented in C++ in OGDF, were used in 

comparative experiments: 

1. FR : The original algorithm of Fruchterman and Reingold 

[20] that calculates exact repulsive forces (see Section 2.1.1 ). 

2. FRg : The grid-variant algorithm of Fruchterman and Reingold 

[20] that uses approximate repulsive forces (see Section 2.1.1 ). 

3. GEM : The algorithm of Frick, Ludwig, and Mehldau [17] that de- 

tects rotations and oscillations of the nodes (see Section 2.1.1 ). 

6 http://www.ogdf.net 

4. FM 

3 s : The fast multipole multi-level method of Hachul and 

Jünger [28] , used as a single-level method, that approximates 

the repulsive forces through techniques inspired by the N -body 

problem (see Section 2.1.1 ). 

5. KK : The algorithm of Kamada and Kawai [37] that is based 

on calculating the pairwise geometric distances between nodes 

(see Section 2.1.2 ). 

6. SM : The algorithm of Gansner, Koren, and North [24] that 

is based on the stress majorization technique and consti- 

tutes a variant of the algorithm by Kamada and Kawai (see 

Section 2.1.2 ). 

We considered fourteen graphs (see Table 3 ) with different 

characteristics as described in [27] . Graphs #1 through #3 and 

graphs #6 through #11 are instances of several types of grid-like 

http://www.ogdf.net
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Table 3 

Running times in seconds (rounded to two decimal places) for NB, used as a single-level algorithm, and six other layout algorithms when applied to fourteen 

graphs with different characteristics. The best running time for each graph is highlighted in bold. The graphs are ordered by decreasing number of nodes. 

Graph Name Nodes Edges NB FR FRg GEM FM 

3 s KK SM 

#1 grid_40x40 1600 3120 269.99 1250.87 195.03 1039.87 709.54 367.34 573.09 

#2 grid_40x40_singlefolded 1599 3120 260.21 1177.59 199.18 749.19 705.35 664.56 674.20 

#3 grid_40x40_doublefolded 1597 3120 326.12 1327.42 223.70 800.93 723.38 811.50 402.55 

#4 ug_380 1104 3231 3.65 4.42 12.16 9.76 14.12 35.94 7.86 

#5 Sierpinski_6 1095 2187 351.07 487.76 220.77 404.11 748.99 349.16 234.50 

#6 cylinder_rnd_32x32 985 1866 37.77 344.25 82.25 299.71 276.08 103.39 92.72 

#7 grid_rnd_32 985 1834 126.94 306.08 144.92 272.58 259.54 123.07 167.18 

#8 516 516 729 37.19 95.79 62.04 81.55 106.28 123.13 69.21 

#9 grid_20x20 400 760 12.88 49.35 21.14 38.65 27.39 13.42 11.99 

#10 grid_20x20_singlefolded 399 760 12.17 39.22 22.74 31.57 28.20 15.77 14.90 

#11 grid_20x20_doublefolded 397 760 10.52 46.52 25.30 34.14 32.84 23.08 13.22 

#12 flower_1 210 3057 48.09 0.18 16.51 2.36 4.68 2.95 2.17 

#13 Sierpinski_4 123 243 1.13 5.64 5.62 1.42 4.60 1.13 1.06 

#14 spider_A 100 160 0.65 0.31 12.89 1.17 3.07 0.99 2.32 

graphs. Graph #4 has a high maximum degree whose value is 856. 

Graph #12 is formed by seven complete subgraphs with 30 nodes. 

Graphs #5 and #13 are Sierpinski graphs. Finally, graph #14 is a 

spider graph. 

In order to measure the running times reported in Table 3 , we 

generated initial layouts for each graph by assigning random posi- 

tions to its nodes in the drawing frame. The generation of random 

initial positions for the nodes was carried out with different seeds 

for each new generated graph layout. 

Every layout algorithm uses a number of parameters that need 

to be set up before execution, so that an aesthetic layout is com- 

puted in a short time. For each layout algorithm, we initially em- 

ployed the default parameters included in OGDF. When these pa- 

rameters were insufficient to produce an aesthetic layout, we man- 

ually tuned the parameters in order to improve the quality of the 

layout. Since this manual tuning process is a time-consuming task, 

we only generated five drawings for each entry in Table 3 , where 

the mean running times for them are reported. 7 

The results in Table 3 demonstrate the consistently strong per- 

formance achieved by NB, which is always among the two best 

methods in terms of running time, except in the cases of flower_1 

and Sierpinski_6. While FRg achieves good running-time perfor- 

mance, it produces layouts of poor quality due to the fact that 

it uses an inaccurate approximation of the repulsive forces. Fig. 9 

shows four examples of the FRg layouts obtained in our experi- 

ments, whose quality is inferior to that of the corresponding four 

layouts for NB illustrated in Fig. 6 a, b, e, and f. The quality of the 

layouts obtained through NB is much better than that produced by 

FRg, and is comparable to that of the rest of the methods included 

in Table 3 . 

4.3. Quantitative evaluation 

In this section, the evaluation carried out in the preceding two 

sections is extended to larger graphs. Instead of visual inspec- 

tion, we carry out a quantitative evaluation of graph layout qual- 

ity by using three measures: relative edge-crossing number, normal- 

ized standard deviation of the edge length , and angular resolution . 

The relative edge-crossing number [29] , denoted as ρ1 , represents 

the mean number of crossings per edge. The normalized standard 

deviation of the edge length [29] , denoted as ρ2 , is defined as fol- 

7 The high number of parameters that were used in the set of experiments re- 

ported in Table 3 can be calculated as follows: 7 algorithms × around 5 parameters 

per algorithm × 14 graphs × 5 random initializations per graph = around 2450 

parameters. 

Fig. 9. Layouts computed by FRg for four graphs. 

lows: 

ρ2 = 

√ ∑ 

e ∈ E 

(l �(e ) − l av 
�

) 2 

M · (l av 
�

) 2 
, 

where E is the set of M edges, l �(e ) is the length of edge e in lay- 

out �, and l av 
�

is the mean edge length in layout �. Finally, the 

angular resolution [16,36] , denoted as ρ3 , is the average over the 

nodes of the difference between the smallest angle and the opti- 

mal angle ( 360 o / deg (u ) at node u ). Note that the smaller the val- 

ues of the three measures, the higher the quality of the graph lay- 

out. 

We compare NB used as a multi-level algorithm with FM 

3 (an 

outstanding state-of-the-art multi-level algorithm which was used 

as single level in Section 4.2 ) and PivotMDS [9] (an algebraic algo- 

rithm). The default parameter values included in OGDF were em- 

ployed for FM 

3 and PivotMDS. In the case of NB, we employed the 

following parameter values: k 1 = 0 . 999999 , k 2 = 0 . 03 , k 3 = 0 . 5 , 

and 200 iterations per level, since in Section 4.1 these k i values 

were appropriate for complex graphs like add32 (see Table 2 ). 

We consider graphs of the following types in this section: 

• Complex graphs generated with the Barabási–Albert model [3] , 

which expands graphs through the addition of new nodes such 

that each new node is linked according to a probabilistic rule 

named preferential attachment. The random scale-free graphs 
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Table 4 

Experimental results for the relative edge-crossing number ( ρ1 ). The best value of 

ρ1 for each graph is highlighted in bold. 

Name Nodes Edges ρPivotMDS 
1 ρFM 3 

1 ρNB 
1 

BarabasiAlbert10 0 0 10 0 0 999 0.730 0.072 3.498 

BarabasiAlbert50 0 0 50 0 0 4999 0.723 0.217 12.282 

BarabasiAlbert10 0 0 0 10 0 0 0 9999 1.585 0.308 29.225 

BarabasiAlbert150 0 0 150 0 0 14999 1.089 0.391 34.325 

BarabasiAlbert20 0 0 0 20 0 0 0 19999 1.054 0.473 52.118 

BarabasiAlbert250 0 0 250 0 0 24999 1.878 0.506 82.331 

BarabasiAlbert30 0 0 0 30 0 0 0 29999 1.107 0.559 79.693 

BarabasiAlbert350 0 0 350 0 0 34999 1.574 0.593 74.795 

BarabasiAlbert40 0 0 0 40 0 0 0 39999 1.400 0.749 83.237 

BarabasiAlbert450 0 0 450 0 0 44999 1.190 1.011 108.495 

BarabasiAlbert50 0 0 0 50 0 0 0 49999 1.464 1.177 139.410 

ego-Facebook 4039 88234 607.772 912.846 792.546 

email-Enron 36692 183831 − 2289.258 2266.903 

loc-Brightkite 58228 214078 − 2157.611 2242.809 

p2p-Gnutella04 10876 39994 1719.878 1485.615 3873.022 

p2p-Gnutella05 8842 31837 1220.879 1227.381 1440.326 

p2p-Gnutella06 8717 31525 1370.663 1131.227 2162.801 

fe_sphere 16386 49152 1.057 1.120 1.059 

G57 50 0 0 10 0 0 0 1.335 0.803 0.732 

grid2 3296 6432 0.210 0.001 0.0 0 0 

netz4504 1961 2578 0.111 0.025 0.0 0 0 

rajat03 7602 12551 1.106 0.594 0.819 

rbd3200l 3200 7840 0.389 0.415 0.400 

saylr4 3564 9376 2.327 2.345 2.303 

generated by this model are similar to social networks or ci- 

tation networks, for example. We denote as BarabasiAlbert N a 

graph with N nodes generated with the Barabási-Albert model. 

• Complex real-world graphs taken from the Stanford Large Net- 

work Dataset Collection. 8 This is a collection of large networks 

from domains such as social networks, computer networks, or 

communication networks, among others. 

• Grid-like large graphs taken from the University of Florida 

Sparse Matrix Collection. We have selected graphs from the do- 

mains of computational fluid dynamics, circuit simulation, and 

2D/3D problems. 

Tables 4 through 7 contain the results obtained for the rela- 

tive edge-crossing number ( ρ1 ), the normalized standard deviation 

of the edge length ( ρ2 ), the angular resolution ( ρ3 ), and the run- 

ning time ( t ) for PivotMDS, FM 

3 , and NB over the set of complex 

and grid-like graphs described in this section. The two groups of 

graphs (complex versus grid-like) are separated by a double hori- 

zontal line in the four tables. An entry “-” in the PivotMDS column 

means that no output was produced by OGDF because the input 

was a disconnected graph, and PivotMDS only works for connected 

graphs. 

Regarding the number of edge crossings, the results for ρ1 in 

Table 4 show that NB behaves worse than PivotMDS and FM 

3 for 

the complex graphs. However, the opposite is found for the grid- 

like graphs, where NB obtains the best results for ρ1 in general. As 

far as the uniformity of the edge lengths is concerned, the results 

for ρ2 in Table 5 indicate that no algorithm outperforms the other 

two. For the last quality measure, angular resolution, the results 

for ρ3 in Table 6 show that NB is superior for grid-like algorithms, 

while there is no clear pattern for the complex graphs. Finally, the 

running times in Table 7 demonstrate that NB lies between Pivot- 

MDS and FM 

3 in terms of computational efficiency. Nonetheless, 

due to the influence of the angle ordering operation in NB, the 

running time increases in a graph like egoFacebook which has a 

high M / N rate. In summary, NB offers important advantages for 

8 https://snap.stanford.edu/data/ 

Table 5 

Experimental results for the normalized standard deviation of the edge length ( ρ2 ). 

The best value of ρ2 for each graph is highlighted in bold. 

Name Nodes Edges ρPivotMDS 
2 ρFM 3 

2 ρNB 
2 

BarabasiAlbert10 0 0 10 0 0 999 0.279 0.400 0.999 

BarabasiAlbert50 0 0 50 0 0 4999 0.482 0.566 0.662 

BarabasiAlbert10 0 0 0 10 0 0 0 9999 0.458 0.608 0.518 

BarabasiAlbert150 0 0 150 0 0 14999 0.398 0.603 0.456 

BarabasiAlbert20 0 0 0 20 0 0 0 19999 0.454 0.682 0.466 

BarabasiAlbert250 0 0 250 0 0 24999 1.062 0.675 0.458 

BarabasiAlbert30 0 0 0 30 0 0 0 29999 0.528 0.696 0.453 

BarabasiAlbert350 0 0 350 0 0 34999 0.454 0.774 0.447 

BarabasiAlbert40 0 0 0 40 0 0 0 39999 0.451 0.716 0.418 

BarabasiAlbert450 0 0 450 0 0 44999 0.155 0.790 0.425 

BarabasiAlbert50 0 0 0 50 0 0 0 49999 0.142 0.891 0.466 

ego-Facebook 4039 88234 2.352 0.700 0.661 

email-Enron 36692 183831 − 0.577 3.164 

loc-Brightkite 58228 214078 − 0.513 3.138 

p2p-Gnutella04 10876 39994 0.540 0.389 0.556 

p2p-Gnutella05 8842 31837 0.580 0.383 0.598 

p2p-Gnutella06 8717 31525 0.542 0.387 0.502 

fe_sphere 16386 49152 0.246 0.196 0.244 

G57 50 0 0 10 0 0 0 0.937 0.443 0.434 

grid2 3296 6432 0.350 0.236 0.385 

netz4504 1961 2578 0.360 0.191 0.392 

rajat03 7602 12551 0.678 0.607 0.760 

rbd3200l 3200 7840 0.490 0.330 0.497 

saylr4 3564 9376 0.570 0.373 0.774 

Table 6 

Experimental results for the angular resolution ( ρ3 ). The best value of ρ3 for each 

graph is highlighted in bold. (The entry ∗ for ego-Facebook and PivotMDS has been 

removed since almost half of the edges turned out to be of length zero.) 

Name Nodes Edges ρPivotMDS 
3 ρFM 3 

3 ρNB 
3 

BarabasiAlbert10 0 0 10 0 0 999 42.191 40.817 35.736 

BarabasiAlbert50 0 0 50 0 0 4999 41.976 42.139 43.537 

BarabasiAlbert10 0 0 0 10 0 0 0 9999 43.443 43.769 41.100 

BarabasiAlbert150 0 0 150 0 0 14999 43.604 44.297 43.650 

BarabasiAlbert20 0 0 0 20 0 0 0 19999 43.499 44.581 42.842 

BarabasiAlbert250 0 0 250 0 0 24999 42.951 43.617 42.982 

BarabasiAlbert30 0 0 0 30 0 0 0 29999 43.957 44.782 43.187 

BarabasiAlbert350 0 0 350 0 0 34999 42.620 43.685 43.533 

BarabasiAlbert40 0 0 0 40 0 0 0 39999 42.951 44.357 43.834 

BarabasiAlbert450 0 0 450 0 0 44999 42.552 44.463 42.860 

BarabasiAlbert50 0 0 0 50 0 0 0 49999 43.389 45.183 43.052 

ego-Facebook 4039 88234 ∗ 23.079 21.252 

email-Enron 36692 183831 − 64.896 57.818 

loc-Brightkite 58228 214078 − 60.871 49.925 

p2p-Gnutella04 10876 39994 48.043 59.282 56.351 

p2p-Gnutella05 8842 31837 47.941 59.329 52.212 

p2p-Gnutella06 8717 31525 49.569 59.990 55.294 

fe_sphere 16386 49152 27.739 18.516 19.292 

G57 50 0 0 10 0 0 0 57.057 33.400 15.227 

grid2 3296 6432 35.265 18.578 10.253 

netz4504 1961 2578 22.675 14.985 8.867 

rajat03 7602 12551 86.062 84.649 63.141 

rbd3200l 3200 7840 39.829 48.388 40.098 

saylr4 3564 9376 53.715 53.504 45.661 

grid-like graphs but is outperformed by other state-of-the-art al- 

gorithms when applied to complex graphs. 

To conclude this section, we consider in Fig. 10 the layouts for 

four graphs as produced by PivotMDS, FM 

3 , and NB. The two up- 

per rows correspond to examples of complex graphs (BarabasiAl- 

bert10 0 0 and p2p-Gnutella05), while the two lower rows are ex- 

amples of grid-like graphs (grid2 and netz4504). Intuitively, NB 

produces nice layouts with no edge crossings for the two grid-like 

graphs, and less nice layouts for the other two graphs. 

https://snap.stanford.edu/data/
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Fig. 10. Four examples of the graph layouts produced by PivotMDS (left-hand column), FM 

3 (center column), and NB used as a multi-level algorithm (right-hand column). 

Table 7 

Experimental results for the running time ( t ). The best running time for each graph 

is highlighted in bold. 

Name Nodes Edges t PivotMDS t FM 3 t NB 

BarabasiAlbert10 0 0 10 0 0 999 2.153 34.320 7.941 

BarabasiAlbert50 0 0 50 0 0 4999 10.421 182.270 39.187 

BarabasiAlbert10 0 0 0 10 0 0 0 9999 20.951 351.937 79.450 

BarabasiAlbert150 0 0 150 0 0 14999 31.683 565.517 121.711 

BarabasiAlbert20 0 0 0 20 0 0 0 19999 42.042 689.046 161.616 

BarabasiAlbert250 0 0 250 0 0 24999 53.055 901.526 206.529 

BarabasiAlbert30 0 0 0 30 0 0 0 29999 64.147 1036.010 251.316 

BarabasiAlbert350 0 0 350 0 0 34999 75.130 1216.040 293.062 

BarabasiAlbert40 0 0 0 40 0 0 0 39999 86.174 1409.490 334.137 

BarabasiAlbert450 0 0 450 0 0 44999 98.108 1615.710 375.711 

BarabasiAlbert50 0 0 0 50 0 0 0 49999 109.169 1698.360 423.463 

ego-Facebook 4039 88234 13.291 89.372 262.658 

email-Enron 36692 183831 − 912.823 881.215 

loc-Brightkite 58228 214078 − 2270.020 1582.980 

p2p-Gnutella04 10876 39994 26.832 356.008 245.826 

p2p-Gnutella05 8842 31837 27.830 276.089 190.523 

p2p-Gnutella06 8717 31525 21.216 274.779 188.464 

fe_sphere 16386 49152 54.647 377.130 198.338 

G57 50 0 0 10 0 0 0 12.636 104.083 49.140 

grid2 3296 6432 6.958 73.772 31.528 

netz4504 1961 2578 4.056 47.877 16.302 

rajat03 7602 12551 17.067 273.687 79.528 

rbd3200l 3200 7840 21.965 81.198 34.398 

saylr4 3564 9376 7.737 77.704 40.981 

4.4. Discussion of experiments 

In order to get a deeper understanding of how NB works, it 

is interesting to study the effects of applying each of NB’s three 

phases. For example, consider the grid_7x7 graph depicted in 

Fig. 5 a, which was generated from an initial random layout af- 

ter 200 NB iterations with constants k 1 = 0 . 999999 , k 2 = 1 , and 

k 3 = 0 . 1 as indicated in Table 1 . If we repeat the experiment on 

the random layout in Fig. 11 a by applying only Phase 1 (with 

k 1 = 0 . 999999 ), we obtain the layout shown in Fig. 11 b. Note that 

the application of Phase 1 alone has eliminated the crossings of 

the initial random layout of Fig. 11 a. Although Phase 1 also pro- 

duced more uniform edge lengths and angles, further improve- 

ment is clearly needed. If we repeat the experiment for the lay- 

out in Fig. 11 b as initial layout by applying only Phase 1 (with 

k 1 = 0 . 999999 ) and Phase 2 (with k 2 = 1 ), the layout depicted in 

Fig. 11 c is obtained. Now, the edge lengths are more uniform in the 

layout, but the edge angles are inconsistent. Finally, if we repeat 

the experiment for the layout in Fig. 11 c as initial layout by apply- 

ing Phase 1 (with k 1 = 0 . 999999 ), Phase 2 (with k 2 = 1 ), and Phase 

3 (with k 3 = 0 . 1 ), then the layout in Fig. 11 d is generated. In this 

layout, edge angles are nearly uniform, and an aesthetic graph lay- 

out has been produced. Consequently, all of the three phases turn 

out to be necessary to produce the good layout shown in Fig. 11 d. 

In general, as long as the three phases are executed together 

within each iteration of the NB algorithm (see Fig. 1 ), we observed 
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Fig. 11. A grid_7 × 7 graph layout: (a) with random starting positions for the nodes, (b) after the execution of 200 NB iterations with Phase 1 on the random graph layout, 

(c) after the execution of 200 NB iterations with Phases 1 and 2 on the graph layout in (b), and (d) after the execution of 200 NB iterations with Phases 1, 2, and 3 on the 

graph layout in (c). 

Fig. 12. A grid_7 × 7 graph layout (left) and a Davidson&Harel_fig11b graph layout 

(right) after the execution of 200 NB iterations with only Phase 1, then 200 NB 

iterations with only Phase 2, and then 200 NB iterations with only Phase 3. 

empirically that the order of the three phases does not significantly 

change the quality of the layouts produced. However, if the three 

phases are iterated separately, the layouts become much poorer, as 

illustrated in Fig. 12 a for a grid_7 × 7 graph with random starting 

positions for its nodes. Note that Figs. 12 a and 11 d correspond to 

two different layouts of the same graph. Another example of poor 

behavior with separate NB phases is included in Fig. 12 b for the 

Davidson&Harel_fig11b graph (see Fig. 5 e). 

In all of the single-level experiments conducted in this section, 

we observed that the layouts progressively converge from their ini- 

tial state (with random node positions) to their final state (shown 

in Figs. 5 and 6 ) with no significant occurrence of iterations pro- 

ducing a sudden worsening of the graph layout quality. The conver- 

gence speed is influenced by the graph at hand and by the values 

assigned to the NB parameters. 

Our experiments suggest that NB produces high-quality results 

for grid-like layouts, whereas it achieves somewhat less aesthetic 

layouts for certain complex graphs, for instance, those in Fig. 8 c 

through f. The reason behind this is that the local interactions de- 

fined by the three NB phases match the neighborhood structure for 

the inner nodes of a grid layout. The running times of NB are im- 

pacted in a similar way. In our experiments, NB running times are 

very competitive for grid-like graphs and become somewhat less 

competitive for certain complex graphs. An extreme case of this is 

the flower_1 graph in Table 3 . 

As stated in Section 2 , algebraic layout algorithms are signifi- 

cantly faster than force-directed layout algorithms, and we do not 

claim that NB is faster than algebraic layout algorithms. In gen- 

eral, our experiments show that NB occupies an intermediate po- 

sition between algebraic and force-directed methods in terms of 

running time. Regarding final graph layout quality, as mentioned 

in Section 2 , algebraic layout algorithms often yield graph layouts 

of inferior quality compared to those produced by force-directed 

methods. Some examples of layouts obtained from algebraic meth- 

ods can be found in Figures 7.15 through 7.17 and Figures 7.19 

through 7.23 of [ [27] , Section 7.7]. In these figures, the algebraic 

methods ACE and HDE cannot clearly visualize the structure of 

many challenging graphs. In related work [1] , the ACE and HDE 

algorithms did not perform well on any of the evaluation datasets 

with the exception of the crack graph, and appeared to only work 

well on graphs with a mesh-like structure. Other specific examples 

of layouts produced by algebraic methods are shown in [32,39,40] , 

which in general are of lower quality than the ones obtained by 

force-directed algorithms. In terms of layout quality, similarly to 

running time, NB tends to be in an intermediate position between 

algebraic and force-directed methods. 

NB may seem very similar to Kamada and Kawai’s graph lay- 

out method at first glance. However, there are key differences as 

mentioned in Section 3 and as reflected in Table 3 . For instance, 

Table 3 shows that Kamada and Kawai’s method is faster than NB 
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only in 3 of 14 graphs. On the other hand, the method of Kamada 

and Kawai often produces graph layouts of better quality than that 

of the graph layouts computed by NB. 

Currently, NB needs an expert user to fine-tune the parameters 

and determine the number of iterations by visual inspection. There 

does not seem to be a clear default setting (see Tables 1–3 ). 

5. Conclusion and future research 

In this work, we have developed and evaluated a novel 

message-oriented graph layout method, Neighborhood Beautifica- 

tion (NB), that adopts a message-passing perspective. This per- 

spective is different from but complementary to the algebraic and 

force-directed perspectives of existing state-of-the-art graph layout 

algorithms. The new NB method is based on the idea of neighbor- 

hood beautification, in which each node tries to improve the layout 

of its immediate neighbors through message passing. The objective 

of the messages sent by a node is to aesthetically place its neigh- 

bors in the graph. 

In the case of grid-like graphs, NB yields graph layouts of com- 

parable quality to those obtained by the best force-directed algo- 

rithms and offers important advantages regarding running time for 

most of the tested graphs. Although NB is slower than algebraic 

algorithms, it achieves better layout quality, especially when NB 

is integrated with multi-level algorithms for large graphs. In other 

words, NB gives a nice trade-off between layout quality and run- 

time. Another advantage of NB is that it can be used either as a 

single-level layout method or within a multi-level approach. 

The present work opens up the following research directions: 

• An interesting topic for future research is to tune the NB pa- 

rameters automatically. 

• Since NB relies on message passing between neighbors, an ef- 

ficient distributed implementation [2,25] could be developed 

that is enabled by the graph structure and has the advantage 

of avoiding excessive communication. 

• The use of parallel computing in the context of NB could be 

investigated in order to improve its computation time for larger 

graphs [33,45,50] . 

• This article deals with static graph drawing. However, dynamic 

graph drawing [18,19] aims to produce aesthetic and useful 

views of graphs whose structure may change over time. An im- 

portant aesthetic criterion that needs to be met in dynamic 

graph drawing is to preserve the user’s mental map of the lay- 

out. The decentralized nature of NB contributes to its robust- 

ness against local changes in the graph structure; as a con- 

sequence, NB could be directly employed for dynamic graph 

drawing in order to maintain the stability of the layouts in an 

efficient manner, thus preserving the mental map. 
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