
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

June, 2013

Adaptive Control of Apache Web Server
Erik Reed, Carnegie Mellon University
Abe Ishihara, Carnegie Mellon University
Ole J Mengshoel, Carnegie Mellon University

Available at: https://works.bepress.com/ole_mengshoel/50/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/50/

Adaptive Control of Apache Web Server

Erik Reed
Carnegie Mellon University

Moffett Field, CA 94035
erikreed@cmu.edu

Abe Ishihara
Carnegie Mellon University

Moffett Field, CA 94035
abe.ishihara@sv.cmu.edu

Ole J. Mengshoel
Carnegie Mellon University

Moffett Field, CA 94035
ole.mengshoel@sv.cmu.edu

Abstract
Traffic to a Web site can vary dramatically. At the same
time it is highly desirable that a Web site is reactive. To
provide crisp interaction on thin clients, 150 milliseconds
has been suggested as an upper bound on response time.
Unfortunately, the popular Apache Web server is lim-
ited in its capabilities to be reactive under varying traf-
fic. To address this problem, we design in this paper an
adaptive controller for the Apache Web server. A modi-
fied recursive least squares algorithm is used to identify
system dynamics and a minimum degree pole placement
controller is implemented to adjust the maximum num-
ber of concurrent connections. Experimentally, we show
that the controller effectively regulates the reply time of
HTTP connection requests, and hence provides reactive
response, by limiting the maximum number of connec-
tions accepted by an Apache Web server.

1 Background

Abrupt spikes in the usage of certain phrases (“lipstick
on a pig,” “our entire economy is in danger,” “who is the
real Barack Obama”) in the daily news cycle have been
observed [14]. Corresponding to such spikes, as well as
other time-varying phenomena, traffic to a Web site can
vary dramatically. In spite of such varying traffic, it is
highly desirable that a Web site is reactive. To provide
a crisp interactive experience on thin Web clients, 150
milliseconds has been recommended as an upper bound
on response time [22]. In fact, quick and reasonably pre-
dictable user response is essential in all computer sys-
tems, not only Web services.

One way to ensure quick and predictable user response
is through load balancing [7]. A single server’s ability
to service clients is bound by multiple factors, includ-
ing CPU utilization, memory capacity, bandwidth capac-
ity, and I/O rate. Load balancing at the cluster level
allows connections to be distributed to servers with the

least load. Typical implementations of load balancing
deal with round robin balancing for domain name service
(DNS) [7]. Much of existing frameworks and previous
research deal with inter-server connections and balanc-
ing, with little or no focus on dynamic parameter adjust-
ment of individual servers.

Focusing on an individual Web server rather than a
cluster of machines, we investigate in this paper an alter-
native approach to ensuring quick and predictable user
response, namely feedback control and specifically Min-
imum Degree Pole Placement control [5]. This can be in
an environment where inter-server load balancing is al-
ready in place, or when a single server is handling Web
traffic. Our interest is in the ability to manipulate param-
eters online to control server load in order to maximize
the efficiency of each server individually under varied
and changing conditions. This paper uses the Apache
Web server,1 a popular open source package [13].

Apache consists of a structured pool of workers, each
its own process.2 A master process, the Apache daemon,
listens for requests and delegates HTTP communications
to the worker processes. To control the rate of incoming
connections, an Apache server administrator can adjust
two primary settings: MaxClients (MC) and KeepAlive
(KA). Depending on server load and Web activity, the
Apache daemon maintains up to MC worker processes,
which can in one of three states at any time: busy, idle,
or thinking. Busy workers are currently processing a re-
quest and awaiting a reply; thinking workers are wait-
ing for an HTTP request after an established connection;
and idle workers are waiting for a new connection re-
quest. The KA parameter determines how long work-
ers maintain their current connection with a client be-
fore terminating the connection (i.e. changing their state
from thinking to idle). Apache 2.2 has default settings of
MC= 150 worker processes and KA= 5 seconds.

1http://httpd.apache.org/
2This is on a Unix-based system. Apache on Windows, which we

do not investigate here, is different.

1

This paper uses performance from the user’s perspec-
tive as a metric and input to the controller, rather than
CPU- and memory-based metrics. In contrast to previ-
ous research (Section 2), our experiments include metrics
such as time to connect, reply time, and requests per sec-
ond. With these in mind, we derive a model in real-time
and adaptive controller (Section 3). We then perform pre-
liminary server benchmarking, an open loop simulation,
and lastly test the controller using mean HTTP reply time
as a setpoint (Section 4). While we use reply time as the
output modeled by the system, this approach can be ap-
plied using any other metric collected by the server, such
as throughput, connection error frequency, or mean time
until a connection is established.

2 Related Work

Apache Web server load has previously been modeled
as a linear multiple-input multiple-output (MIMO) sys-
tem [8], using input parameters KA and MC and output
parameters memory and CPU usage. This MIMO model
expands on previous work of single-input single-output
(SISO) controllers in computing systems – in particular
for congestion control [10] and controlling Web server
delay [16]. Robertsson et al. used a PI controller and
nonlinear model with simulations using Matlab [20]. Ab-
delzaher et al. explored average requests delay as a set-
point using a feedforward predictor [1–3].

Another SISO controller using KA and MC as parame-
ters has been researched [11]. Notably, the authors con-
cluded that SISO is insufficient to obtain accurate mod-
els for CPU, as KA and MC are not independent. The use
of CPU, memory, KA , and MC was further investigated
by Hellerstein and Diao, along with a queueing model
to predict server response time [9, 12]. They proposed a
MIMO implementation able to capture the interactions of
KA and MC for modeling memory and CPU usage [11].
To control KA and MC, multiple SISO controllers (with
separate controls loops for both KA and MC) were very
effective when compared to a single MIMO controller.
Also of interest is their averaging of data points over time
before performing controller calculations.

A simple, first order linear time invariant MIMO
model was created [8] using inputs KA, MC and outputs
CPU, MEM:[

CPUk+1
MEMk+1

]
= A

[
CPUk
MEMk

]
+B

[
KAk
MCk

]
, (1)

where A,B ∈ R2×2 were estimated via least squares re-
gression and k represents a discrete time interval.

Various methods of traffic generation for testing per-
formance of Web servers have also been previously
researched. A closed source traffic generator termed

WAGON (Web Traffic Generator and Benchmark) [15]
was used to simulate user generated traffic and vary-
ing amounts of I/O, memory, and CPU intensive traffic
[8]. Open source Web traffic generators include Apache
Benchmark and Httperf. Httperf, which we adopt, has
been shown to be effective in measuring Web server per-
formance as well as mimicking user behavior [18].

3 Algorithms and Analysis

The underlying control approach taken is the minimum
degree pole placement (MDPP) control design proposed
by Astrom [5]. In this approach, feed-forward and feed-
back controllers are designed to force the open-loop sys-
tem to follow a reference model. In the ideal case,
model following is achieved perfectly. However, due to
parametric uncertainty, this is not achieved in practice.
This is the motivation to introduce reconfiguration to the
control problem. During a change in plant dynamics,
the control effectiveness changes, requiring a larger or
smaller actuator signal to maintain desired performance.

3.1 Plant Modeling
There are several approaches to the modeling of com-
putation for control applications. Here, we use linear
Auto-Regressive modeling with eXogenous input or lin-
ear ARX. Nonlinear approaches, such as discrete time
neural networks, may also be used. Nonlinear modeling
is more complex yet may be able to capture inherent non-
linear behavior otherwise unaccounted for in ARX mod-
eling. On the other hand, linear modeling is generally
simpler to understand and implement.

We will assume a finite class of plants P(i) for i ∈
[1,M]; the integer i denotes a specific plant or device,
such as a particular server type or configuration. Sup-
pose the plant is described by an ARX model with an
additive noise term. For simplicity, we assume Gaussian
noise. Denote P(i), y(i)(k), u(k), and η(k), the plant op-
erator, scalar output, input, and noise at sample time k,
respectively.

The relationship between these quantities is given by:

y(i)(k) = P(i)u(k) = φ
T (k−d)θ (i)+η(k) (2)

where φ T (k− d) denotes the regression vector and con-
sists of a tapped delay line of input and output measure-
ments, and θ (i) denotes a vector of parameters corre-
sponding to the ith plant. A number of methods exist
to estimate θ (i) in both batch and on-line modes. Similar
ARX models have been used in modeling a number of
digital processes [11]. In the following we will drop the
superscript (i) from the plant parameter vector. The pur-
pose of the superscript was to indicate that there exists

2

a family of (unknown) parameter vectors that adequately
model various plant scenarios described above. The pur-
pose of the system identification algorithm described be-
low is to track and identify these parameter vectors that
may change gradually or abruptly during online control.

The reconfigurable control approach estimates θ on-
line and then uses the estimates to update a control law
(see Section 3.2) below. To estimate θ , it is typical to
use the recursive least squares (RLS) method, in which
we minimize the cost function

J =
N

∑
k=1

λ
N−ke2(k), (3)

where e(k) is the error between the true and estimated
outputs, and λ ∈ (0,1] is the forgetting factor.

The RLS method can lead to two problems when at-
tempting to track varying parameters. First, a small for-
getting factor, needed to track fast or abrupt parame-
ter variations can cause a large covariance matrix which
could lead to covariance “blow up”. Second, as the for-
getting factor is decreased, the size of the data window
gets smaller and it is more likely that there will exist data
collinearities within the data window. The modified se-
quential least squares (MSLS) algorithm, which prevents
singularities in the covariance matrix [17], has been pro-
posed to deal with this issue. This is due to the reformu-
lation of the least squares problem. The cost function to
be minimized includes additional penalties on changes in
the parameter values in the form of temporal and spatial
constraints. Weighting matrices are included to adjust
the extent of penalization on each parameter variation.
For this case, we will define the cost function as

J =
t

∑
k=1
‖y(k)− xT (k)θ(t)‖2

λ
t−k +m‖θ(t)−θ(t−1)‖2

where θ(t) corresponds to the parameter estimates at
time t.3 Setting dJ

dθ
= 0, we get the solution

θ(t) =
[
X T X̃ +mI

]−1 [
mθ(t−1)+X̃ T y(t)

]
,

where

X T =
[
x(1) x(2) . . . x(t)

]
X̃ T =

[
x(1)λ t−1 x(2)λ t−2 . . . x(t)

]
yT (t) =

[
y(1) y(2) . . . y(t)

]
.

The covariance matrix in this algorithm is now

P(t) =
[
X T X̃ +mI

]−1
.

3Here, t replaces N in (3) to indicate that there is a moving window
associated with the parameter estimates. The control system at time t
uses the latest parameter estimates given by θ(t).

A recursive version, derived by Bodson [6], is given as

θ(t +1) = θ(t)+P(t +1)x(t +1)
[
y(t +1)− xT (t +1)θ(t)

]
+mλP(t +1)(θ(t)−θ(t−1)) .

In conventional RLS with forgetting factor, it is typical
to use the Matrix Inversion Lemma (MIL) to calculate
P(t + 1). However, due to the additional penalty term,
the MIL leads to the inversion of a (1 + m)× (1 + m)
matrix, where m is the number of unknown parameters.
Thus, the MIL does not help in this case, and hence, we
opt to directly take the inverse of P(t +1).4

Upon a system or configuration change we would like
to adapt our controller when the parameter estimates con-
verge. The convergence time may vary depending on fac-
tors such as input excitation. We decide to monitor the
posterior prediction error

Prediction Error =
∣∣y(t)− xT (t)θ(t−1)

∣∣ . (4)

A tolerance is defined, and we adapt our controller when

Prediction Error > Tolerance.

3.2 Minimum Degree Pole Placement
We base our minimum degree pole placement (MDPP)
controller on previous work [5]. For MDPP, let H(q) be
the transfer function of the plant, where q is the forward
shift operator, and Am(q),Bm(q) be the reference model
denominator and numerator respectively:

H(q) =
b0q+b1

q2 +a1q+a2
.

The steady state is given by:

Bm(1)
Am(1)

=
B′m(b0 +b1)

1+am1 +am2

= 1

B′m =
1+am1 +am2

b0 +b1
,

where Am1 and Am2 are chosen parameters. Denote
A,R,S,T and B = B+B− to be polynomials in q where
B+ is a monic polynomial with stable zeros and B− cor-
responds to the unstable factors. The Diophantine equa-
tion, or closed-loop characteristic polynomial, is defined
by

AR′+B−S = A0Am.

Let R′ = R
B+ = R. Then,

(q2 +a1q+a2)R′+(b0q+b1)S = A0(q2 +Am1q+Am2).

4For higher order systems, this approach may not be acceptable.
Ways to reduce the order of this computation have been proposed [6].

3

(a) (b) (c)

Figure 2: The effect of increasing the number of connections, for the Apache Web server, on its performance. (a) shows the RPS increasing until
9 concurrent connections, at which point the standard deviation increases and mean RPS decreases. The connection errors are shown in (b) and
steadily rise after 9 concurrent connections. The effect of concurrent connections on mean HTTP request response (TR) and transfer (TT) times are
shown in (c).

Figure 1: The procedure for generating load and limiting the number of
concurrent connections c(t). In this example, α = 5 and nc = c(t) = 3.

Deriving our controller u, we have:

R′ = q+ r1 = R (5)

S = s0q+ s1 (6)

A0 = q+a0

(q2 +a1q+a2)(q+ r1)+(b0q+b1)(s0q+ s1)

= A0(q2 +am1q+am2)

Lastly, we can compute T :

T = A0B′m = (q+a0)B′m (7)

Using Eq. 5, 6, and 7 to calculate R,T , we can now com-
pute: u = T

R uc− S
R y, the control signal from our control

law. A more thorough derivation of Eq. 7 and this spe-
cific controller with equivalent zero cancellation is given
by Reed et al. [19].

4 Experiments

These experiments will measure the Apache Web server
under varying numbers of connections, introduce an
ARX model, and test an adaptive MDPP controller for
setting the maximum number of concurrent connections.

4.1 Simulation Setup and Procedure
In our simulations, we used Apache v2.2 (the latest sta-
ble release at the time of writing) running on a Linux
kernel 3.0.0-14 x64 workstation with a dual core Intel
T2400 and 2GB of RAM. This workstation acted as the
server and hosted PHP code simulating an active blog.
The Apache Web server parameters were kept at their
default settings. A second workstation of similar hard-
ware specifications, the client, sent HTTP requests con-
currently to the server to simulate Web traffic. The client
resided on the same LAN as the server.

Figure 1 shows the interactions between the client and
the server. For a single HTTP request to the server
(e.g. fetching index.html), we collected the follow-
ing statistics: time until initial TCP connection estab-
lished (Tc), time until request response (TR), time for the
request transfer/reply (TT), as well as several other met-
rics not shown here due to space. To generate HTTP traf-
fic and simulate a simple user interaction with the client,
we used Httperf.

The client proceeded to generate Web traffic by queue-
ing a list of α TCP connection requests to the server. Af-
ter a connection was established, the client sent k HTTP
requests to a random HTML, Javascript, or stylesheet
(CSS) resource, each with probability 1

3 . A single HTTP
request typically resulted in a 80KB reply by the server
(80KB being the mean size of the three potentially re-
quested resources). Since a single connection cannot
handle concurrent HTTP requests, the k HTTP requests
were performed sequentially; immediately after a re-
source was received by the client, the next resource was
requested. After the connection’s k requests completed,
the connection was terminated by the client. Up to α

connections were created concurrently by the client. Re-
questing multiple resources per connection leverages a
persistent TCP connection depending on the request fre-
quency and KA setting.

4

(a) (b)

Figure 3: (a) Model tracking of y(t) for least squares (LS) and MSLS (top), model error (middle), and the open-loop, sinusoid input for max number
of connections uc(t) (bottom). (b) Learned parameter values over time for the MSLS model during an open-loop simulation (see Eq. 8).

On the server side, we denote c(t) to be the number of
concurrent connections at time t and nc to be the maxi-
mum number of concurrent connections set by the server.
When nc connections are active in the server, all addi-
tional connection requests were ignored until c(t) de-
creases. In this case, the client waited indefinitely until
the server had capacity, i.e. c(t) < nc (rather than ter-
minate the connection request after a certain amount of
time). Once a connection was established, a connection
failure could occur if there was a TCP socket timeout (a
constant supplied by the operating system), which was
20 seconds for our version of Linux.

We approximate the output y(t), the total time for an
HTTP reply by the Web server (TR +TT), with ŷ(t). To
model the server, we used a 2nd order SISO model de-
fined by

ŷ(t) =−a1ŷ(t−2)−a2ŷ(t−1)+b1u(t−2)+b2u(t−1).
(8)

The parameter tuned by the controller, u(t), is the max-
imum number of concurrent connections (nc). The
parameters a1,a2,b1,b2 were learned offline via least
squares and online via MSLS (Section 4.3, 4.4). As with
previous work [8], we define t = 10 (seconds) as an in-
terval during which data is collected. We used the mean
reply time during this interval to measure y(t).

4.2 Varying Concurrent Connections

Here we test the effect of number of concurrent connec-
tions on various metrics. On the client we set α = 1000
and k = 5; on the server nc ∈ [1,25]. First we note that in-
creasing the number of concurrent connections was ben-
eficial to the server’s throughput, measured by replies
per second (RPS), up until a certain point (Figure 2a).

There was a sharp drop in RPS at nc = 10, while nc = 9
yielded peak RPS. Additionally, the standard deviation
of the measurements increased substantially for nc ≥ 10.
The increase in standard deviation is a result of the server
hardware limits being met; the server was unable to ef-
fectively address all the HTTP requests, resulting in con-
nection drops or timeouts.

Figure 2b shows successful connection requests per
second and connection errors. Connection requests per
second is different from RPS in that replies are made
when the connection has already been established, versus
connection requests which start new TCP connections
(i.e. no HTTP packet data has been sent yet). A value
of nc = 9 also resulted in the peak number of successful
connection requests per second (30). Since 30 connec-
tions were established per second, this means that many
connections were able to complete their k = 5 HTTP re-
quests in less than a second.

Next, Figure 2c shows the HTTP reply response (TR)
and transfer (TT) times. Both response and transfer times
increased as the number of concurrent connections in-
creased. At nc = 7, the mean time to complete an HTTP
reply (Tc+TT) was larger than one second. Interestingly,
as seen in Figure 2a, the RPS is still increasing at nc = 7.

Using these measurements, we envision two scenario
types that a server administrator may optimize for using
a model and controller:

• Maximizing overall throughput (RPS) when quick
HTTP replies are not necessary (such as when
downloading large files or executing analytics
Javascript).

• Ensuring that HTTP reply time is low enough to
keep the user engaged; 150ms has been suggested
as an upper bound for crisp user interaction [22].

5

Figure 4: Setpoint tracking with a change of reply time yc(t) = 100 to
yc(t) = 50 at timestep 150 (top) and MDPP controller value for max
connections u(t) (bottom). Note that yc(t) is shown in milliseconds.

In Section 4.4, we recreate the latter scenario by setting
a target reply time and controlling nc.

4.3 System Identification
In this section we perform an open-loop simulation with
least squares (LS) and MSLS models. To sufficiently
excite the server response, we use a sinusoidal input
uc(t) ∈ [1,17] for the max number of connections (nc).
We set α = 1000 and k = 15. After the simulation, we
train the model parameters a1,a2,b1,b2 of Eq. 8 using
LS and MSLS (see Figure 3a). For MSLS, we use a for-
getting factor of λ = .92 and a noise reducing coefficient
of m = .2. Recall that y(t) is the mean reply time over
a time interval of 10 seconds. We denote yLS to be the
LS estimator and yMSLS to be the MSLS estimator. Note
that we use batch LS rather than RLS; that is, the param-
eter learning is done after all the data is known and the
parameters are constant through the simulation. In con-
trast, the MSLS parameters are learned online and are
adaptive.

4.4 Adaptive MDPP Controller
This section describes two closed-loop simulations using
an MSLS model for tracking y(t) and MDPP control of
u(t). We denote yc(t) to the be setpoint, or target y(t)
in which the controller tunes u(t) to minimize the error
function e(t) = |yMSLS(t)−yc(t)| (see Eq. 8 for ŷ(t)). As
with Section 4.3, each timestep is 10 seconds and model
parameters were set to λ = .92 and m = .2. We used load
generation parameters α = 100 and k = 15.

The first simulation used a setpoint of yc(t) = 100 for
t < 150 and yc(t) = 50 for t ≥ 150 (see Figure 4). The
measurements of y(t) are noisy, increasingly so when the
setpoint is changed. At t = 150, there is an immediate

Figure 5: Setpoint tracking with a simultaneous setpoint change of
yc(t) = 100 to yc(t) = 1000 and load generation parameter change of
α = 100 to α = 200 at t = 150.

shift in u(t), then the model parameters begin to relax.
The volatility of the a1,a2 parameters is a consequence
of noise; this could likely be reduced with a greater for-
getting factor λ and a greater m.

Next we performed a simulation in a high noise envi-
ronment by raising the setpoint yc(t) = 1000 at timestep
150. For t < 150, yc(t) was again kept at 100. We an-
ticipated noise based off of our findings in Section 4.2.
Furthermore, we adjust α to be 200 instead of 100 at
t ≥ 150, doubling the load in order to simulate a spike in
user activity (i.e. a change in the plant dynamics). The
load parameter α was also adjusted to increase the num-
ber of effects the model parameters must adapt for. This
simulation is shown in Figure 5. There was an immediate
spike in y(t) at t = 150 as the controller adjusted u(t) to
compensate (overestimating u(t)). The parameters took
10 timesteps to converge to a stable set of values, even
with the increased y(t) noise. The parameter values and
u(t) are not shown here due to space.

5 Conclusion

We have shown a Web server can be modeled and con-
trolled to enforce metrics that affect the user experience
of a client machine (e.g. HTTP reply time). Model pa-
rameters were learned real-time, and adaptive perfor-
mance was strong and ostensibly resilient to noise.

In future work, we would like to include additional
metrics in both the model and the controller. There are
many parameters to adjust within the Apache Web server,
including those in Apache modules (like amount of com-
pression, encryption levels, caching, etc) [4]. Addition-
ally, metrics like disk I/O (which can cause significant la-
tency in sites with large amounts of data [21]) and band-
width may be useful in creating a more effective model.

References

[1] ABDELZAHER, T. F., AND BHATTI, N. Web server
QoS management by adaptive content delivery. In Proc.
Seventh International Workshop on Quality of Service
(1999), pp. 216–225.

6

[2] ABDELZAHER, T. F., LU, Y., ZHANG, R., AND HEN-
RIKSSON, D. Practical application of control theory to
Web services. In Proc. of the 2004 American Control
Conference (2004), vol. 3, pp. 1992–1997.

[3] ABDELZAHER, T. F., STANKOVIC, J. A., LU, C.,
ZHANG, R., AND LU, Y. Feedback performance con-
trol in software services. Control Systems 23, 3 (2003),
74–90.

[4] ABHARI, A., SERBINSKI, A., AND GUSIC, M. Improv-
ing the performance of Apache Web server. In Proc. of the
2007 spring simulaiton multiconference-Volume 1 (2007),
Society for Computer Simulation International, pp. 166–
169.

[5] ASTROM, K. J., AND WITTENMARK, B. Adaptive con-
trol. Addison-Wesley, 1994.

[6] BODSON, M. An adaptive algorithm with information-
dependent data forgetting. In Proc. of the 1995 American
Control Conference (1995), vol. 5, pp. 3485–3489.

[7] CARDELLINI, V., COLAJANNI, M., AND YU, P. S. Dy-
namic load balancing on web-server systems. Internet
Computing 3, 3 (1999), 28–39.

[8] DIAO, Y., GANDHI, N., HELLERSTEIN, J. L., PAREKH,
S., AND TILBURY, D. M. Using MIMO feedback control
to enforce policies for interrelated metrics with applica-
tion to the Apache web server. In Proc. of IEEE/IFIP Net-
work Operations and Management Symposium (2002),
pp. 219–234.

[9] DIAO, Y., HELLERSTEIN, J. L., AND PAREKH, S. Op-
timizing quality of service using fuzzy control. In Man-
agement Technologies for E-Commerce and E-Business
Applications. 2002, pp. 42–53.

[10] FLOYD, S., AND JACOBSON, V. Random early detection
gateways for congestion avoidance. IEEE/ACM Transac-
tions on Networking 1, 4 (1993), 397–413.

[11] HELLERSTEIN, J., DIAO, Y., PAREKH, S., AND

TILBURY, D. M. Feedback control of computing systems.
Wiley, 2004.

[12] HELLERSTEIN, J. L., DIAO, Y., PAREKH, S., AND

TILBURY, D. Control engineering for computing systems
- industry experience and research challenges. Control
Systems 25, 6 (2005), 56–68.

[13] HU, Y., NANDA, A., AND YANG, Q. Measure-
ment, analysis and performance improvement of the
Apache Web server. In Proc. of IEEE International Per-
formance, Computing and Communications Conference
(1999), pp. 261–267.

[14] LESKOVEC, J., BACKSTROM, L., AND KLEINBERG, J.
Meme-tracking and the dynamics of the news cycle. In
Proc. of the 15th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining (KDD-09)
(2009), pp. 497–506.

[15] LIU, Z., NICLAUSSE, N., AND JALPA-VILLANUEVA,
C. Traffic model and performance evaluation of web
servers. Performance Evaluation 46, 2 (2001), 77–100.

[16] LU, C., ABDELZABER, T. F., STANKOVIC, J., AND

SON, S. H. A feedback control approach for guaran-
teeing relative delays in Web servers. In Proc. of Sev-
enth IEEE Real-Time Technology and Applications Sym-
posium (2001), pp. 51–62.

[17] MONACO, J., WARD, D., BARRON, R., AND BIRD, R.
Implementation and flight test assessment of an adap-
tive, reconfigurable flight control system. In Proc. of
the AIAA Guidance Navigation and Control Conference
(1997), vol. 97, p. 3738.

[18] MOSBERGER, D., AND JIN, T. Httperf – a tool for mea-
suring web server performance. ACM SIGMETRICS Per-
formance Evaluation Review 26, 3 (1998), 31–37.

[19] REED, E., ISHIHARA, A., AND MENGSHOEL, O. J.
Adaptive control of Bayesian network computation. In
Proceedings of the International Symposium of Resilient
Control Systems (2012).

[20] ROBERTSSON, A., WITTENMARK, B., KIHL, M., AND

ANDERSSON, M. Design and evaluation of load control
in Web server systems. In Proc. of the 2004 American
Control Conference (2004), vol. 3, pp. 1980–1985.

[21] RUAN, Y., AND PAI, V. Understanding and addressing
blocking-induced network server latency. In Proc. of the
USENIX Annual Technical Conference (2006), pp. 143–
156.

[22] TOLIA, N., ANDERSEN, D. G., AND SATYA-
NARAYANAN, M. Quantifying interactive user experi-
ence on thin clients. IEEE Computer 39, 3 (2006), 46–52.

7

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	June, 2013

	Adaptive Control of Apache Web Server
	tmpQU6SNV.pdf

