
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

May, 2010

Understanding the Scalability of Bayesian
Network Inference using Clique Tree Growth
Curves
Ole J Mengshoel, Carnegie Mellon University

Available at: https://works.bepress.com/ole_mengshoel/5/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/5/

Artificial Intelligence 174 (2010) 984–1006

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Understanding the scalability of Bayesian network inference using clique
tree growth curves

Ole J. Mengshoel

Carnegie Mellon University, NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2009
Received in revised form 18 May 2010
Accepted 18 May 2010
Available online 25 May 2010

Keywords:
Probabilistic reasoning
Bayesian networks
Clique tree clustering
Clique tree growth
C/V -ratio
Continuous approximation
Gompertz growth curves
Controlled experiments
Regression

One of the main approaches to performing computation in Bayesian networks (BNs) is
clique tree clustering and propagation. The clique tree approach consists of propagation
in a clique tree compiled from a BN, and while it was introduced in the 1980s, there is
still a lack of understanding of how clique tree computation time depends on variations
in BN size and structure. In this article, we improve this understanding by developing
an approach to characterizing clique tree growth as a function of parameters that can
be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a
BN’s non-root nodes to the number of root nodes, and (ii) the expected number of moral
edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree
into different sets, and introduce a growth curve for the total size of each set. For the
special case of bipartite BNs, there are two sets and two growth curves, a mixed clique
growth curve and a root clique growth curve. In experiments, where random bipartite
BNs generated using the BPART algorithm are studied, we systematically increase the
out-degree of the root nodes in bipartite Bayesian networks, by increasing the number
of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth
curves, an S-shaped family of curves that has previously been used to describe growth
processes in biology, medicine, and neuroscience. We believe that this research improves
the understanding of the scaling behavior of clique tree clustering for a certain class of
Bayesian networks; presents an aid for trade-off studies of clique tree clustering using
growth curves; and ultimately provides a foundation for benchmarking and developing
improved BN inference and machine learning algorithms.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian networks (BNs) play a central role in a wide range of automated reasoning applications, including in diagnosis,
sensor validation, probabilistic risk analysis, information fusion, and decoding of error-correcting codes [64,6,59,38,37,60,43,
58]. A crucial issue in reasoning using BNs, as well as in other forms of model-based reasoning, is that of computational
scalability. Most BN inference problems are computationally hard in the general case [10,63,61,1], thus there may be rea-
son to be concerned about scalability. One can make progress on the scalability question by studying classes of problem
instances analytically and experimentally. Such problem instances may come from applications or they may be randomly
generated. In the area of application BNs, both encouraging and discouraging scalability results have been reported. For
example, a prominent bipartite BN for medical diagnosis is known to be intractable using current technology [64]. Decoding
of error-correcting codes, which can be understood as BN inference, is also not tractable but has empirically been found to
be solvable with high reliability using inexact BN inference [20,37]. On the other hand, it is well-known that BNs that are

E-mail address: Ole.Mengshoel@sv.cmu.edu.

0004-3702/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2010.05.007

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:Ole.Mengshoel@sv.cmu.edu
http://dx.doi.org/10.1016/j.artint.2010.05.007

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 985

tree-structured, including the so-called naive Bayes model, are solvable in polynomial time using exact inference algorithms.
There are also encouraging empirical results for application BNs that are “close” to being tree-structured or more generally
for application BNs that are not highly connected [26,43].

Clique tree clustering, where inference takes the form of propagation in a clique tree compiled from a BN, is currently
among the most prominent BN inference algorithms [33,2,62]. The performance of tree clustering algorithms depends on a
BN’s treewidth or the optimal maximal clique size of a BN’s induced clique tree [16,11,15]. The performance of other exact
BN inference algorithms also depends on treewidth. A key research question is, then, how the size of a clique tree generated
from a BN (and consequently, inference time) depends on structural measures of BNs. One way to investigate this is through
the use of random generation from distributions of problem instances [66,5,11,52,23]. Taking this approach, and increasing
the ratio C/V between the number of leaf nodes C and the number of root nodes V in bipartite BNs, an easy-hard-harder
pattern along with approximately exponential growth have previously been observed for clique tree clustering for a certain
class of BNs, namely BPART BNs [45].

In this article, we develop a more precise understanding of this easy-hard-harder pattern. This is done by formulating
macroscopic and approximate models of clique tree growth by means of restricted growth curves, which we illustrate by
using bipartite BNs created by the BPARTalgorithm [45]. For the sake of this work, we assume that a clique tree propagation
algorithm, operating on a clique tree compiled from a BN, is executed in order to answer probabilistic queries of interest.
We introduce a random variable for total clique tree size. This random variable is, for the case of bipartite BNs, the sum of
two random variables, one for the size of root cliques and one for the size of mixed cliques. Reflecting the random variable
for total clique tree size, we introduce a continuous growth curve for total clique tree size which is the sum of growth
curves for the size of root cliques and mixed cliques. Of particular interest is the growth curve for root clique size, where
Gompertz curves of the form g(∞)e−ζe−γ x

, where g(∞), ζ , and γ are parameters, turn out to be useful. A key finding
is that Gompertz growth curves are justified on theoretical grounds and also fit very well to experimental data generated
using the BPART algorithm [45]. While we emphasize bipartite BNs in this article, we also discuss how to generalize to
arbitrary BNs, by using multiple growth curves or translating arbitrary BNs to bipartite BNs via factor graphs [32,70].

For experimentation, we sampled bipartite BNs using an implementation of the BPART algorithm. For the number of
root nodes, V , we used V = 20 and V = 30. The number of leaf nodes was also varied, thereby creating BNs of varying
hardness; 100 BNs per C/V -level were randomly generated. A clique tree inference system, employing the minimum fill-in
weight heuristic, was used to generate clique trees for the sampled BNs. Let W be a random variable representing the
number of moral edges in moral graphs induced by random BNs. In addition to x = C/V , we consider x = E(W) as an
independent variable. In experiments, we compared different growth curves and investigated x = C/V versus x = E(W) as
independent variables for Gompertz growth curves. Linear regression was used to obtain values for the parameters ζ and γ
based on a linear form of the Gompertz growth curve; values for g(∞) were obtained by analysis. Gompertz growth curves
are common in biological, medical, and neuroscience research [4,35,17], but have not previously been used to characterize
clique tree growth (except for in our earlier conference paper [41] which this article extends). We provide improved results
compared to previous research, where an easy-hard-harder pattern and approximately exponential growth of upper bounds
on optimal maximal clique size as a function of C/V -ratio were established [45].

We believe this research is significant for the following reasons. First, analytical growth curves improve the understand-
ing of clique tree clustering’s performance for a certain class of BNs, namely BPART BNs. Consider Kepler’s three laws of
planetary motion, developed using Brahe’s observational data of planetary movement. There is a need to develop similar
laws for clique tree clustering’s performance, and in this article we obtain such laws in the form of Gompertz growth curves
for BPART BNs [45]. While they admittedly have a strong empirical basis, these Gompertz growth curves give significantly
better fit to the raw data than alternative curves. Consequently, they provide better insight into the underlying mechanisms
of the clique tree clustering algorithm and may be used to approximately predict the performance of the algorithm. Since
the performance of other exact BN inference algorithms — including conditioning [55,11] and elimination algorithms [34,71,
14] — also depends on optimal maximal clique size, our results may have significance for these algorithms as well. A sec-
ond benefit of growth curves is that they can be used to summarize performance of different BN inference algorithms or
different implementations of the same algorithm on benchmark sets of problem instances, and thereby aid in evaluations.1

Suppose that the growth curves g1(x) and g2(x) were obtained by benchmarking slightly different clique tree algorithms.
Compared to looking at and evaluating potentially large amounts of raw data, it may be easier to understand the perfor-
mance difference between the two algorithms by studying their curves g1(x) and g2(x) or by comparing their respective
Gompertz curve parameter values ζ1 and γ1 versus ζ2 and γ2. A third benefit is that growth curves provide estimates of
resource consumption in terms of clique tree size, estimates that can easily be translated into requirements on memory
size and inference time. Hence, this approach enables trade-off studies of resource consumption (or requirements) versus
resource bounds, which is important in resource-bounded reasoners [48,40], and may also be of use if one wants to take
into account, during BN structure learning, the computational resources needed for reasoning.

The rest of this article is organized as follows. After introducing notation and background concepts related to Bayesian
networks and clique tree clustering in Section 2, we study, in the context of the BPART algorithm, the development and

1 Such evaluations have been performed, for example, at recent UAI conferences, see http://ssli.ee.washington.edu/~bilmes/uai06InferenceEvaluation/ and
http://graphmod.ics.uci.edu/uai08/ for details. Application BNs for benchmarking can be found at http://genie.sis.pitt.edu/networks.html and http://www.cs.
huji.ac.il/labs/compbio/Repository/.

http://ssli.ee.washington.edu/~bilmes/uai06InferenceEvaluation/
http://graphmod.ics.uci.edu/uai08/
http://genie.sis.pitt.edu/networks.html
http://www.cs.huji.ac.il/labs/compbio/Repository/
http://www.cs.huji.ac.il/labs/compbio/Repository/

986 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

growth of BNs, causing corresponding clique tree growth. Specifically, in Section 3 we study the issue of independent
variables for growth curves, in particular the C/V -ratio and the expected number of moral edges E(W), and discuss how
growth curves can provide a macroscopic model of how clique trees grow. In Section 4, we discuss the connection between
random graphs and our BPART model. In Section 5, we present experiments with BNs generated using the BPART algorithm,
varying the number of root and leaf nodes. We compare different mathematical models of growth, and find that Gompertz
growth curves give the best fit to sample data. We conclude and indicate future research directions in Section 6.

2. Background

Graphs, and in particular directed acyclic graphs as introduced in the following definition, play a key role in Bayesian
networks.

Definition 1 (Directed acyclic graph (DAG)). Let G = (X, E) be a non-empty directed acyclic graph (DAG) with nodes X =
{X1, . . . , Xn} for n � 1 and edges E = {E1, . . . , Em} for m � 0. An ordered tuple Ei = (Y , X), where 0 � i � m and X , Y ∈ X ,
represents a directed edge from Y to X . ΠX denotes the parents of X : ΠX = {Y | (Y , X) ∈ E}. Similarly, ΨX denotes the
children of X : ΨX = {Z | (X, Z) ∈ E}, where Z ∈ X . The out-degree and in-degree of a node X are defined as o(X) = |ΨX |
and i(X) = |ΠX | respectively.

In the rest of this article we assume for simplicity that DAGs and BNs are non-empty, even when not explicitly stated as
in Definition 1. The following classification of nodes in DAGs, including in BNs, turns out to be useful when we discuss the
performance of BN inference algorithms.

Definition 2. Let G = (X, E) be a non-empty DAG with X ∈ X . If i(X) = 0 then X is a root node. If i(X) > 0 then X is
a non-root node. If i(X) > 0 and o(X) = 0 then X is a leaf node. If o(X) > 0 then X is a non-leaf node. If o(X) > 0 and
i(X) > 0 then X is a trunk (non-leaf and non-root) node.

With the concepts from Definition 2 in hand, we classify the nodes in a DAG as follows.

Definition 3. Let G = (X, E) be a DAG. We identify the following subsets of X : V = {X ∈ X | i(X) = 0} (the root nodes);
C = {X ∈ X | i(X) > 0 and o(X) = 0} (the leaf nodes); T = {X ∈ X | i(X) > 0 and o(X) > 0} (the trunk nodes); V̄ = {X ∈ X |
i(X) > 0} (the non-root nodes); and C̄ = {X ∈ X | o(X) > 0} (the non-leaf nodes).

A Bayesian network (BN) is a DAG with an associated set of conditional probability distributions [56]. In the following
definition, we let n = |X | and let πXi represent a complete instantiation of the parents ΠXi of Xi , in other words πXi ⊆ x is
a projection of a complete assignment x = {X1 = x1, . . . , Xn = xn}.

Definition 4 (Bayesian network). A Bayesian network is a tuple β = (X, E, P), where (X, E) is a DAG augmented with
conditional probability distributions P = {Pr(X1 | ΠX1), . . . ,Pr(Xn | ΠXn)}. Here, Pr(Xi | ΠXi) is the conditional probability
distribution for Xi ∈ X . The independence assumptions encoded in (X , E) imply the joint probability distribution

Pr(x) = Pr(x1, . . . , xn) = Pr(X1 = x1, . . . , Xn = xn) =
n∏

i=1

Pr(xi | πXi). (1)

In this article we will restrict ourselves to discrete random variables, and “BN node” will thus mean “discrete BN node”.
Let a BN node X ∈ X have states {x1, . . . , xm}. We use the notation ΩX = Ω(X) = {x1, . . . , xm} to represent the state space
of X . In our setting, a conditional probability distribution Pr(Xi | ΠXi) is also denoted a conditional probability table (CPT).

A BN is provided input or evidence by clamping zero or more of its nodes to their observed states. Given evidence,
answers to different probabilistic queries can be computed by means of a BN. In this context, the concept of an instantiation
or explanation over all non-clamped nodes is key, and is formally defined as follows.

Definition 5 (Explanation). Consider a BN β = (X, E, P) with X = {X1, . . . , Xn} and evidence e = {X1 = x1, . . . , Xm = xm}
where 0 � m < n. An explanation x is defined as x = {xm+1, . . . , xn} = {Xm+1 = xm+1, . . . , Xn = xn}.

One is often interested in computing answers to queries of the form Pr(x | e), and in particular in finding a most probable
explanation (MPE). An MPE is an explanation x∗ such that Pr(x∗ | e) � Pr(x | e) for any other explanation x. In addition to
MPE, the computation of posterior marginals, or Pr(X | e) for X ∈ X , is of great interest. To compute answers to these
queries, both complete and incomplete algorithms for Bayesian network computation may be used. Complete algorithms
include clique tree propagation [33,2,25,62], conditioning [55,11], variable elimination [34,71,14], and arithmetic circuit

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 987

evaluation [12,9,8]. Incomplete algorithms, and in particular stochastic local search algorithms, have also been used for MPE
[27,39,21,42,44,46] as well as maximum a posteriori hypothesis (MAP) [52,53] computation.

An important distinction exists between algorithms that rely on an off-line compilation step — for example clique tree
propagation and arithmetic circuit evaluation — and those that do not — for example variable elimination and stochastic
local search. Compilation has several benefits when it comes to integration into resource-bounded systems including hard
real-time systems [48,40]. Our main emphasis in this article is on compilation and in particular the Hugin clique tree
clustering approach [33,25], in which clique trees play a central role.

Definition 6 (Clique tree). A clique tree β ′′′ = (Γ,Φ) for a BN β = (X, E, P) consists of nodes (or cliques) Γ and edges Φ .
Here, (Γ,Φ) is an undirected graph that is a tree, and needs to adhere to the following conditions: (i) for each clique
γ ∈ Γ , γ ⊆ X ; (ii) each family in (X, E) must appear in some clique γ ∈ Γ ; and (iii) if a node X ∈ X is such that X ∈ γi
and X ∈ γ j , then X ∈ γk for any γk ∈ Γ , where γk is on the path between γi and γ j in β ′′′ .

The Hugin approach is interesting in its own right, and in addition there is a well-established relationship to arithmetic
circuits [54]. A clique tree2 β ′′′ , which is used for on-line computation, is constructed from a BN β = (X, E, P) in the
following way by the Hugin algorithm [33,2]: A moral graph β ′ is first constructed by making an undirected copy of β and
then augmenting it with moral edges as follows. For each node X ∈ X , Hugin adds, in its moralization step, to β ′ a moral
edge between each pair of nodes in ΠX if no such edge already exists in β ′ . Second, Hugin creates a triangulated graph β ′′
by heuristically adding fill-in edges to β ′ such that no chordless cycle of length greater than three exists. Third, a clique
tree β ′′′ is created from the triangulated graph β ′′ . A clique tree is constructed sequentially, such that for any two nodes
γi and γ j in the clique tree, all nodes between them contain γi ∩ γ j . This is known as the running intersection property,
which (informally) enforces global consistency through local consistency, thereby enabling the computation of marginals
and MPEs. Each CPT Pr(X | ΠX) ∈ P is assigned to a clique containing {X} ∪ ΠX .

Using β ′′′ , Hugin can compute marginals [33] or MPEs [13]. These computations rely on the following well-known result.

Theorem 7. Let Pr(X) be a probability distribution induced by a BN β , and let β ′′′ = (Γ,Φ) be a corresponding clique tree. Then the
distribution can be expressed as:

Pr(X) =
∏
γi∈Γ

Pr(γi)
/ ∏

{γi ,γ j}∈Φ

Pr(γi ∩ γ j).

The size of a clique tree β ′′′ essentially determines the compilation and propagation times, be it for computation of
MPEs or marginals. The following parameters are useful in characterizing clique trees, and thereby also computation times
for algorithms that use clique trees.

Definition 8 (Clique tree parameters). Let Γ = {γ1, . . . , γη} be the set of cliques in a clique tree β ′′′ = (Γ,Φ). The largest
clique in Γ (in terms of number of BN nodes) is defined as

�(Γ) = arg max
γ ∈Γ

(|γ |), (2)

with the cardinality of the largest clique (in terms of number of nodes) is defined as c(Γ) = |�(Γ)|. The state space size s
of a clique γ ∈ Γ is defined as

s(γ) = |Ωγ | =
∏
X∈γ

|ΩX |, (3)

where X ∈ X is a node in β = (X, E, P). The maximal clique in Γ (in terms of state space size) is defined as

m(Γ) = arg max
γ ∈Γ

(|Ωγ |), (4)

with maximal clique size m∗(Γ) = s(m(Γ)). The total clique tree size of β ′′′ is defined as

k(Γ) =
∑
γ ∈Γ

s(γ) =
∑
γ ∈Γ

|Ωγ |. (5)

The width w(Γ) of a clique tree Γ is defined as w(Γ) = c(Γ) − 1, and thus size of a clique tree’s largest clique and
width are closely related. In general, there is more than one clique tree for a BN, and it is interesting to consider optimal
clique trees, which may be defined as follows.

2 For simplicity, and even though they are used to denote slightly different concepts by some authors, we generally do not distinguish between junction
trees and clique trees in this article.

988 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Definition 9 (Clique tree optimization). Let Γ = {Γ1,Γ2, . . .} be the set of all (clique tree) cliques for clique trees {β ′′′
1 , β ′′′

2 , . . .}
for a BN β . The clique tree with the optimal (minimal) largest clique (in terms of number of nodes) is defined, using (2), as

L(Γ) = arg min
Γ ∈Γ

(
�(Γ)

)
, (6)

with optimal largest clique size �∗(Γ) = |�(L(Γ))|. The optimal clique tree (in terms of minimizing total size) is defined,
using (5), as

K (Γ) = arg min
Γ ∈Γ

(
k(Γ)

)
, (7)

and with optimal (minimal) total clique tree size defined as k∗(Γ) = k(K (Γ)).

It should be noted that some of the quantities, and specifically (2) and (6) in Definition 9 and Definition 8 are strictly
graph-theoretic. Other quantities, specifically (7) and (4), also take into account the size of the state spaces of BN nodes,
and are consequently of particular interest to researchers interested in the scalability of computation using clique tree
clustering.

The performance of many complete BN inference algorithms has been found to depend on treewidth w∗ , which is de-
fined as w∗(Γ) = �∗(Γ) − 1 [33,15]. When the BN β and its clique trees {(Γ1,Φ1), (Γ2,Φ2), . . .} are obvious from the
context, we simply write w∗ = �∗ − 1, where �∗ is the minimal largest clique across all clique trees for a BN. Treewidth
computation is NP-complete [3], and greedy triangulation heuristics that compute upper bounds on treewidth (or opti-
mal maximal clique size) are typically used in practice [31]. A key research question, which we investigate in this article,
is how clique tree size relates to parameters that can be computed for a BN in polynomial time, such as the following
parameters:

• V = |V |, the number of root nodes in a BN, with V � 1.
• T = |T |, the number of trunk nodes in a BN, with T � 0.
• C = |C |, the number of leaf nodes in a BN, with C � 0, so the total number of BN nodes is n = C + V + T .
• Pavg, the average number of parents for all non-root nodes V̄ ⊂ X in a BN, with 1 � Pavg � N − 1.
• Savg, the average number of states for all BN nodes X , with Savg � 1.

Using the parameters above, we study bipartite BNs in detail in this article. In a bipartite BN β = (X , E , P), the nodes
in X are partitioned into root nodes V and leaf nodes C according to the following definition.

Definition 10 (Bipartite DAG). Let G = (X, E) be a DAG. If X can be split into partite sets V = {X ∈ X | i(X) = 0} (the root
nodes) and C = {X ∈ X | i(X) > 0} (the leaf nodes) such that any (V , C) ∈ E is such that V ∈ V and C ∈ C , then G is a
bipartite DAG.

While our approach is general, as discussed in Section 3.3, we also note that important classes of application BNs are
bipartite or have significant induced subgraphs that are bipartite. Naïve Bayes classifiers are, for example, a special case
of bipartite BNs with only one root node. Application areas where bipartite BNs can be found include gas path diagnosis
for turbofan jet engines [60], sensor validation and diagnosis of rocket engines [6], diagnosis in computer networks [59],
medical diagnosis [64], and decoding of error-correcting codes [37]. A well-known bipartite BN for medical diagnosis is
QMR-DT; in it diseases are root nodes and symptoms are leaf nodes [64]. QMR-DT may be used to compute the most likely
instantiation of the disease nodes (i.e., the most probable explanation), given known symptoms [64,24,50]. In research on
decoding of error-correcting codes, a close relationship has been established to Bayesian network computation [38,37]. It
turns out that the subgraph induced by nodes corresponding to the hidden information and codeword bits in a decoding
BN forms a bipartite BN [38, Fig. 7].

Bipartite BNs also generalize satisfiability (SAT) instances: root nodes correspond to propositional logic variables and leaf
nodes correspond to propositional logic clauses [63,61,45]. Special inference algorithms have been designed for bipartite
BNs; see for example the study of approximate inference algorithms for bipartite BNs by Ng and Jordan [50]. Finally, general
BNs often have non-trivial bipartite components, and bipartite BNs therefore form a stepping stone for these more general,
multi-partite BNs.

For the purpose of this article, our emphasis is on randomly generated BNs, as this approach admits a very systematic
investigation of BN inference algorithms [66,23,45]. Bipartite BNs are generated randomly using the BPART algorithm [45],
which is a generalization of an algorithm that randomly generates hard and easy problem instances for satisfiability [47].

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 989

Fig. 1. Two classes, Class A and Class B, of bipartite graphs and Bayesian networks (BNs). In both Class A and Class B BNs, all leaf nodes have the same
number of parents P (here, P = 2). In Class A BNs, all root nodes have k or k + 1 children, with k � 0. In Class B BNs, the number of children may vary
between the root nodes.

Fig. 2. Compilation of BPART BN β (top) to clique tree β ′′′ (bottom). There is a loop (V 1, V 2, V 3, V 4) in the moral graph β ′ , leading to a fill-in edge (V 2, V 4)

in triangulated graph β ′′ , which again leads to cliques {V 4, V 1, V 2} and {V 4, V 2, V 3} in the clique tree β ′′′ .

The BPART algorithm, for which we use the signature BPART(V , C , P , S , R), operates as follows.3 First, V = |V | root nodes
and C = |C | leaf nodes, all with S states, are created. The value of the binary input parameter R determines whether regular
Class A (R = true) or irregular Class B (R = false) BNs are generated (see Fig. 1). In Class B BNs, P parent nodes {X1, . . . , X P }
are, for each leaf node, picked uniformly at random without replacement among the V root nodes. In Class A BNs, which
form a strict subset of Class B BNs [45], parents are picked such that all root nodes have exactly k or k + 1 children for
some k � 0. Conditional probability tables (CPTs) of all nodes are also constructed by BPART; however in this article we
focus on the impact of the structural parameters V , C , P = Pavg, and S = Savg on clique tree size. As defaults, parameter
values S = 2 and R = false are employed, and we use BPART(V , C , P) as an abbreviation for BPART(V , C , P , 2, false). An
additional default of P = 2 is also used, giving BPART(V , C) as an abbreviation for BPART(V , C , 2). Since, in a given context
we always fix P , the total number of edges in a BPART(V , C , P) BN is clearly E = C × P .

Here is an example of using clique tree clustering on a small BPART BN.

Example 11 (BPART BN). Fig. 2 shows how a BPART BN may be compiled into a clique tree. For each BN leaf node C ∈
{C1, C2, C3, C4, C5, C6}, a clique is created. In addition, there are two cliques containing BN root nodes only, namely the
cliques {V 1, V 2, V 4} and {V 2, V 3, V 4}.

3 The more extensive signature BPART(Q , F , V , C , S , R , P) was previously used [45]. Here, the Q and F parameters are used to control the conditional
probability table (CPT) types of BN root and non-root nodes respectively. The parameter R is used to control the regularity in the number of children of
root nodes. Since our emphasis in this article is on the impact of the parameters V , C , S , and P , we typically use the default values for Q , F , and R , and
generally simplify the signature to BPART(V , C , P , S).

990 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Table 1
Three different upper bounds on total clique tree size for seven example bipartite Bayesian networks.

BN Maximal Tree- Clique tree Clique tree Clique tree Relative Relative
clique width size bound – size bound – size bound – size – size –

bound 2�̄∗
bound w̄∗ trivial k̄∗

T easy k̄∗
E sum k̄∗

S 100k̄∗
S/k̄∗

T 100k̄∗
S/k̄∗

E

β0 16,384 13 1,474,560 1,261,568 61,056 4.14% 4.84%
β12 16,384 13 1,474,560 1,261,568 75,840 5.14% 6.01%
β73 16,384 13 1,474,560 1,261,568 81,200 5.51% 6.44%
β89 16,384 13 1,474,560 1,261,568 99,138 6.72% 7.86%
β92 16,384 13 1,474,560 1,261,568 53,344 3.62% 4.23%
β6 262,144 17 23,592,960 19,136,512 439,776 1.86% 2.30%
β80 262,144 17 23,592,960 19,136,512 284,192 1.20% 1.49%

Note that clique tree clustering’s moralization step, which creates a moral graph β ′ from a BPART BN β , ensures that
there are edges between all P root nodes that share a leaf node. To keep the discussion succinct, we often say that BPART

creates moral edges without explicitly mentioning the moralization step, even though moralization actually creates the
edges when a BPART BN is compiled. The compilation of the bipartite BN in Fig. 2 illustrates the crucial formation of cycles
in a BN’s moral graph and the resulting generation of fill-in edges.

In the bipartite case, all non-root nodes are leaf nodes and n = C + V . It has been shown analytically and empirically that
the ratio of C to V , the C/V -ratio, is a key parameter for BN inference hardness [45]. (We consider only non-empty BNs
and so V � 1 and the C/V -ratio is always well-defined.) Specifically, the C/V -ratio can be used to predict upper and lower
bounds on the optimal maximal clique size (or treewidth) of the induced clique tree for BNs randomly generated using
the BPART algorithm. Taking this approach, upper bounds on optimal maximal clique sizes as well as inference times have
been computed. Using regression analysis, the mean number of nodes in the maximal clique was found to be approximately
linear in the C/V -ratio. This linear growth translates into an approximately exponential growth in maximal clique size —
and consequently in clique tree clustering computation time — as a function of the C/V -ratio. This has been found to be
true for both Class A and Class B BPART BNs [45].

Because w∗ , �∗ , and k∗ are hard to compute, one often computes upper bounds w̄∗ , �̄∗ , and k̄∗ using various heuris-
tics. We now focus on three upper bounds k̄∗

T , k̄∗
E , and k̄∗

S for k∗ . The trivial upper bound k̄∗
T = n × d(w∗+1) , where

Y = arg maxX∈X (|ΩX |) and d = |ΩY |, is well-known; an easy extension4 is k̄∗
E = (n − w̄∗) × d(w̄∗+1) . Another upper bound

is obtained by summing the sizes of cliques, or k̄∗
S (β) = k(Γ), where Γ is computed from β using Hugin [28]. A few obser-

vations can be made in regard to these and related upper bounds. First, they may assume that the treewidth w∗ is known.
But it is NP-hard to compute treewidth w∗ [3], and therefore bounds involving treewidth are not directly useful. Conse-
quently, we use an upper bound w̄∗ � w∗ when forming an upper bound k̄∗ . Such upper bounds w̄∗ can be computed
using heuristics algorithms such as Hugin.

To empirically investigate these upper bounds, we consider a few existing BNs, generated using the signature BPART(V ,
C , P) = BPART(30, 60, 3) [45, Table 6]. With reference to the above bounds k̄∗

T and k̄∗
E , we thus have n = 30 + 60 = 90 and

d = S = 2. Here, w̄∗ as well as k̄∗
S are computed by an implementation of the Hugin algorithm. Results for these BNs are

presented in Table 1, which shows that the bounds k̄∗
T and k̄∗

E are not very good compared to k̄∗
S . Specifically, we see in

the relative size columns of Table 1 the following. The size of the computed total clique tree size k̄∗
S relative to the trivial

upper bound k̄∗
T ranges from 1.20% (worst case) to 6.72% (best case), and the easy upper bound k̄∗

E is only slightly better.
Previously, a difference of an order of magnitude or more between the two bounds k̄∗

T and k̄∗
S has been found across a

broad range of benchmark instances [51]. These empirical results illustrate why it is useful to consider k̄∗
S , as computed by

clique tree clustering algorithms, instead of more obvious bounds such as k̄∗
T and k̄∗

E , and our growth curves in the rest of
this article are based on k̄∗

S .
In larger BNs, it is important but also very difficult to understand and predict clique tree clustering’s cycle-generation and

fill-in processes, which again determine maximal clique size and total clique tree size. A main contribution of this article,
further discussed in Sections 3, 4, and 5, is how we improve the understanding of the growth of total clique tree size k̄∗

S
as a function of BPART BN growth. Whether one computes MPEs or marginals, the structure and size of the clique tree is
the same, and only the numerical operations (maximization for MPE computation Pr(x∗ | e) versus addition for marginal
computation Pr(X | e) for X ∈ X) differ. The clique tree growth curves discussed in this article apply to both cases.

3. Developing model-based reasoners using Bayesian networks

The development of model-based reasoners, including those that use Bayesian networks, typically involves an iterative or
spiral process. One starts with a simple model, which is refined and extended as further information, experimental results,
or additional requirements become available. In other words, an iterative development process often manifests itself as

4 The extension was introduced by an anonymous reviewer.

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 991

Fig. 3. An example of how a bipartite BN with V = 4 root nodes and C = 6 leaf nodes (top right) may be developed or grown from a bipartite BN with
V = 2 root nodes and C = 4 leaf nodes (bottom left).

model growth, for example Bayesian network growth. More specifically, if we consider bipartite Bayesian networks used for
diagnosis [64,6,59,60], we may identify at least two forms of growth:

• Growth in the number of root nodes V , to capture additional faults that may occur in the system being modeled. In
a gas path diagnosis BN, these root nodes represent health parameters for a turbofan engine [60], and by increasing
the number of health parameters a more comprehensive diagnosis can be computed. In a BN for medical diagnosis,
additional root nodes may be introduced because one wants to consider more diseases [64].

• Growth in the number of leaf nodes C , to represent additional evidence that can be used to distinguish between
the underlying faults by computing marginals, MPE, or MAP. In a BN for gas path diagnosis, these leaf nodes can
represent additional measurements made on the turbofan engine [60]. In a BN for medical diagnosis, these leaf nodes
may represent additional symptoms or tests [64].

A hypothetical BN development process, where small BNs are used for the purpose of illustration, is provided in Fig. 3.
The figure shows two different BN growth paths leading from a BN with V = 2 and C = 4 (lower left corner of Fig. 3) to a
larger BN with V = 4 and C = 6 (upper right corner of Fig. 3).

Even though we place emphasis on growth or increase here, it is really the concept of change that is important. Our
results apply to change in general, both increases and decreases in BN size, however the increase or growth perspective is
more prevalent. For example, both in knowledge engineering and BN structure learning one typically proceeds by growing
a BN iteratively. In addition, we want to emphasize the connection between BN growth and biological and medical growth
processes [4,35,17] as well as growth of random graphs (see Section 4). Similar to these areas of research, this article
represents a shift away from a particular BN β to families or sequences (β(1), β(2), β(3), β(4), . . .) of BNs and the processes
by which BNs are developed or grown. BN growth processes might be automatic, as in machine learning or data mining;
manual, as in knowledge engineering by direct manipulation of a BN; or semi-automatic, as when editing a high-level
language from which BNs are auto-generated [43].

An illustration of the connection between BN growth and clique tree growth is provided in Fig. 4. This figure illustrates
why it is important to vary a cause (say, the number of leaf nodes in BNs or the density of edges in the moral graphs
of BNs) such that a wide range of effects (different clique tree sizes) can be studied. At the highest level, we want to
communicate two main ideas in this article. The first idea is the use of a macroscopic growth curve gT (x) for total clique
tree size, where x is an independent parameter. As an illustration, gT (x) for bipartite BNs is emphasized in Section 3.2, but
the approach clearly generalizes beyond bipartite BNs as discussed in Section 3.3. As a second idea, discussed in Section 3.1,
we investigate different independent parameters x in gT (x). The use of x = C/V , where C is number of leaf nodes and V is
number of root nodes, is well-known. A novel aspect of this work is the investigation of an alternative to C/V .

The research on the BPART algorithm and its generalization, the MPART algorithm, extends existing research on gener-
ating hard instances for the satisfiability problem [47] as well as existing research on randomly generating BNs [66,5,27,
11,52,22,23,45]. Our work on BPART in this article is different from previous research [45] in several ways including the
following: The emphasis in this article is on total clique tree size instead of size of largest clique, and in particular we form
total clique tree size by carefully partitioning the cliques Γ in the clique tree.

992 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Fig. 4. How clique tree size (bottom) varies when the number of BN leaf nodes is varied (top). Horizontally, this figure illustrates how a BN may grow by
having leaf nodes added. Vertically, this figure shows how BNs are compiled into clique trees. The growth of a BPART(4, 2) BN (top left) into a BPART(4, 4)
BN (top middle) and finally a BPART(4, 6) BN (top right) is depicted in the top row. Clique trees compiled from these BNs are shown in the bottom row.

3.1. Independent parameters for Bayesian networks and moral graphs

Let W be the random number of moral edges in the moral graph β ′ of a randomly generated BN β . Then E(W) is the
expected number of moral edges. It turns out to be fruitful to use x = E(W) as the independent parameter in the growth
curve gT (x). In the rest of this section we discuss this issue in more detail.

3.1.1. Balls and bins
The balls and bins model, where balls are placed uniformly at random into bins, turns out to be useful in our analysis

of clique tree clustering’s moralization step. Following the balls and bins model, we let m denote the number of balls and n
denote the number of bins. Further, we let X and Y be random variables representing the number of empty and occupied
bins respectively. The expected number of empty bins X is

E(X) = n(1 − 1/n)m. (8)

The expected number of occupied bins Y is

E(Y) = n
(
1 − (1 − 1/n)m)

. (9)

It is well-established that the expected number of empty bins X can be approximated as

E(X) ≈ ne−m/n, (10)

while the expected number of occupied bins Y is approximated by

E(Y) ≈ n
(
1 − e−m/n). (11)

How does the balls and bins model apply to the moral graph created, using clique tree clustering, from a bipartite BN?
We restrict5 our attention to the subgraph of β ′ induced by V , abbreviated β ′[V]. The bins are all possible edges in the
moral subgraph β ′[V], and BN leaf nodes induce actual edges (corresponding to balls) in the moral graph. For clarity, we
say edge-bin instead of bin and edge-ball instead of ball. The formal definition that makes the connection between the balls
and bins model and a bipartite Bayesian network is as follows.

Definition 12 (Edge-balls and edge-bins). Consider the root nodes V ⊆ X in a bipartite BN β = (X, E, P). An edge-bin is a
possible edge in the BN’s moral subgraph β ′[V], namely an edge between two root nodes {V i, V j}, where V i, V j ∈ V and
i �= j. The set of all edge-bins is {{V i, V j} | V i, V j ∈ V and i �= j}, and an edge-ball is placed into an edge-bin by picking one

edge-bin uniformly at random with probability p = 1/
(|V |

2

)
.

We use, as will be seen shortly, a balls and bins approach to obtain the expected number of moral edges in the moral
graphs induced by distributions of BNs, specifically BPART(V , C , P) BNs. We now consider bipartite BNs where leaf nodes
have exactly two parents (Section 3.1.2) or an arbitrary number of parents (Section 3.1.3).

5 The reason for this restriction is clarified in Section 3.2, where we discuss growth curves gR (x) and gM (x). The growth of total clique tree size due to
changes in β ′[V], for example induced by an increasing x = C/V , is captured by gR (x).

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 993

Fig. 5. As part of compilation to a clique tree, a bipartite Bayesian network (left) is transformed into a moral graph with moral edges (middle). We focus on
the root nodes {V 1, V 2, V 3, V 4} and in particular the moral edges in the moral graph’s subgraph induced by the root nodes (right). Both the moral edges
actually created (edge-bins filled with edge-balls as shown using solid lines) as well as the potential moral edges not created (edge-bins not filled with
edge-balls as shown using dashed lines) are shown to the right above.

3.1.2. Balls and bins: Two parents
In the BPART(V , C,2) model, all edge-bins are uniformly and repeatedly eligible for placing edge-balls into. In other

words, we have sampling with replacement. Here is an example of applying our balls and bins model in the BPART setting.

Example 13. Fig. 5 shows a BN sampled from the BPART(V , C , P) distribution with V = 4, C = 6, and P = 2. For this
particular BN, 4 of the 6 possible edge-bins contain edge-balls as can be seen in the subgraph induced by the root nodes
{V 1, V 2, V 3, V 4} to the right in Fig. 5.

Intuitively, as the C/V -ratio increases, it gets more and more likely that a given moral edge gets picked two or more
times, or in other words that an edge-bin contains two or more edge-balls. This intuitive argument is formalized in the
following result, where we shorten the expectation E(W ; C, V) to E(W) when C and V are obvious.

Theorem 14 (Moral edges, exact). Let the number of moral edges created using BPART(V , C , P) be a random variable W . The expected
number of moral edges E(W ; C, V) is, for P = 2, given by:

E(W ; C, V) =
(

V

2

)(
1 −

(
1 − 1

/(
V

2

))C)
. (12)

Proof. We use the balls and bins model. Here, the edge-balls correspond to leaf nodes, of which there are m = C . The
edge-bins are all possible moral edges, of which there are n = (V

2

)
in a bipartite graph with V root nodes. Plugging m and

n into (9) gives the desired result (12). �
It is sometimes convenient to use the following approximation for E(W ; C, V) in (12).

Theorem 15 (Moral edges, approximate). Let the number of moral edges created using BPART(V , C , P) be a random variable W . The
expected number of moral edges E(W ; C, V) is, for P = 2, approximated as follows:

E(W ; C, V) ≈
(

V

2

)(
1 − exp

(
−C

/(
V

2

)))
. (13)

Proof. We use the balls and bins model. Here, the edge-balls correspond to leaf nodes, of which there are m = C . The
edge-bins are all possible moral edges, of which there are n = (V

2

)
in a bipartite graph with V root nodes. Plugging m and

n into (11) gives the desired result (13). �
Given (12) and (13), we can make a few remarks. In contrast to the C/V -ratio or the E/V -ratio, the expectation E(W)

takes into account the effect of picking parents among pairs of BN root nodes with replacement. For low values of C/V or
E/V one would not expect the effect of replacement to be great, but for large C/V - or E/V -ratios the difference may be
substantial as illustrated in the following examples.

Example 16 (C = 30 leaf nodes). Let V = 30, C = 30, and P = 2. The expected number of moral edges is E(W) = 28.99 using
(12) and E(W) ≈ 29.02 using (13).

Example 17 (C = 300 leaf nodes). Let V = 30, C = 300, and P = 2. The expected number of moral edges is E(W) = 216.91
using (12) and E(W) ≈ 216.74 using (13).

In Example 16, where E(W) ≈ C , it is relatively unlikely that there are edge-bins with two or more edge-balls. In
Example 17, on the other hand, it is very likely that there are edge-bins with two or more edge-balls, and E(W) < C . In

994 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

other words, adding the last leaf node has on average a smaller net effect on the number of moral edges in Example 17
than in Example 16, and this is captured in E(W) but not in C/V or E/V . This is important because the essential difference,
as far as cycle (and thus clique) formation in clique tree clustering is concerned, is between (i) no edge-ball and (ii) one or
more edge-balls.

3.1.3. Balls and bins: Arbitrary number of parents
We now turn to BPART instances in which P is an arbitrary positive integer. The fundamental complication, as far as

the expected number of moral edges E(W) is concerned, is this. For P > 2, BPART uses a combination of sampling with
replacement and sampling without replacement: Picking the parents of a given leaf node Ci amounts to sampling without
replacement, while picking parents for Ci when parents of C j are already known (for i > j) amounts to sampling with
replacement.

We now introduce, for the purpose of approximation, a variant BPART
′ which works exactly as BPART except that the

moral edges induced by the P parent nodes are, for a given leaf node Ci , picked independently and with replacement from
the moral graph β ′ . This means that we in Theorem 18 need to consider sampling with replacement only.

Theorem 18 (Moral edges, exact). Consider BPART
′(V , C , P) and let the number of moral edges created be a random variable Z . The

expected number of moral edges is:

E(Z; C, V , P) =
(

V

2

)(
1 −

(
1 − 1

/(
V

2

))C(P
2))

. (14)

Proof. We use the balls and bins model, and again the number of edge-bins is n = (V
2

)
in a bipartite graph with V root

nodes. Since BPART
′ employs sampling with replacement, the number of edge-balls is m = C × (P

2

)
. Plugging m and n

into (9) gives the desired result (14). �
We note that Theorem 18 is a generalization of Theorem 14, and abbreviate E(Z; C, V , P) as E(Z) when C , V , and P

are clear from the context. Further, we note that E(Z) in (14) can be approximated in a way similar to the approximation
of (12) by (13).

We now consider two areas where BPART
′ works differently than BPART. First, as mentioned above, there is the issue

of picking parents with replacement versus without replacement. For BPART(V , C , P), selecting P parents of a leaf node
Ci creates exactly

(P
2

)
edges in the moral graph, since the parents are distinct and |ΠCi | = P . For BPART

′(V , C , P), on

the other hand, we end up with
(P

2

)
edge-balls placed into edge-bins, and consequently at most

(P
2

)
edges in the moral

graph. A second issue is how edge-balls are placed by BPART
′; specifically, the edge-bins picked might not form a clique.

In summary, we note that E(Z) is an approximation for E(W) for BPART(V , C , P) for P > 2, justified in part by the well-
known fact that sampling without replacement can be approximated using sampling with replacement as the number of
objects sampled from (here, the V root nodes) grows.

Why are the above balls and bins models of BN moralization interesting? The reason is that we are concerned with the
possible causes, at a macroscopic level, that influence clique tree size. The expected number of moral edges is one such
cause or independent parameter x. In the context of random BNs generated by BPART, we indirectly control the placement
of moral edges, since we place constraints on the structure of these BNs through BPART’s input parameters. When it comes
to the effect, namely tree clustering performance, it is natural to optimize (minimize) the size of the maximal clique. Since
this is hard [3], current algorithms including Hugin use heuristics that upper bound optimal maximal clique size �∗ and
clique tree size k∗ using �̄∗ and k̄∗ respectively. Such upper bounds on clique tree size are just referred to as clique tree
sizes in the following, and we seek in Section 3.2 a closed form expression y = g(x) for the dependent parameter clique
tree size as a function of the independent parameter x.

3.2. Growth curves for bipartite Bayesian networks

Here, we develop models of restricted clique tree growth that extend exponential growth curves [45] used to model
unrestricted growth. Even though Bayesian networks and clique trees are discrete structures, we approximate their growth
by using continuous growth curves (or growth functions) in order to simplify analysis. We discuss bipartite BNs in this
section and generalize to arbitrary BNs in Section 3.3.

For bipartite BNs, including BPART BNs, there are two types of nodes in the clique tree as reflected in the following
definition.

Definition 19 (Root clique, mixed clique). Consider a clique tree β ′′′ with cliques Γ constructed from a bipartite BN β . A clique
γ ∈ Γ is denoted a root clique if all the BN nodes in γ are root nodes in β . A clique γ ∈ Γ is denoted a mixed clique if γ
contains at least one root node and at least one leaf node.

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 995

Fig. 6. The clique tree for a bipartite Bayesian network, with the two partitions of cliques indicated. Here, V 4 V 1 V 2 and V 4 V 2 V 3 are root cliques (with
growth curve gR) while the remaining six cliques are mixed cliques (with growth curve gM).

It is easy to see that root and mixed cliques are the only clique types induced by bipartite BNs, and that root cliques
are interior nodes in the clique tree while mixed cliques are leaf nodes. An illustration of Definition 19 is provided by the
clique tree in Fig. 6. The BN from which this clique tree is compiled is depicted in Fig. 2 and in Fig. 4.

We now consider clique trees generated from random BNs. Random variables K T , K R , and KM are used to represent the
total clique tree size, the size of all root cliques, and the size of all mixed cliques respectively:

KT = K R + KM . (15)

Of particular interest are upper bounds k̄∗
S , with corresponding random variables K̄ ∗

S , for which we have Pr(K̄ ∗
S = k̄∗

S) and
K̄ ∗

S = KT in (15). Total clique tree size is the sum of the clique sizes of both types, as is appropriate for clique tree clustering
algorithms including Hugin. We use (15) and linearity of expectation to obtain

E(KT) = E(K R) + E(KM),

μT = μR + μM . (16)

In the experimental part of this article, μR will be estimated using its sample mean μ̂R . Collections of such sample means,
or the raw data sets themselves, can then be used to construct growth curves by means of regression.

Let X be the predictor (or independent) random variable, and Y the response (or dependent) random variable. In a
regression setting, one is interested in the conditional expectation

μ(x) = E(Y | X = x) =
∫

yf (y | x)dy,

which along with (16) gives μT (x) = μR(x) + μM(x), which are deterministic functions of x. Here, x represents variation in
one or more of BPART’s input parameters. For instance, C may be varied while V , P , and S are kept constant; see Section 3.1
for details.

The discussion above is intended as a background for understanding the benefit of quantitative growth curves, which we
now introduce.

Definition 20 (Clique tree growth curve). Let gR : R → R and gM : R → R. Further, let gR(x) be the growth curve for all root
cliques and gM(x) the growth curve for all mixed cliques. The (total) clique tree growth curve for a bipartite BN is defined as

gT (x) = gR(x) + gM(x).

Given Definition 20, we provide a qualitative discussion of the growth of BPART BNs in terms of the C/V -ratio, and put
x = C/V . This discussion is supported by previous (see [45,41]) and current (see Section 5) experiments, as well as the
connection between BPART and random graphs (see Section 4), and motivates our introduction of growth curves. In order
to keep our discussion relatively simple, we identify three broad stages of clique tree growth, reflecting the growth of root
cliques: The initial growth stage, the rapid growth stage, and the saturated growth stage. The initial growth stage, where
the C/V -ratio is “low”, is characterized by “few” leaf nodes relative to the number of root nodes. There is consequently a
relatively low contribution by root cliques to the clique tree. In terms of gT (x), this stage is dominated by mixed cliques and
gM(x). Indeed, as C/V → 0 there are no root cliques with more than one root node. During the rapid growth stage, where
the C/V -ratio is “medium”, root cliques of non-trivial size start emerging, due to formation of cycles where fill-in edges are
required in order to triangulate the moral graph. An example of the emergence of such a cycle can be seen in Fig. 2 and
Fig. 4. In this stage, and due to the addition of fill-in edges, the root cliques and gR(x) gradually overtake the mixed cliques
in terms of their contribution to total clique tree size gT (x). The saturated growth stage, where the C/V -ratio is “high”, is
characterized by a “large” number of leaf nodes relative to the number of root nodes. As C/V approaches infinity, one root
clique with V BN root nodes (and size S V in the BPART model) emerges. In this stage, the mixed cliques eventually start to
dominate again, since there is one root clique which has reached its maximal size and cannot grow further. However, since
the root clique size is exponential in the number of root nodes, it typically takes a long time before the mixed cliques start
dominating again. For large V this effect can be disregarded, and main focus should generally be on the rapid growth stage,

996 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Fig. 7. Left: Gompertz curves g1(x) = 220e−5e−0.3x
(green dotted curve), g2(x) = 220e−15e−0.3x

(black solid curve), and g3(x) = 220e−5e−0.2x
(blue boxed curve).

Right: Growth rates g′
1(x), g′

2(x) and g′
3(x) for the Gompertz growth curves.

and in particular the early part of it, in the transition between the initial and rapid growth stages, where gR(x) is becoming
the dominating factor in gT (x).

In the following, we will often discuss gR(x) and gM(x) independently. In fact, as reflected in the informal discussion
above, the growth curve for mixed cliques gM(x) is generally less dramatic than the growth curve for root cliques gR(x).
Therefore, we will place more emphasis on gR(x) in this article, and investigate restricted growth curves suitable for repre-
senting this function.

A number of sigmoidal growth curves (“S-curves”) have been used to model restricted growth, including the logistic,
Gompertz, Complementary Gompertz, and Richards growth curves [4,35,17]. For restricted growth curves, limx→∞ g(x) al-
ways exists and we define the restricting asymptote as

g(∞) := lim
x→∞ g(x). (17)

For unrestricted growth curves, including the exponential growth curve, limx→∞ g(x) does not exist and there is no asymp-
tote g(∞) as in (17).

It turns out that restricted Gompertz growth curves give very good approximations of root clique growth gR(x) for
BPART(V , C), see Section 5, and we now study this family of curves in more detail.

Definition 21 (Gompertz growth curve). Let ζ , γ ∈ R with ζ > 0 and γ > 0. A Gompertz growth curve is defined as

g(x) = g(∞)e−ζe−γ x
. (18)

We now discuss some general properties due to the form of g(x) in (18). For x = 0, clearly e−γ x = 1, giving g(0) =
g(∞)e−ζ in (18). In other words, the intersection of g(x) with the y-axis is determined by the parameters g(∞) and ζ in
g(∞)e−ζ . On the other hand, as x → ∞ in (18), e−γ x tends to 0, meaning that e−ζe−γ x

tends to 1 and thus limx→∞ g(x) =
g(∞). The greater γ is, the faster e−γ x tends to zero, leading to faster convergence to the asymptote g(∞).

The derivative g′(x) of the Gompertz growth curve is

g′(x) = d

dx
g(x) = g(∞)ζγ e−γ xe−ζe−γ x

, (19)

and expresses the growth rate of g(x); clearly g′(x) > 0 given our assumptions in Definition 21.
In Fig. 7 we investigate graphically a few examples of how the parameters g(∞) , ζ , and γ impact the shapes of Gom-

pertz curves. The parameter g(∞) = 220 is obtained, for example, by considering bipartite BNs with V = 20 binary (S = 2)
root nodes. Fig. 7 also shows how the growth rate g′(x) changes when the parameters ζ and γ are varied. Let us first vary ζ

as shown in Fig. 7. By increasing ζ from ζ = 5 to ζ = 15 while keeping γ = 0.3 constant, the x-location of maximal growth
rate g′(x) is increased as well. However, the value of g′(x) at its maximum does not change. Let us next vary γ as is also
illustrated in Fig. 7. As γ decreases from γ = 0.3 to γ = 0.2, while ζ = 5 is kept constant, the x-location of maximal g′(x)
increases. In addition, the maximal value of g′(x) decreases with γ decreasing, and generally growth gets more gradual as
γ decreases.

In the context of BNs, the independent variable x for the growth curve g(x) may be parametrized using x = C , x = C/V ,
x = E/V = C P/V , or x = E(W), depending on the data available and the purpose of the model. We now introduce, for
BPART, a total growth curve model that includes a Gompertz growth curve.

Theorem 22 (BPART Gompertz growth curve). The total growth curve gT (x) for BPART(V , C , P , S), assuming Gompertz growth for
root cliques and where x = C is the independent variable, is

gT (x) = S V e−ζe−γ x + xS P+1. (20)

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 997

Proof. Since BPART BNs are bipartite, the growth curve has the form gT (x) = gR(x) + gM(x), where gR(x) = gR(∞)e−ζe−γ x

because we have the Gompertz growth curve. For BPART(V , C , P , S) we have gR(∞) = S V , and therefore gR(x) = S V e−ζe−γ x

for appropriate choices of ζ and γ . Total mixed clique size is C × S P+1 [45], and hence gM(x) = xS P+1. By forming gR(x) +
gM(x) we obtain the desired result (20). �

Analytical growth models or growth curves have been used to model growth of organisms and tissue in biology and
medicine, growth of technology use or penetration, and growth of organizations or societies including the Web [4,35,17].
However, our use of growth curves to model how clique tree size grows with x = C , x = C/V , or x = E(W) is, to our
knowledge, novel.

The Gompertz growth curve can be derived by solving the differential equation dg(x)/dx = ag(x), where a is a growth
coefficient [4]. Here, a is not constant but exponentially decreasing, formally da/dx = −ka for k > 0. These two equations can
be solved to obtain (18); see [4]. While a detailed study is beyond the scope of this article, it appears plausible that these
differential equations reflect, at a macroscopic level, clique tree clustering’s formation of cycles in a moral graph β ′ along
with the generation of fill-in edges. Once one cycle appears in β ′ , there may be many cycles appearing, all needing fill-in
edges. Thus, once cycle formation starts in β ′ , a faster than exponential growth in root clique tree size gR(x) is realistic and
indeed supported by previous experimental results [45]. This hyper-exponential growth is in this article captured by using
Gompertz growth curves.

We emphasize that Gompertz curves do not always provide accurate models of clique tree growth. For example, the
property g′

R(x) > 0 does not reflect reality for very small x = C . Consider the first few BN leaf nodes added by BPART. When
there is no leaf node and x = 0, clearly μR(0) = V and μM(0) = 0. When there is one leaf node with P parents and x = 1,
μR(1) = V − P and μM(1) = S P+1. Since μR(0) > μR(1), the contribution of the root cliques to the total clique tree size in
fact decreases from x = 0 to x = 1, and clearly this is not consistent with g′

R(x) > 0 as follows for example from (19). The
situation is similar for other small values of x, see Fig. 4 for x = 2. However, this early stage of growth is not very interesting
since the total clique tree size is extremely small and typically not a concern in applications. Consequently, we consider this
issue not to be an important limitation of our approach, and we use C/V � 1/2 in our experiments below.

Finally, we note that the Gompertz growth curve has a linear form, defined as follow [35].

Definition 23 (Gompertz linear form). The Gompertz linear form is

ln

(
− ln

g(x)

g(∞)

)
= ln(ζ) − γ x. (21)

Using (21), the Gompertz curve parameters ζ and γ in (18) can be estimated from data using linear regression, as we
will see in Section 5. Other growth curves, including logistic and Complementary Gompertz, have forms similar to (18) that
are also useful for parameter estimation by means of linear regression [35].

3.3. Growth curves for general Bayesian networks

We now briefly discuss the generalization from bipartite BNs, considered earlier in this section, to arbitrary BNs. There
are at least two ways of going beyond bipartite BNs:

• Generalization of our analytical approach, which is tailored to bipartite BNs, to arbitrary BNs. There are several ways of
doing this. First, one can maintain the use of two growth curves, but re-consider how cliques are assigned to them, in
order to handle arbitrary BNs. Second, one can potentially go beyond two growth curves, and base analysis on a finite
set of growth curves {g1(x), g2(x), . . . , gk(x)} where k � 1. We discuss this approach in Section 3.3.1.

• Translation of arbitrary BNs, perhaps via some intermediate form, into bipartite BNs. Such a translation can, for example,
be based on the connection between Bayesian networks and factor graphs (which are bipartite graphs) [32,19]. The
resulting bipartite BNs can then be handled using the techniques discussed elsewhere in this article. We discuss this
approach in Section 3.3.2.

3.3.1. Generalization using growth functions
We now discuss two approaches that generalize our growth curve analysis discussed earlier in Section 3. The first ap-

proach continues to use two growth curves, but generalizes their meaning. Specifically, we introduce growth curves g1(x)
and g2(x). Here, g1(x) represents cliques that contain leaf nodes and their parents (similar to gM(x)), while g2(x) repre-
sents the remaining cliques (similar to gR(x)). Consequently, g2(x) represents the growth of not only cliques containing root
nodes only, but also cliques containing trunk nodes only, as well as cliques containing both trunk and root nodes. Clearly,
this is a rather straightforward generalization approach, which may be too simple in some contexts, leading us to introduce
the following alternative.

The second approach amounts to introducing an arbitrary number of growth curves. We consider a clique tree Γ gen-
erated from an arbitrary BN by clique tree clustering. One way to formalize the partitioning of cliques in a clique tree
Γ = {γ1, . . . , γη} is by means of coloring the nodes in a graph (for us, a BN or a clique tree) as follows.

998 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Definition 24 (Graph coloring). Let G = (V , E) be a graph, let Φ = {1, . . . , φ} be a set of colors, and let h : V → Φ be a map
(or coloring) from nodes to colors. Then (G , Φ , h) forms a graph coloring.

The coloring defines a partitioning of a graph’s nodes into φ partitions. Definition 24 applies to both directed graphs
(including DAGs) and undirected graphs (including clique trees). For BNs we will abuse notation slightly by saying that (β ,
Φ , h) is a graph coloring when β = (X , E , P) is a BN; strictly speaking the coloring is in this case only for the DAG part
(X , E) of the BN.

The following definition of a coloring h partitions nodes into root nodes and non-root nodes.

Definition 25. Let G = (V , E) be a DAG and let Φ = {1,2} be a set of colors. The coloring h : V → Φ reflects the root versus
non-root status for any V ∈ V , and is defined as

h(V) =
{

1 if i(V) = 0,

2 if i(V) > 0.

Similar to Definition 25, one can define a coloring that partitions nodes into leaf nodes and non-leaf nodes.
How does graph coloring apply to BNs and their clique trees? A clique in a clique tree of a BN β consists of one or more

BN nodes, and these nodes may or may not have different colors as induced by a graph coloring (β , Φ , h). To reflect this,
we introduce the concept of a color combination for a coloring, and have the following obvious result.

Proposition 26. Let (G,Φ,h) be a graph coloring and let φ = |Φ|. The number of (non-empty) color combinations is

κ(φ) = 2φ − 1.

Similar to Definition 19, we partition the cliques, now according to color combinations. Formally, this amounts to forming
subsets of cliques Γi for 1 � i � κ(φ) such that Γ = Γ1 ∪ · · · ∪ Γκ(φ) and Γi ∩ Γ j = ∅ for i �= j. In the bipartite special case
discussed in Section 3.2, κ(φ) = 2 and Γ = Γ1 ∪ Γ2, where Γ1 are the root cliques and Γ2 the mixed cliques. Assuming that
BNs are randomly distributed, we let Ki be the random size of the cliques having the i-th color combination. By summing,
we obtain a random variable KT representing the total clique tree size:

KT =
κ(φ)∑
i=1

Ki . (22)

This sum is a generalization of (15), which applies to the bipartite case.
For each possible color combination, and reflecting the growth of the individual random variables Ki in (22), we intro-

duce a separate growth curve gi with parameters θ i as follows.

Definition 27. Let (G , Φ , h) be a graph coloring with φ = |Φ| and let gi : R → R be a map with parameters θ i . Then

g(x; θ) =
κ(φ)∑
i=1

gi(x; θ i), (23)

where g : R → R and θ = (θ1, . . . , θκ(φ)), is a total growth curve.

In words, Definition 27 adds up the growth curves for each color combination. A color combination corresponds to a
type of clique. In this manner, we decompose the problem of estimating growth curves for complete clique trees into sub-
problems of estimating growth curves for smaller pieces of clique trees. In the bipartite case, we have one color combination
for mixed cliques and another color combination for root cliques, see Definition 20, resulting in two growth curves gR(x)
and gM(x) on the right hand side of (23). We place no restrictions on the partitioning in Definition 24 and Definition 27,
but for our purposes it typically makes sense to (i) let the coloring reflect the structure of a graph and (ii) only introduce
as many colors as is needed.

3.3.2. Generalization using factor graphs
While our main emphasis in this article is on Bayesian networks and clique trees, many alternative approaches to rep-

resenting multi-variate probability distributions by means of probabilistic graphical models exist. These alternatives include
factor graphs [32,70], Tanner graphs, Markov random fields [68,69], and arithmetic circuits [12].

For the purpose of generalizing our growth curve approach to arbitrary BNs, factor graphs [32,70] turn out to be of
particular interest. Informally, a factor graph (FG) is a bipartite graph in which root nodes are variables, leaf nodes are
factors (or functions), and a directed edge expresses an “is an argument of” relationship between a variable and a function.
More formally, we have the following definition.

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 999

Definition 28. Suppose that the function h(X1, . . . , Xn) admits the factorization

h(X1, . . . , Xn) =
m∏

i=1

f i(S i), (24)

where S i ⊆ {X1, . . . , Xn} for 1 � i � m. Then the factor graph of h is defined as a (directed) bipartite graph (X, F , E) in
which variables X = {X1, . . . , Xn} are root nodes; F = { f1, . . . , fm} are leaf nodes; and E are edges between X and F such
that (X j, f i) ∈ E if and only if X j ∈ S i .

Intuitively, the global function h in (24) is decomposed into products of local functions F , and each local function
f ∈ F only depends on a (hopefully small) subset S ⊆ {X1, . . . , Xn}. We are interested in probabilistic inference, where
h(X1, . . . , Xn) represents a joint probability distribution over discrete random variables. Summary propagation algorithms,
which are iterative algorithms that utilize “summaries” or “messages” [36], have been introduced that exploit the factor
graph representation of h. Summary propagation algorithms come in two flavors, sum-product algorithms and max-product
algorithms. Using sum-product algorithms, one can use factor graphs to compute marginal distributions over Xi for 1 �
i � m. The Viterbi algorithm [67,57], generalized to arbitrary tree-structured graphical models, is a max-product algorithm
called max-product belief propagation [32].

Having briefly introduced factor graphs, we now discuss how they relate to our use of bipartite BNs elsewhere in this
article. Factor graphs have been extended to unify and generalize directed graphical models (Bayesian networks) and undi-
rected graphical models (Markov networks) [19]. The studies of Bayesian networks, Markov networks, and factor graphs are
therefore closely related. We now specifically exploit the close connection between factor graphs and BNs, and consider a
two-step translation process (see [70] for details). First, we translate an arbitrary BN β1 into a factor graph φ. Second, we
translate φ into a bipartite BN β2, which is related to but different from β1. A factor graph factor from φ becomes a leaf
node in the bipartite BN β2; a factor graph variable from φ becomes a root node in β2.

We now make a few observations related to this translation process: There are no topological restrictions on β1; β2 is
guaranteed to be bipartite; and the size of β2 is modest relative to β1. This translation approach means that we can translate
an arbitrary BN β1 into a bipartite BN β2, and then apply to β2 the analytical and experimental machinery discussed
elsewhere in this article.

4. Random graphs and random Bayesian networks

Similar to BNs, random graphs are founded on graph theory. Random graphs were explored in the 1950s and early
1960s by Solomonoff and Rapoport [65] as well as Erdős and Rényi [18]. Compared to previous graph theory research, the
contribution of research on random graphs was and is its emphasis on graphs as probabilistic objects, which is similar to
our perspective on random BNs including BPART BNs. Random graphs continue to be studied as part of graph theory in
pure mathematics [7], but interesting connections have also been made to applied areas including social networks; spread
of disease; spread of information; and information search in the World Wide Web [49]. While a comprehensive discussion
of random graphs is beyond the scope of this article, we now briefly discuss the connection between random graphs and
random BNs, and in particular random BNs as generated by the BPART algorithm.

Two prominent random graph models over n vertices are denoted G(n, p) and G(n,m) respectively. Both models are
concerned with undirected graphs. In G(n, p), each of the

(n
2

)
edges is included with a probability p. In G(n,m), exactly

m edges are added uniformly at random, from among all
(n

2

)
edges, without replacement. The sets of graphs defined by

G(n, p) and G(n,m) form probability spaces.
It turns out that many random graph models, including G(n, p) and G(n,m), are in several respects similar. The number

of edges in G(n, p) clearly follows a Binomial distribution, and so the expectation is p
(n

2

)
. If m ≈ p

(n
2

)
then G(n, p) and

G(n,m) behave, in many respects, the same [7]. In particular, there is often an emergence of certain global properties —
including graph structures in the form of trees, cycles, and cliques — as local connectivity parameters such as p (for the
G(n, p) model) or m (for the G(n,m) model) increase for a fixed or varying n. How is a property likely to emerge? Erdős
and Rényi studied p(n) as n → ∞ and found that emergence is often fast. In other words, many properties quickly go from
very unlikely to very likely; there is a phase transition at a certain probability p(n).

Random graphs can be studied from an evolutionary perspective as well. In this perspective, edges are added one by one,
starting with zero edges in the random graph and approaching a fully connected graph with

(n
2

)
edges as p → 1. (Clearly, as

will be further discussed below, there is a similarity between increasing p in the G(n, p) model and increasing the C/V -ratio
in the BPART model.) Early on in random graph evolution, edges are isolated, and isolated components form. There are no
cycles, because edges are initially likely to merge components rather than create cycles. Gradually, some unicycles and trees
show up, however the largest components are only logn in size. Then, all of a sudden, comes the so-called double-jump
[18] where two things happen. First, the number of cycles increases dramatically. Second, the size of the largest component
grows, and the growth depends on whether c < 1 or c > 1. With p = c

n and c < 1, the random graph consists of small
components, the largest of size Θ(log n). For c > 1, on the other hand, many of these small components have clustered into
a “giant” component of size Θ(n). In other words, the giant component emerges when the average node degree is np = 1.

1000 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Which, if any, of the random graph models G(n, p) and G(n,m) is most relevant to the work discussed in this article?
BPART(V , C , P) is, under certain conditions which we discuss shortly, very similar to G(n,m). The conditions are as follows:

1. For BPART(V , C , P), the moral edges between the root nodes (induced by leaf nodes), or in other words the undirected
moral graph induced by the root nodes, is what is important for our purposes, and we put n = V .

2. In BPART(V , C , P), we consider P = 2, since this yields independence between moral edges, similar to how edges are
picked independently under both G(n, p) and G(n,m).

To make the connection between the G(n,m) model and BPART more explicit, we set n = V and P = 2, as stated in the
two conditions above, and we may say BPART(n, C) instead of BPART(V , C , P).

Now, the only difference between G(n,m) and BPART(n, C) is that the former picks edges without replacement, while the
latter picks edges with replacement. However, this difference may not be that important in some situations. If

(n
2

)
 m, then
this difference can often, for approximation purposes, simply be ignored and we set m = C . Alternatively, if the difference
cannot be ignored, one may proceed as follows. Without loss of generality, we assume that m and n are fixed in G(n,m),
and consider E(W ; C, V) as given by (12) or (13) after substituting V = n. In the case of (12), we can then obtain the
integer-valued lower bound C� and upper bound Cu, where E(W ; C�, V) � m � E(W ; Cu, V) and C� = Cu − 1. We then use
C� and Cu as input parameter to BPART, and use BPART(n, C�) and BPART(n, Cu) to bound G(n,m). If instead of (12) we use
(13), one can put E(W) = m and then solve for C in (13). Obviously, the solution for C will not in general be integer-valued,
so one can use C� = �C� and C� = �C� as inputs to BPART in a manner similar to above.

The issue of the treewidth of random graphs has, to our knowledge, not been extensively researched. However, there are
some results, which we now briefly review [30]. The following two analytical results apply to the early evolution of random
graphs, before the giant component emerges.

Lemma 29. Let 0 < c < 1 and suppose that p = c/n. Then almost every graph G(n, p) is such that every connected component is a
tree or a unicycle graph.

Corollary 30. If m < n
2 , then almost every graph G(n,m) has treewidth at most two.

With respect to the above lemma’s application to BPART, we note that triangulation of trees and unicycle graphs is quite
simple. Trees do not need any fill-in edges, of course, while triangulation of a unicycle graph with k nodes amounts to
adding � k

2 � fill-in edges. A consequence of Corollary 30 for BPART is that C < V /2, or C/V < 1/2, is not very interesting
from a treewidth perspective.

We now state a result that applies for a broader range of random graphs [30], including after the emergence of the giant
component.

Theorem 31. Let δ � 1.18. Then almost every graph G(n,m) with m � δn has treewidth Θ(n).

Comparing G(n,m) and BPART(V , C), m corresponds to C (the number of leaf nodes) while n corresponds to V (the
number of root nodes). The condition m � δn in Theorem 31 thus corresponds to C � δV , or C/V � δ. It is clear from
Corollary 30 and Theorem 31 that C/V ≈ 1 is an interesting region in the setting of clique tree clustering for BNs, assuming
the BPART(V , C) model.

To summarize, it is clear that several fruitful connections can be made between random graphs and random BNs, and
a few have been made above. In particular, we hypothesize that there is a connection between the onset of the rapid
growth phase observed for BPART BNs and δ ≈ 1.18 in Theorem 31, and that this behavior can be modeled using large
values for g′(x) of a restricted growth curve g(x) such as a Gompertz growth curve. At the same time, there are many
caveats concerning the use of analytical results for random graphs in the analysis of random BNs; here are some of them.
We start by identifying two structure-related issues. First, even if we ignore the small difference between G(n,m) and
BPART(V , C , 2) identified above for a moment, it is clear that G(n,m) makes independence assumptions that are not made
by BPART(V , C , P) for P > 2. Second, while there has been some work on treewidth of random graphs, as discussed briefly
above, optimal treewidth has not been a central topic in random graphs. And even if it were, and if we take a strictly
graph-theoretic perspective, the issue of optimizing the maximal clique of random graphs is not the same as optimizing
total clique tree size, even though they clearly are related. Total clique tree size has previously been emphasized for BNs
[28,29]. Third, random graphs are typically considered in the limit n → ∞, while this is generally not the situation for
random BNs and BNs in general. Fourth, random graphs are strictly graph-theoretic, and one does not consider state spaces,
which can exhibit important variation in BNs. To make further progress on understanding clique tree growth for the BPART

model despite these limitations in applying results from the theory of random graphs, we now turn to our experimental
results.

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 1001

5. Experiments

In the experiments we address the following questions in the context of bipartite BNs sampled using BPART: How well
do Gompertz growth curves match sample data in the form of clique trees generated using tree clustering, when the inde-
pendent parameter as well as the nature of the sample data points are varied? How well do Gompertz growth curves fit
sample data compared to alternative growth curve models? In answering these questions, we extend and complement pre-
vious experimental results [45] by: (i) introducing restricted growth curves, including Gompertz growth curves, in addition
to sample means and unrestricted exponential growth curves; (ii) using a greater range of values for C/V ; (iii) considering
both V = 20 and V = 30; (iv) investigating x = E(W) in addition to x = C/V as the independent parameter; and (v) using
as the dependent parameter the total clique tree size k̄∗

S rather than the size of the optimal maximal clique �̄∗
S . Clique trees

were generated, for sample BNs generated using BPART as indicated below, using an implementation of the Hugin clique
tree clustering algorithm. Clique trees were optimized heuristically, using the minimum fill-in weight triangulation heuristic,
as treewidth computation is NP-complete.

In the rest of this experimental section, we discuss in Section 5.1 clique tree growth in the case of BPART BNs with
V = 30 root nodes, using x = E(W). In Section 5.2 we investigate BPART BNs with V = 20 root nodes and consider both
x = E(W) and x = C/V . In Section 5.3 we investigate the growth of individual BPART BNs.

5.1. Comparison between growth models for multiple BNs

The purpose of the first set of experiments was to compare the Gompertz growth model with a few alternatives: Ex-
ponential, logistic, and complementary Gompertz. Here, we report on Bayesian networks generated using the signature
BPART(30, C , 2, 2) with varying values for C , specifically 15 � C � 600 or 1/2 � C/V � 20. For each C/V -level considered,
100 BNs {β1, . . . , β100} were sampled using BPART, and clique trees with respective sizes {k̄∗

S (β1), . . . , k̄∗
S (β100)} computed

using the Hugin system.
We now present the results of the Hugin experiments. In the top panel of Fig. 8, sample means μ̂R(x) along with cor-

responding points from different analytical growth curves gR(x) as a function of x = E(W) are presented. Sample means
μ̂R(x) are obtained by averaging, for a particular x, over {k̄∗

S (β1), . . . , k̄∗
S (β100)} and then deducting gM(x). Here, the Gom-

pertz, logistic, complementary Gompertz, and exponential functions are considered for gR(x). The bottom panel of Fig. 8
shows how the growth curves in the top panel were obtained using linear forms such as (21). The following Gompertz
growth curve was obtained

gR(x) = 230 × exp
(−19.14 × exp(−0.005874x)

)
,

where x = E(W). The parameters ζ and γ were for the other growth curves computed in a similar manner. Clearly, the
Gompertz curve fits the data much better than the alternative growth curves analyzed, with R2 = 0.9995 (for Gompertz)
versus R2 = 0.9413 (for logistic) and R2 = 0.9407 (for Complementary Gompertz). The excellent fit can also easily be
confirmed visually by considering the sample means along with the corresponding data points for the Gompertz curve in
the top panel of Fig. 8.

5.2. Gompertz growth model details for multiple BNs

In a second set of experiments, Bayesian networks were generated using BPART(V , C , 2, 2) with V = 20 and varying
values for C , specifically 10 � C � 1400 or 1/2 � C/V � 70. Similar to above, for each C/V -level, 100 BNs were sampled
using BPART, and Hugin was used to compute clique trees with respective sizes {k̄∗

S (β1), . . . , k̄∗
S (β100)}. Using this relatively

low value for V allowed us to generate BNs for which the generated clique trees did not exhaust the computer’s memory
even for very large C , thus supporting a comprehensive analysis using Gompertz growth curves with both x = C/V and
x = E(W) as independent parameters.

Fig. 9 illustrates the results of these experiments. Here, the left column of Fig. 9 presents Gompertz growth curves
gR(x), while the right column illustrates how these growth curves were obtained using (21) similar to above. In the top
row of Fig. 9, sample means as well as corresponding points from a Gompertz growth curve as a function of C/V -ratio
are presented. As a baseline, an exponential interpolation curve for the sample means is also provided. Empirically, the
Gompertz growth curve was found to be

gR(x) = 220 × exp
(−9.906 × exp(−0.1118x)

)
,

where x = C/V and with R2 = 0.993477. The parameter values of ζ = e2.293 = 9.906 and γ = 0.1118 were obtained from
the Gompertz linear form as illustrated to the top right in Fig. 9, based on sample means for the clique tree root cliques
and the linear regression result ln(ζ) − γ x = −0.1118x + 2.293.

In the bottom row of Fig. 9, we plot the expected number of moral edges E(W) along the x-axis. Note that the right-
most sample average in the bottom row of Fig. 9, at x = E(W) ≈ 123, corresponds to the sample average at C/V = 10 in
the top row of Fig. 9. In other words, the use of x = C/V allows us to illustrate a broader range of behavior, through the

1002 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Fig. 8. Experimental results for bipartite BNs with V = 30 root nodes and varying number of leaf nodes C . Top: Comparison of Gompertz and other growth
curves with the sample means. The superior fit of the Gompertz curve is reflected in its better R2 value, namely R2 = 0.99948. Bottom: Linear forms
showing how the growth curves above were obtained.

inclusion of BNs with a larger number of leaf nodes, compared to when x = E(W) is used. We present sample means along
with the corresponding points from a Gompertz growth curve as a function of E(W); an exponential regression curve is
presented as a baseline. Here, the Gompertz growth curve was empirically determined to be

gR(x) = 220 × exp
(−12.43 × exp(−0.01187x)

)
,

where x = E(W) and with R2 = 0.999215. The parameters ζ and γ were computed in a similar manner to above and as
summarized to the bottom right in Fig. 9.

We now revisit the three broad growth stages discussed in Section 3 and Section 4 in terms of Fig. 9. The sample means
show an easy-hard-harder pattern, or monotonically increasing clique tree sizes, along these stages. The initial growth stage,
where the C/V -ratio is “low” (for P = 2, up to approximately C/V ≈ 1), is characterized by “few” leaf nodes relative to the
number of root nodes. The initial growth stage is in fact difficult to see in Fig. 9, since there are only a few sample points
for this stage and they are very close to each other. In the rapid growth stage, the C/V -ratio is “medium” (for P = 2, from
approximately C/V ≈ 1 to say C/V ≈ 20) and non-trivial root cliques appear. As can be seen from the sample means to the
left in Fig. 9, growth is initially faster than indicated by the exponential regression curve and then slows down. Clearly, the
Gompertz growth curves give much better fits than the respective exponential curves for both C/V and E(W). The saturated
growth stage, where the C/V -ratio is “high”, is characterized by slow or no growth due to saturation. At saturation, there is
one root clique γ with |Ωγ | = 220, hence there is no room for further growth. In Fig. 9, we may say that saturation starts
at C/V ≈ 20.

Fig. 9 clearly shows the improved fit provided by Gompertz curves compared to exponential curves. Further, x = E(W)

provides a better fit than x = C/V but for a narrower domain.

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 1003

Fig. 9. Empirical results for bipartite Bayesian networks generated with V = 20 root nodes and a varying number of leaf nodes C . Top left: Gompertz growth
curve as a function of the C/V -ratio. Top right: Gompertz growth curve’s linear form as a function of the C/V -ratio; used to create the Gompertz growth
curve to the left. Bottom left: Gompertz growth curve as a function of E(W). Bottom right: Gompertz growth curve’s linear form as a function of E(W); used
to create the Gompertz growth curve to the left.

5.3. Comparison between growth models for individual BNs

The experimental results so far in this section have been based on constructing growth curves gR(x) using sample means
μ̂R(x) of clique tree sizes for 100 BNs per C/V -value. What happens when individual BNs, instead of multiple BNs, are used
to construct growth curves gR(x)? To investigate this question, we considered in a third set of experiments BNs generated
using the signature BPART(20, C), with C varying from C = 100 to C = 1200. The following protocol was followed in order
to create a sequence of closely related BNs. Starting with a sampled BPART(20, 1200) BN, 100 leaf nodes were deleted
at a time, giving a sequence of BNs consisting of a BPART(20, 1100) BN, a BPART(20, 1000) BN, and so forth, down to a
BPART(20, 100) BN. Obviously, in a real development setting the sequence of BNs might be quite different than what we
used here, and in particular a machine learning algorithm or a knowledge engineer might start with a small BN and grow
it, rather than the other way around. The manner in which the sequence of BNs is created for our experimental purposes
does not matter as long as they are all BPART BNs, which they clearly are here.

Experimental results for two sequences of clique trees generated from the two sequences of BNs, generated according
to the above protocol, are presented in Fig. 10. For the β0 sequence (top of Fig. 10), the regression results for k̄∗

S are:
Gompertz curve gR(x) = −0.1125x+2.2873 and R2 = 0.9571; Logistic curve gR(x) = 0.2676x−6.3575 and R2 = 0.9265; and
Complementary Gompertz curve gR(x) = 0.2411x − 6.1417 and R2 = 0.8962. For the β1 sequence (bottom of Fig. 10), the
regression results for k̄∗

S are: Gompertz curve gR(x) = −0.0816 + 1.9406 and R2 = 0.971; Logistic curve gR(x) = 0.2205x −
5.7281 and R2 = 0.8361; and Complementary Gompertz curve gR(x) = 0.2063x − 5.635 and R2 = 0.8074.

This figure clearly shows the better fit provided by Gompertz curves compared to a few alternatives. The better fit is
reflected in the higher R2 values for the Gompertz curves for both sequences. We note that the R2 values found here,
for the Gompertz curves, are smaller than the R2 values for the Gompertz curves found in Section 5.1 and Section 5.2.
A key point in this regard is that each data point here represents the clique tree size of a single BN, while each data point

1004 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

Fig. 10. Experimental results for sequences of individual bipartite BNs with V = 20 root nodes and a varying number of leaf nodes. Comparison of Gompertz
and other growth curves, as a function of C/V , is shown for two sequences of BNs. Top: The superior fit of the Gompertz curve for one sequence of BNs is
reflected in a higher R2 value, namely R2 = 0.9571. Bottom: The superior fit of the Gompertz curve for another sequence of BNs is reflected in a higher R2

value, namely R2 = 0.971.

in Section 5.1 and Section 5.2 represents the sample mean clique tree size for 100 BNs. The poorer fit reported here is
therefore not surprising.

6. Conclusion and future work

Substantial progress has recently been made, both in the area of Bayesian network (BN) reasoning algorithms and in
the area of applications of BNs. Based on experience from applications, it is clear that Bayesian networks are useful and
powerful but some care is needed when constructing them. In particular, due to the inherent computational complexity of
most interesting BN queries [10,63,61,1], one may want to carefully consider the issue of scalability when generating BNs for
resource-bounded systems including real-time and embedded systems [48,40]. BN generation may be performed manually,
by means of knowledge-based model construction, or using machine learning methods. In resource-bounded systems, BN
compilation approaches including clique tree propagation [33,2,25,62] and arithmetic circuit propagation [12,9,8] are of
particular interest [43]. In the clique tree approach, which we emphasize in this article, BN inference consists of propagation
in a clique tree that is compiled from a Bayesian network. Total clique tree size is important because it determines the
inference time. Unfortunately, a precise understanding of how varying structural parameters in BNs causes variation in the
sizes of the induced clique tree sizes has been lagging. To attack this problem, we have in this article investigated the
clique tree clustering approach, using bipartite BNs sampled by means of the BPART algorithm, by employing restricted and
unrestricted growth curves. We have characterized the growth of clique tree size as a function of (i) the expected number
of moral edges or (ii) the C/V -ratio, where C is the number of leaf nodes and V is the number of non-leaf nodes. In this
article, we varied both (i) and (ii) by increasing the number of leaf nodes in our bipartite BNs, and also discussed how the
approach applies to arbitrary BNs. Gompertz growth curves have, for the bipartite BNs investigated, been shown to give
excellent fit to empirical clique tree data and they appear theoretically plausible as well.

O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006 1005

The growth curve approach presented in this article and in an earlier paper [41] is novel and extends previous work
[45]. We consider the expected number of moral edges E(W) as well as the C/V -ratio, and a wide range of C/V -ratio
values. We focus on the total clique tree size as opposed to size of the largest clique in the clique tree. We believe that the
research reported here helps to fill a gap that appears to exist between theoretical complexity results and empirical results
for specific algorithms and application BNs. To fill this gap, we have here presented an approach that combines probabilistic
analysis, restricted growth curves, and experimentation. Analytically and experimentally, we have shown that the restricted
growth curves induce three stages for growing Bayesian networks: The initial growth stage, the rapid growth stage, and the
saturated growth stage. These stages are similar to what has been found for the evolution of random graphs. Our growth-
curve results provide more detail compared to pure complexity-theoretic results; however they admittedly gloss over details
available in the raw experimental data.

Areas for future work include the following. First, this type of approach may be utilized in trade-off studies for the
design of vehicle health management systems including diagnostic reasoners [40], in the analysis of knowledge-based model
construction algorithms, and perhaps even in the study of machine learning. In all these cases there is uncertainty regarding
the impact of different BN structures on clique tree size (and consequently computation time). In knowledge-based model
construction, BNs are constructed dynamically, while during the early design of health management systems there may be
little information available concerning the vehicle being developed. In machine learning, especially in structure learning, one
could during model selection score BNs according to their estimated computational feasibility in addition to their statistical
fit. Second, these analytical growth curves can also used to perform forecasts and derive requirements for very large-scale
BNs, which may have clique trees larger than what current software or hardware are capable of supporting. Third, it would
be natural to develop more fine-grained analytical models, including more accurate models for arbitrary number of parents,
perhaps by improving our analytical growth models based on more extensive experimentation. Finally, further exploration
of the connection between random BNs, random graphs, and BNs from applications would also be interesting.

Acknowledgements

This material is based upon work supported by NASA under awards NCC2-1426, NNA07BB97C, and NNA08205346R as
well as NSF awards CCF0937044 and ECCS0931978. Comments from the anonymous reviewers, which helped improve the
article, are also acknowledged.

References

[1] A.M. Abdelbar, S.M. Hedetnieme, Approximating MAPs for belief networks is NP-hard and other theorems, Artificial Intelligence 102 (1998) 21–38.
[2] S.K. Andersen, K.G. Olesen, F.V. Jensen, F. Jensen, HUGIN — a shell for building Bayesian belief universes for expert systems, in: Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence, vol. 2, Detroit, MI, August 1989, pp. 1080–1085.
[3] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM Journal of Algebraic and Discrete Methods 8 (1987)

277–284.
[4] R.B. Banks, Growth and Diffusion Phenomena, Springer, New York, 1994.
[5] A. Becker, D. Geiger, Approximation algorithms for the loop cutset problem, in: Proceedings of the Tenth Annual Conference on Uncertainty in Artificial

Intelligence (UAI-94), San Francisco, CA, 1994, pp. 60–68.
[6] T.W. Bickmore, A probabilistic approach to sensor data validation, in: AIAA, SAE, ASME, and ASEE 28th Joint Propulsion Conference and Exhibit,

Nashville, TN, 1992.
[7] B. Bollobas, Random Graphs, Cambridge University Press, 2001.
[8] M. Chavira, Beyond treewidth in probabilistic inference, Ph.D. thesis, University of California, Los Angeles, 2007.
[9] M. Chavira, A. Darwiche, Compiling Bayesian networks using variable elimination, in: Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence (IJCAI-07), Hyderabad, India, 2007, pp. 2443–2449.
[10] F.G. Cooper, The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence 42 (1990) 393–405.
[11] A. Darwiche, Recursive conditioning, Artificial Intelligence 126 (1–2) (2001) 5–41.
[12] A. Darwiche, A differential approach to inference in Bayesian networks, Journal of the ACM 50 (3) (2003) 280–305.
[13] A.P. Dawid, Applications of a general propagation algorithm for probabilistic expert systems, Statistics and Computing 2 (1992) 25–36.
[14] R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence 113 (1–2) (1999) 41–85.
[15] R. Dechter, Y. El Fattah, Topological parameters for time–space tradeoff, Artificial Intelligence 125 (1–2) (2001) 93–118.
[16] R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial Intelligence 34 (1) (1987) 1–38.
[17] D.M. Easton, Gompertzian growth and decay: A powerful descriptive tool for neuroscience, Physiology & Behavior 86 (3) (2005) 407–414.
[18] P. Erdős, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci 5 (1960) 17–61.
[19] B.J. Frey, Extending factor graphs so as to unify directed and undirected graphical models, in: Proc. of the 19th Conference in Uncertainty in Artificial

Intelligence (UAI-03), 2003, pp. 257–264.
[20] R.G. Gallager, Low density parity check codes, IRE Transactions on Information Theory 8 (Jan 1962) 21–28.
[21] F. Hutter, H.H. Hoos, T. Stützle, Efficient stochastic local search for MPE solving, in: Proceedings of the Nineteenth International Joint Conference on

Artificial Intelligence (IJCAI-05), Edinburgh, Scotland, 2005, pp. 169–174.
[22] J.S. Ide, F.G. Cozman, Generating random Bayesian networks, in: Proceedings on 16th Brazilian Symposium on Artificial Intelligence, Porto de Galinhas,

Brazil, November 2002, pp. 366–375.
[23] J.S. Ide, F.G. Cozman, F.T. Ramos, Generating random Bayesian networks with constraints on induced width, in: Proceedings of the 16th European

Conference on Artificial Intelligence, 2004, pp. 323–327.
[24] T.S. Jaakkola, M.I. Jordan, Variational probabilistic inference and the QMR-DT database, Journal of Artificial Intelligence Research 10 (1999) 291–322.
[25] F.V. Jensen, S.L. Lauritzen, K.G. Olesen, Bayesian updating in causal probabilistic networks by local computations, SIAM Journal on Computing 4 (1990)

269–282.
[26] P. Jones, C. Hayes, D. Wilkins, R. Bargar, J. Sniezek, P. Asaro, O.J. Mengshoel, D. Kessler, M. Lucenti, I. Choi, N. Tu, J. Schlabach, CoRAVEN: Modeling

and design of a multimedia intelligent infrastructure for collaborative intelligence analysis, in: Proceedings of the International Conference on Systems,
Man, and Cybernetics, San Diego, CA, October 1998, pp. 914–919.

1006 O.J. Mengshoel / Artificial Intelligence 174 (2010) 984–1006

[27] K. Kask, R. Dechter, Stochastic local search for Bayesian networks, in: Proceedings Seventh International Workshop on Artificial Intelligence and Statis-
tics, Morgan Kaufmann, Fort Lauderdale, FL, Jan 1999.

[28] U. Kjaerulff, Triangulation of graphs: Algorithms giving small total state space, Technical Report R-90-09, Department of Mathematics and Computer
Science, Aalborg University, 1990.

[29] U. Kjaerulff, Approximation of Bayesian networks through edge removals, Technical Report IR-93-2007, Department of Mathematics and Computer
Science, Aalborg University, 1993.

[30] T. Kloks, Treewidth: Computations and Approximations, Springer-Verlag, 1994.
[31] A.M.C.A. Koster, H.L. Bodlaender, S.P.M. van Hoesel, Treewidth: Computational experiments, in: H. Broersma, U. Faigle, J. Hurink, S. Pickl (Eds.), Elec-

tronic Notes in Discrete Mathematics, vol. 8, Elsevier Science Publishers, 2001.
[32] F.R. Kschischang, B.J. Frey, H.-A. Loeliger, Factor graphs and the sum-product algorithm, IEEE Transactions on Information Theory 47 (2) (2001) 498–519.
[33] S. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems (with discussion),

Journal of the Royal Statistical Society Series B 50 (2) (1988) 157–224.
[34] Z. Li, B. D’Ambrosio, Efficient inference in Bayes nets as a combinatorial optimization problem, International Journal of Approximate Reasoning 11 (1)

(1994) 55–81.
[35] J.K. Lindsey, Statistical Analysis of Stochastic Processes in Time, Cambridge University Press, Cambridge, 2004.
[36] H.-A. Loeliger, An introduction to factor graphs, IEEE Signal Processing Magazine 21 (1) (2004) 28–41.
[37] D.J.C. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, Cambridge, UK, 2002.
[38] R.J. McEliece, D.J.C. Mackay, J.-F. Cheng, Turbo decoding as an instance of Pearl’s belief propagation algorithm, IEEE Journal on Selected Areas in

Communications 16 (2) (1998) 140–152.
[39] O.J. Mengshoel, Efficient Bayesian network inference: Genetic algorithms, stochastic local search, and abstraction, Ph.D. thesis, Department of Computer

Science, University of Illinois at Urbana-Champaign, Urbana, IL, April 1999.
[40] O.J. Mengshoel, Designing resource-bounded reasoners using Bayesian networks: System health monitoring and diagnosis, in: Proceedings of the 18th

International Workshop on Principles of Diagnosis (DX-07), Nashville, TN, 2007, pp. 330–337.
[41] O.J. Mengshoel, Macroscopic models of clique tree growth for Bayesian networks, in: Proceedings of the Twenty-Second National Conference on Artifi-

cial Intelligence (AAAI-07), Vancouver, British Columbia, 2007, pp. 1256–1262.
[42] O.J. Mengshoel, Understanding the role of noise in stochastic local search: Analysis and experiments, Artificial Intelligence 172 (8–9) (2008) 955–990.
[43] O.J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, S. Uckun, Diagnosing faults in electrical power systems of spacecraft and aircraft, in:

Proceedings of the Twentieth Innovative Applications of Artificial Intelligence Conference (IAAI-08), Chicago, IL, 2008, pp. 1699–1705.
[44] O.J. Mengshoel, D. Roth, D.C. Wilkins, Portfolios in stochastic local search: Efficiently computing most probable explanations in Bayesian networks,

Journal of Automated Reasoning (2010), in press.
[45] O.J. Mengshoel, D.C. Wilkins, D. Roth, Controlled generation of hard and easy Bayesian networks: Impact on maximal clique size in tree clustering,

Artificial Intelligence 170 (16–17) (2006) 1137–1174.
[46] O.J. Mengshoel, D.C. Wilkins, D. Roth, Initialization and restart in stochastic local search: Computing a most probable explanation in Bayesian networks,

IEEE Transactions on Knowledge and Data Engineering (2010), in press.
[47] D. Mitchell, B. Selman, H.J. Levesque, Hard and easy distributions of SAT problems, in: Proceedings of the Tenth National Conference on Artificial

Intelligence (AAAI-92), San Jose, CA, 1992, pp. 459–465.
[48] D. Musliner, J. Hendler, A.K. Agrawala, E. Durfee, J.K. Strosnider, C.J. Paul, The challenges of real-time AI, IEEE Computer 28 (January 1995) 58–66.
[49] M. Newman, A.L. Barabási, D.J. Watts (Eds.), The Structure and Dynamics of Networks, Princeton University Press, 2006.
[50] A.Y. Ng, M.I. Jordan, Approximate inference algorithms for two-layer Bayesian networks, in: Advances in Neural Information Processing Systems, vol. 12

(NIPS-99), MIT Press, 2000.
[51] L. Otten, R. Dechter, Bounding search space size via (hyper)tree decompositions, in: Proc. of the 24th Conference on Uncertainty in Artificial Intelligence

(UAI-08), 2008, pp. 452–459.
[52] J.D. Park, A. Darwiche, Approximating MAP using local search, in: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence

(UAI-01), Seattle, WA, 2001, pp. 403–410.
[53] J.D. Park, A. Darwiche, Complexity results and approximation strategies for MAP explanations, Journal of Artificial Intelligence Research (JAIR) 21 (2004)

101–133.
[54] J.D. Park, A. Darwiche, A differential semantics for jointree algorithms, Artificial Intelligence 156 (2) (2004) 197–216.
[55] J. Pearl, A constraint-propagation approach to probabilistic reasoning, in: L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, Elsevier,

Amsterdam, Netherlands, 1986, pp. 357–369.
[56] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, CA, 1988.
[57] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE 77 (1989) 257–286.
[58] B.W. Ricks, O.J. Mengshoel, The diagnostic challenge competition: Probabilistic techniques for fault diagnosis in electrical power systems, in: Proc. of

the 20th International Workshop on Principles of Diagnosis (DX-09), Stockholm, Sweden, 2009.
[59] I. Rish, M. Brodie, S. Ma, Accuracy vs. efficiency trade-offs in probabilistic diagnosis, in: Eighteenth National Conference on Artificial Intelligence (AAAI-

02), Edmonton, Canada, 2002, pp. 560–566.
[60] C. Romessis, K. Mathioudakis, Bayesian network approach for gas path fault diagnosis, Journal of Engineering for Gas Turbines and Power 128 (1)

(2006) 64–72.
[61] D. Roth, On the hardness of approximate reasoning, Artificial Intelligence 82 (1996) 273–302.
[62] P.P. Shenoy, A valuation-based language for expert systems, International Journal of Approximate Reasoning 5 (3) (1989) 383–411.
[63] E. Shimony, Finding MAPs for belief networks is NP-hard, Artificial Intelligence 68 (1994) 399–410.
[64] M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P. Lehmann, G.F. Cooper, Probabilistic diagnosis using a reformulation of the

INTERNIST-1/QMR knowledge base: I. The probabilistic model and inference algorithms, Methods of Information in Medicine 30 (4) (1991) 241–255.
[65] R. Solomonoff, A. Rapoport, Connectivity of random nets, Bulletin of Mathematical Biology 13 (2) (June 1951) 107–117.
[66] H.J. Suermondt, G.F. Cooper, Probabilistic inference in multiply connected belief networks using loop cutsets, International Journal of Approximate

Reasoning 4 (1990) 283–306.
[67] A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimal decoding algorithm, IEEE Transactions on Information Theory 13 (1967)

260–269.
[68] M. Wainwright, T. Jaakkola, A. Willsky, MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches, IEEE

Transactions on Information Theory 51 (2002) 3697–3717.
[69] M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, Tree-based reparameterization framework for analysis of sum-product and related algorithms, IEEE Trans-

actions on Information Theory 49 (2003) 2003.
[70] J.S. Yedidia, W.T. Freeman, Y. Weiss, Understanding belief propagation and its generalizations, in: Exploring Artificial Intelligence in the New Millennium,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003, pp. 239–269.
[71] N.L. Zhang, D. Poole, Exploiting causal independence in Bayesian network inference, Journal of Artificial Intelligence Research 5 (1996) 301–328.

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	May, 2010

	Understanding the Scalability of Bayesian Network Inference using Clique Tree Growth Curves
	Understanding the scalability of Bayesian network inference using clique tree growth curves
	Introduction
	Background
	Developing model-based reasoners using Bayesian networks
	Independent parameters for Bayesian networks and moral graphs
	Balls and bins
	Balls and bins: Two parents
	Balls and bins: Arbitrary number of parents

	Growth curves for bipartite Bayesian networks
	Growth curves for general Bayesian networks
	Generalization using growth functions
	Generalization using factor graphs

	Random graphs and random Bayesian networks
	Experiments
	Comparison between growth models for multiple BNs
	Gompertz growth model details for multiple BNs
	Comparison between growth models for individual BNs

	Conclusion and future work
	Acknowledgements
	References

