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ABSTRACT

In this paper we examine link prediction for two types of data sets
with mobility data, namely call data records (from the MIT Reality
Mining project) and location-based social networking data (from
the companies Gowalla and Brightkite). These data sets contain
location information, which we incorporate in the features used
for prediction. We also examine different strategies for data clean-
ing, in particular thresholding based on the amount of social inter-
action. We investigate the machine learning algorithms Decision
Tree, Naive Bayes, Support Vector Machine, and Logistic Regres-
sion. Generally, we find that our feature selection and filtering of
the data sets have a major impact on the accuracy of link prediction,
both for Reality Mining and Gowalla. Experimentally, the Decision
Tree and Logistic Regression classifiers performed best.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Statistical Computing; J.4 [Social
and Behavioral Sciences, Mobile Applications]: Sociology,
Location-dependent and sensitive

General Terms

Algorithms, Measurement, Experimentation

Keywords

Call Data, Mobility, Location-based Social Networks, Link Predic-
tion, Supervised Machine Learning, Data Cleaning

1. INTRODUCTION

Given the recent growth and popularity of large-scale online so-
cial networks including Facebook, Foursquare, LinkedIn, and Twit-
ter, social network analysis is becoming an important area of re-
search. In addition, telecommunication operators collect call data
records (CDRs) that can be used to produce large social call-graphs.
In these graphs, an edge typically represents a social interaction in
the form of a phone call between two people.

The definition of a link or a social tie depends on the type of
network being modelled. For social networks generated from CDR
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data [15, 6, 17], one can define a link as a relation between people
calling each other. In online social networks (OSNs), a link can be
called out explicitly (by declaring friends and followers) or implic-
itly by considering the spatio-temporal coordinates of people, as is
done in location-based services. For example, two people may be
checking in to the same online service at the same location at (ap-
proximately) the same time; they may then be two friends visiting
a restaurant.

Previous research has investigated the mobility patterns of users
in social networks, based on their check-in data [4]. Other promi-
nent research has investigated community and social network for-
mation [15, 6, 7] as well as link prediction [1, 13, 12, 18, 5, 3, 2,
17]. Link prediction using supervised machine learning has sev-
eral potential real world applications, including friend recommen-
dation system in social networks, product recommendation for e-
commerce [3], and suspect identification in antiterrorism.

Machine learning (ML) algorithms may seem, in theory, straight-
forward to apply to the problem of link prediction in social net-
works. However, there is typically a non-trivial amount of prepro-
cessing that needs to be done on data sets “in the wild” in order to
optimize predictions. With “preprocessing,” we refer to issues such
as optimizing the feature set and determining which data records to
include in (or “thresholding™) the training set. One reason why
these issues are important is the difference between “social tie” and
“contact”: Calling the phone wrong number, or randomly being in
the same place as someone else at the same time, does not mean
there is a social tie. Despite the existing literature on social net-
work link prediction by means of ML [19, 1, 13, 18, 5, 3, 17],
there is with some notable exceptions [5, 17] little work on ML for
link prediction “in the wild,” in particular when mobility data is
involved.

In this paper, we focus on link prediction in the sense of pre-
dicting a social tie in the future, given that the set of users already
share a tie. We carefully examine the effects of applying data set
thresholding and cleanup on the ML task of link prediction in social
networks with location data. Specifically, we apply the classifica-
tion techniques Decision Tree, Logistic Regression, Naive Bayes,
and Support Vector Machine. Few previous efforts carefully dis-
cuss their use of thresholds for eliminating noisy data, and most
previous papers discussing similar issues do not consider location
data [1, 13, 5], which play a key role in understanding social net-
works. At the same time, previous papers on mobility and location
data often emphasize data analysis [6, 15] rather than ML for link
prediction, which is our focus.

The rest of this paper is organized as follows. In Section 2, we
discuss related research. Section 3 presents the data sets Brightkite,
Gowalla, and Reality Mining. In Section 4 we discuss our link pre-
diction approach. Section 5 reports on link prediction experimental



results using Decision Tree, Logistic Regression, Naive Bayes, and
Support Vector Machine, while Section 6 concludes and outlines
future research.

2. RELATED RESEARCH

In recent years, there has been significant research related to link
prediction in social networks. Some of the previous research fo-
cuses on data analysis rather than data mining or ML; it is still rel-
evant since the features investigated can be useful when a classifier
or regression model is constructed.

2.1 Data Analysis

Using data from a large mobile operator in India, Nanavati et
al. [15] investigated the graph properties of the contact graph in-
duced by call and SMS data records. Eagle et al. [6] investigated a
small country data set, consisting of 1.4 million subscriber CDRs,
with an interest in understanding behavior in rural versus urban
communities. One of their main findings is that in cities there were
a large number of short calls, while rural areas had a much greater
proportion of few but long calls. Evans et al. [8] use two rela-
tively small data sets to perform community detection, namely the
Karate Club and the University of South Florida Free Association
Norms data sets. Specifically, they use a random walk graph parti-
tion method to find link communities.

Cho et al. have investigated the mobility patterns of users in so-
cial networks, based on their check-in data [4]. In particular, long-
distance mobility was found to be associated with social ties across
the data sets. Motahari et al. [14] study how social ties, as reflected
in phone calls, can be classified into different affinity networks.
Example affinity networks are family networks, business networks,
networks of friends, etc. The authors analyzed 4.3 million CDRs
produced by 360,000 subscribers in two California cities, San Fran-
cisco and Modesto. They found across the two cities significant
similarities, with differences between affinity networks in terms of
the features generated from the CDRs. Specific features that model
statistically meaningful changes in call patterns, and are thus useful
for prediction and classification, were identified.

Compared to previous data analysis research as discussed above,
this paper performs supervised ML for link prediction. In addition,
our focus on link prediction in a mobile context is different from
previous emphasis on mobility patterns [14], community detection
[6, 8], or global properties of a social graph [15].

2.2 Link Prediction using Machine Learning

Liben-Nowell and Kleinberg define the link prediction problem
as: “given a snapshot of a social network, can we infer which new
interactions among its members are likely to occur in the near fu-
ture?” [13]. Using co-authorship social networks, this seminal
work investigates topological features for link prediction. The pre-
dictors used are Adamic/Adar, low-rank inner product, weighted
Katz, common neighbors, Katz clustering, rooted PageRank, Jac-
card, SimRank, unseen bigrams, and hitting time. The authors
found that all predictors almost always out-performed a baseline
random prediction on all data sets.

Introducing the Profiles in Terror (PIT) data set, along with fea-
tures related to terrorists and terrorist events, Zhao et el. [19] ex-
plored the use of relational Markov networks (RMNs) for labelling
(or classification). In particular, the authors performed entity and
relationship labelling in affiliation networks.!

IThe meaning of the term “affiliation network” is somewhat
broader in the work of Zhao et el. [19] compared to the work of
Motahari et al. [14]. For Zhao et el., the term refers to both links

In order to investigate link prediction in the context of human
mobility, a data set containing information for 6 million mobile
phone users over three months was investigated [17]. The data set
contained 90 million communication records, and over 10k distinct
locations covering a radius of more than 1,000 km. Features includ-
ing co-location, network proximity, and tie strength are explored.
The ML algorithms used are Decision Tree, Random Forest, SVM,
and Logistic Regression. The authors are learning the shape of mo-
bility patterns and their impact on social networks.

Eagle et al. [7] introduced and analyzed the Reality Mining data
set, which was collected from 94 subjects equipped with cell phones
with Bluetooth. In particular, they compared observational (as re-
flected in CDRs, Bluetooth logs, etc.) and self-report data, and
found that 95% of the self-reported friendships could be predicted
from the observational data alone.?

Benchettara et al. [3] explored two data sets, namely a co-author
social network created from the DBLP bibliographic database and
eight years of transactional data from an on-line store. The au-
thors used pruned Decision Trees (J48) with boosting, and found
that adding topological attributes to the feature set significantly im-
proved precision, recall, and F-measure for link prediction.

Using data on co-authorship, with 1 million+ papers and 1 mil-
lion+ authors, Hasan et al. [1] predicted the probability of an un-
observed future link occurring. The authors investigated a broad
range of features, including proximity as measured by number of
overlapping keywords; aggregated features including sum of pa-
pers, sum of neighbors, and sum of keyword counts; and topologi-
cal features such as shortest distance [11] and clustering index [16].
Several supervised classification methods, specifically SVM, Deci-
sion Tree, Multilayer Perceptron, k-NN, Naive Bayes, and RBF
network, were tested, with and without bagging. Overall, SVM
outperformed the other classification approaches.

How is our work different from previous research on link predic-
tion using supervised ML? First, many authors [1] do not discuss
data preprocessing and clean-up. In fact, many of the data sets used
previously probably require far less clean-up than the mobility data
sets considered in this paper. Second, much previous research has
been on predicting new links [1, 13], whereas we investigate pre-
diction for on-going links. Third, this paper is at the intersection of
mobility and social networks, while much previous work has been
concerned with one or the other. In particular, much previous work
on link prediction has targeted social networks in the form of bib-
liographic author-author networks [1, 13] without any geographic
features. Clearly, the advent of mobile devices with GPS and social
network services with location check-in has enabled ML research
that integrates location and social data for link prediction.

3. SOCIAL NETWORK DATA SETS

We studied data from three publicly available data sets: Reality
Mining,3 Gowalla,* and Brightkite.’

3.1 Reality Mining

between actors and events in a bipartite graph (actor-event links)
as well as links between actors in a unipartite graph, induced by a
bipartite graph, of actors (actor-actor links). For Motahari et al., the
term is based on classifying actor-actor links without considering
the associated events.

2This result bears some similarity to our results for the Gowalla
data set, see Section 5.3.

3See http://reality.media.mit.edu.
4See  http://gowalla.com/ and
stanford.edu/data/.

5See http://snap.stanford.edu/data/.

http://snap.



Metric Reality Mining
Mobile phone call records 109,344
Distinct participants in study 94
Distinct people in call data 10,056
Min number of calls per participant 3
Max number of calls per participant 4,674
Median number of calls per participant 922
Unique cell tower IDs 3,137
Average number of cell towers, per participant 1,023

Table 1: Metrics for the data set from the mobile phone (with
Bluetooth) user study Reality Mining.

Metric Gowalla | Brightkite
Number of check-ins 6,442,144 | 4,702,067
Number of users 196,591 58,228
Number of users with > T check-ins 107,092 51,406
Median number of check-ins per user 25 11
Average number of check-ins by user 33 81
Max number of check-ins per user 2,175 2,100
Number of edges, friendship graph 950,327 214,078
Median number of friends per user 3 2
Average number of friends per user 10 7
Max number of friends per user 14,730 1,134
Unique locations 1,280,957 772,923
Median check-ins per location 2 I
Max check-ins per location 5,811 249,934

Table 2: Metrics for the data set from the mobility-oriented
social network services Gowalla and Brightkite.

Reality Mining was a study in which tracking software was in-
stalled on the cellphones of subjects [7]. The mobile phone activ-
ity of 94 subjects was tracked over a period of nine months from
2004 to 2005. Reality Mining data of interest, see Table 1, includes
call data records (CDRs) in which each record contains information
about caller, recipient, timestamp, and duration of the call. The
data set also contains information about a phone’s connection to
cell phone towers and other Bluetooth devices. Since the locations
of cell towers are known to telecom operators, interesting mobility
data can be mined from CDRs, not only traffic patterns [9, 4] but
also physical distance between cell phone users.

Bluetooth data, which is part of Reality Mining, gives colloca-
tion data, and is similar to an OSN in which users check in within
some time interval. Bluetooth gives a stronger indication of close
proximity than do OSNs, since users need to explicitly report their
locations in OSNs. In some sense, Bluetooth data is also similar
to phone calls. Of course, there is a difference in that Bluetooth
connects by proximity and not by explicit calling.

3.2 Gowalla and Brightkite

Gowalla and Brightkite, see Table 2, are retired OSN services
very similar to Foursquare. These are OSNs in which users check in
to report visits to specific physical locations. The check-in logs for
both Brightkite and Gowalla include user, location, latitude, longi-
tude, and time. These location-based services also provide a social
friendship graph for users, discussed further in Section 3.3.

Figure 1 shows “average” data for a week, from Monday to Sun-
day, created by taking data from Brightkite and Gowalla for multi-
ple weeks and normalizing across time zones. For both data sets,
there is high activity during the day, with clear dips in activity dur-
ing the night. Second, there is clear similarity between the curves
for Brightkite and Gowalla. For weekdays (except Fridays), there
appears to be a breakfast, lunch, and dinner pattern with higher
activity. There is a slighty different, and higher-activity, pattern

—Chleck\'ns (Gt:)WaHa)
Chéckins (Br?ghtKFte) |

08160 8160 8160 8160 8160 8 16 0 8 16

Figure 1: Weekly check-in data, collected across several weeks,
for Brightkite and Gowalla. The x-axis shows time, with la-
bels for every eight hours, while the y-axis shows the number of
check-ins, in thousands.

for weekends. Weekend starts with dinner on Friday and tapers
off with dinner on Sunday. There are also some differences be-
tween these two data sets. First, the number of users is smaller
for Brighkite than for Gowalla. Also, there are some slight time
shifts, for example in the points of minimal activity. In the rest
of this paper, we study Gowalla closely, with the hope that our re-
sults will carry over to other similar location-oriented data sets from
Brightkite, Facebook, or Foursquare.

3.3 Social Graphs

To distinguish between different connection types, while acknowl-
edging their similarities, we introduce the following terminology.
At the most general level we consider social graphs. We distin-
guish between different types of social graphs, namely contact
graphs (CGs) and friendship graphs (FGs). A friendship graph is
induced by “friends” and “followers” found in OSNs, while similar
information is typically not found in CDR data sets.

Contact graphs can be explicit or implicit. Phone calls induce
explicit contact graphs (ECGs) with phone calls as edges. Location
data (without phone calls) induce implicit contact graphs (ICGs).
From Reality Mining both implicit and explicit contact graphs can
be created, while from Brightkite and Gowalla only implicit contact
graphs can be induced. Both Brightkite and Gowalla come with a
friendship graph.

Even without a friendship graph, and only an implicit contact
graph, social ties are reflected in data. For location-based social
networks, we define a social tie when two users check-in simulta-
neously within a defined (and short) time interval at the same lo-
cation. Such a two-user check-in is treated as a virtual phone call,
and if there is more than two users it is treated similar to a confer-
ence call. The potential social contact between two or more such
users, together with the relevant time and location information, can
be thought of as a social data record (SDR), similar to a CDR from
a telecommunications network.

4. LINK PREDICTION METHOD

In this section, the problem of link prediction is defined as pre-
dicting future association between a pair of nodes, such as a social
tie between two users, based on the past association between those
users. For link prediction, we use established classifiers: Decision
Tree, Naive Bayes, Logistic Regression, and SVM (see also pre-
vious research [2, 1, 17]). Generally, a major ML challenge is to
develop an effective feature set. Below, we define features that we



Feature Type | Notation General Feature Experimental Feature(s)
Features Onc (u,1p, 1) Total calls in time interval from 7, to . ty,t.) = past 3 months
per Qaca(ut,1p,1,) Average duration of all « calls, during [z, 1,) tp,t.) =0,0)
user ne (U Number of neighbors in ECG
Features Onc (u,v,1p,1,) Total u-v calls during time interval 1,7, ) 1p,1.) = past 3 month-long intervals
per Omin (¢, V,1p,1,) | Minimum number of calls during interval [#;,1,) tp,1,) = 1 month
pair Omax (4, v,1,1.) | Maximum number of calls during interval [z, 7. ) tp,t,) = 1 month
Qaca(u,v,1p,t,) | Average duration of u-v calls during [t,,,1.)
Qcn(U,v) Number of common neighbors for « and v
Qe (u, v, 1p, 1) Time, during u-v calls, they connected to same tower
Qs (u,v,1p, 1) Number of u-v Bluetooth scans during [tp,t,)
Label K (u,v) > 1. u-v calls are placed during [t,,7.) [tp,t.) = 1 month

Table 3: Reality Mining features and prediction task; features that directly capture the physical location of the user(s) are highlighted.

hope capture key aspects of the connections between and mobil-
ity of users, both for location-based social network services and
for cell phones. ML results, using these features, are discussed in
Section 5.

4.1 Link Prediction and Social Tie

In this paper, our goal is to predict future links given data on
social activity. For the Reality Mining data set, the link was defined
as a pair of people calling one another, i.e. an edge in an ECG. To
predict future calls between two users, features presented in Table 1
were extracted.

A key issue related to link prediction is that of a social tie, in-
cluding its its nature and strength [14]. A pair of users shares a
strong social tie when they interact with each other consistently,
frequently, and bilaterally. A pair shares a weak tie when they in-
teract accidently, e.g. wrong number in a mobile network, and uni-
laterally.® Finally, no contact (which is most common) indicates no
social tie. In this paper, we explore the effects of the strength of
social tie on the link prediction accuracy.

We also define a link as “collocation” when two users check in
to a location within the span of a specified time interval. We take
this as a sign of a potential social tie or contact. We effectively used
these mobility features in our prediction models to boost accuracy.

4.2 Raw Data

4.2.1 Records of Reality Mining Data Set

Definition. A call data record (CDR) represents a call and can
be defined as a tuple 6 = (u,v,t, d),7 where u and v are subscribers,
t is the call start time, and d is the call duration. The order of u and
v in 6 is meaningful: u is the subscriber initiating the call while v
receives the call. The set of all CDRs in a data set is denoted &.
Among all calls between u and v, the outgoing calls from u are de-
fined as @, (u,v) = {(u,v,2,d) | (u,v,1,d) € P}, while the outgoing
calls from v are defined as @, (u,v) = {(u,v,t,d) | (v,u,t,d) € ®}.
A CDR relation with all calls between u and v can now be defined
as ®(u,v) = Oy, (u,v) UD,(u,v). Below, in our features, we are
generally using ®(u,v) and saying “call between u and v,” or u-v
call, since call direction is not emphasized here. The set of such
calls during a time interval [, 7, ) is defined as:

D(u,v,tp,t0) = {(u,v,1,d)|(u,v,t,d) € D(u,v) A\t € [t, 1)}

4.2.2 Records of Gowalla Data Set

5An example of a unilateral relationship is reflected in the saying
of the Hollywood agent: “Don’t call me, I'll call you. ”

"The raw CDR format has additional fields (giving a total, typi-
cally, of 10-20) that we do not consider in this paper.

Definition. A location data record (LDR) represents a check-in
and can be defined as a tuple 6 = (u,t,£), where u is a subscriber,
t is the check-in time, and ¢ is the location. There is always a
location associated with a check-in, since in cases where there is
not, a dummy location can be introduced.

Similar to for CDRs, we define a data set of LDRs, and subsets
thereof.

4.2.3 Social Graphs

Let G = (V,E) be an undirected graph where V are nodes and E
represents edges {u,v}, where u,v € V. G can represent the differ-
ent social graphs introduced above; how it is constructed varies.

For Gowalla and Brightkite, G can represent the friendship graph
provided in the data sets. There is no temporal dimension to the
friendship graphs (i.e., there are no time stamps indicating when an
edge was introduced or traversed).

For explicit contact graphs, we start with CDRs as found for Re-
ality Mining, and the nodes V represents the set of all subscribers
in our sample while edges E are all contacts |®(u,v)| > 1.

For location-oriented OSNs, implicit contact graphs can be cre-
ated. We start with LDRs from which SDRs can be induced, lead-
ing to creation of G similar to what is done for CDRs.

To summarize, we discuss social graphs for all three data sets,
and note that the meaning of “social graph” and how it is created
can vary somewhat. However, in this paper the social graph is al-
ways considered to be undirected.

4.3 Machine Learning Features

The raw data records and social graphs, discussed in Section 4.2,
were transformed into features more suitable for ML algorithms, as
we now discuss. Our goal is to characterize the nature of the social
tie between u and v through the distribution of these features. Some
of the features are defined for one subscriber u € V, while other
features are defined for a pair of subscribers, {u,v} € E.

We now consider Reality Mining features; see also Table 3. The
total number of calls ¢y is defined as @y = |P|.

The total number of u-v calls @nc, during the time interval [y, 7, ),
is defined as:

¢HC(M7vath7t€) = ‘(I)(M,V,tb,l‘e)‘ .

Here, 1, and ¢, are set such that the number of calls between pairs
of users in the past month, say, is counted. We define ¢nc(u,v) =
Onc(u,v,0,00), assuming that time starts at 7, = 0.

Total call time ¢y for u-v calls is defined as:

¢tOt(M3V7tb7l€) = Z d
(u,v,t,d) €D (u,vitp 1)



Feature Type | Notation General Feature Experimental Feature(s)
Features Oci (14, 1p, 1) Total number of check-ins during [t,,7,) [tp,t.) = past [0,2), [2,4), [4,6) months
per Oaci (U, 1p,1e) Number of distinct location check-ins during |y, t,)
user POne(u) Number of neighbors (friends) in FG
Features Oen (u,v) Number of common (mutual) neighbors (friends) in FG
per @co (U, v,1p,1,) | Number of collocations during [ty,t.) [tp,1.) = past [0,2), [2,4), [4,6) months
pair Ddco (U, v,1p,10) | Number of distinct collocation locations
Pdio (e, v, 1, t0) | Number of distinct (common) locations
Label Kr(u,v) Pair is linked in FG
K (u,v) Pair collocates during [ty,1,) [tp,t.) = next 2 months

Table 4: Gowalla features and prediction task; features that directly capture the physical location of the user(s) are highlighted.

Average call duration @,cq for u-v calls is defined as:

Prot (v, 1p, 1)
U Vilpyle) = ———————.
Gacd (1, v, 1p, Te) One (u, v, 1, 1e)

Average call duration for a given u, with respect to all v, ¢ocq(u), is
defined in a way similar to @,cq(u,v).

Let T be a set of time intervals (we used month-long time in-
tervals in experiments). The feature ¢p,;, captures the minimum
number of u-v calls and is defined as follows:

Omin (@, v, T) = min ({@nc (u, v, 1, 20) | [ty 1) €ET});

the maximum @max (4, v, T) is defined in a similar way.
Let G = (V,E) be a social graph; «’s number of neighbors is

Pne(u) = [{w [ {u,w} € E}|,
while the number of common neighbors of u and v is
Ocn(u,v) = {w | {u,w} € E AM{v,w} €E}|.

The ¢\ feature refers to the time while two subscribers were con-
nected to the same cell phone tower during a time interval. Both
need to be on a call, but not necessarily with each other. An impli-
cation of this situation is that the subscribers are physically close.

The @ feature refers to the number of seconds two Bluetooth
devices were in close proximity, during a time interval, based on
periodic scanning. Unlike ¢, it does not require calls to be made.

Now for the location data records (LDRs) and friendship graph
found, for example, in Gowalla. The total number of check-ins @;
for u, during [tp,2,), is:

Qi (s 1ps1e) = [{ (w1, 0) | (u1,0) € @(u) A1 € [tp,1e) }] -

The number of distinct location check-ins @i, during [,,%.), is
defined as:

Ouci (t,1p,t0) = |{€ ] (u,1,€) € D(u) At € [t,te)}].
The set of (u,t,¢)-tuples found during [t,,7,) is defined as:
D(u,l,tp,te) = {(u,2,0)|(u,1,£) € D(u) At € [ty,te)} .

The set of collocations P, for u and v during [t,7,), with a tem-
poral threshold of 7; € R, is defined as:

Do (v, 1,10, T ) = { (U, v, 1y, 1, 0) | (u, 1y, €) € D(u, 4,15, 2,) A
W1y, 8) € (v, L,tp,10) Nty — 1] < T}

The number of collocations ¢, assuming the threshold 7, is
now simply:

¢CO(M7v7tbvtea Tf) = |q)CO(uaV7tb7tEaTl‘)‘ .

The number of distinct collocations locations ¢y, for u# and v
during [t,,1,) is defined as:

¢dco(”7 V7tb7tevft) = |{€ | (u7 V,tu,tv,e) S (I)CO(uv V7tb7t€77t)}|

The number of distinct common locations @, is:

(Pd]o(%VJb,te) - ‘{E ‘ (”ng) € (I)(u) Aty € [tb>t€)}
N{L| (nt,,£) € D) Aty € [tp,te)}

The difference between ¢co, Pgco, and @gjo is as follows. The
¢co feature expresses the number of times u and v visited some
location at the same time. If u# and v only meet daily for a week
at one particular restaurant, this gives @gco = 7. @gco €Xpresses the
number of distinct common locations visited at the same time. In
other words, if # and v only meet daily at one particular restaurant,
this gives @qco = 1. Finally, @q;, expresses the number of common
locations for u and v, not necessarily visited at the same time.

The features extracted from a social graph for the purpose of
link prediction can be categorized as follows. First, topological
features are global properties of a social graph, such as power law
degree distribution [15], small world phenomenon [11], or other
structural features [13]. Second, local features only focus on the
local properties of nodes and edges [14]. Third, there are content
features pertaining to the detailed contents of a node or an edge [2].

This paper mainly uses local features of social graphs, as dis-
cussed above, for link prediction. Employing these local features is
computationally efficient, which is important due to the large scale
and very dynamic nature of such networks in industrial applica-
tions. Content features, on the other hand, are often harder to come
by compared to local features, and may also be subject to privacy
restrictions and concerns.

In the Gowalla features, far more emphasis is placed on loca-
tion and the more reliable friendship graph compared to what is
the case in Reality Mining. Within the Gowalla data set, there was
sufficient data to perform two distinct link prediction tasks. The
first link, denoted k(u,v) in Table 4, was whether two Gowalla
users listed each other as friends in the friendship graph. The sec-
ond link, denoted &;(u,v) in Table 4, was whether two users have
a collocation. In other words, do they simultaneously check in at
the same location? For two check-ins by different users to qualify
as a collocation, both check-ins must have been performed within
T, minutes of one another. The same features were used for both
prediction tasks.

4.4 Machine Learning Process

Features: Feature construction and selection are critical steps
for obtaining quality results when applying ML algorithms. We
started with an initial feature set, experimented with an ML algo-
rithm, say Decision Tree, observed the classification quality, and
iteratively refined the feature set in order to optimize the classifier.



Each feature was ranked and evaluated individually for information
gain and correlation. For example, several features were combined
as they effectively represented very similar information. In subse-
quent iterations, features were added or deleted.

In the end, the ML algorithms were applied to a subset of the
features initially constructed. The details of the final feature sets
are captured in Table 3 and Table 4. For SVM, we also examined
the effect of feature value normalization (see Section 5).

Examples: For the purpose of supervised ML, positive D™ and
negative D~ examples are used. Let us consider a time interval T as
a subset of the real line R, or T C R. We use two time intervals, one
for learning T;C R and one for testing Ty C R, with Ty NT7 =
0, T, = [l‘],lz) , Tr = [l‘3,l‘4), and 13 > 1. Altogether, this gives
positive examples for learning Dz; negative examples for learning
Dy ; positive examples for testing D ; and negative examples for
testing D7

In this paper, we use Ty, = [0,3) and T = [3,4) for Reality Min-
ing and Ty, = [0,6) and T7 = [6,8) for Gowalla. All these time in-
tervals are measured in months. Table 3 and Table 4 contain further
details.

The number of all possible links is, in any social network of non-
trivial size, far greater than the number of observed links. To reflect
this, we consider two data sets: observed links D¢ and unobserved
links Dy. The data set Do contains pairs of nodes in which one
or more contacts have occurred between nodes during Ty. In prin-
ciple, the data set Dy may contain all the remaining links in the
graph. To mitigate the class skew issue [2], instead of adding all
the links from Dy to D , one may do the following: take a small
random subset from Dy, comparable in size to |Dg)|.

Thresholding: For Reality Mining and similar data sets one sin-
gle call may not indicate a social tie. There are scenarios such as
calling a wrong number or a single service call, indicating no or a
minimal social tie between two callers. To more confidently infer a
social tie between a pair of callers, they need to call multiple times.
A similar argument can be made for location-oriented OSNs.

To formalize the above intuitions, we consider two thresholds,
namely a contact threshold 7, and a time threshold 7;. The contact
threshold 7. € N is associated with the feature ¢,;,. If

‘z)min (u7 v, T) > T

then the u-v contact passes the threshold. It is reasonable to believe
that the minimum number of u-v calls during a month, ¢y, is a
good indicator of social tie strength between « and v. The threshold
7. determines whether an example is placed in D™ or in D~. Con-
sequently, |DT| decreases with 7. increasing, while |D~| increases
with 7. increasing.

The time threshold 17; is part of the definition of the feature @c,.
This threshold is useful for services like Brightkite and Gowalla,
where social connections cannot easily be observed on a large scale.

For Reality Mining and Gowalla we investigated varying 7. and
7, reflecting varying strength of the underlying social tie, and learned
different classifiers as reported in Section 5.

5. EXPERIMENTAL RESULTS
5.1 Software Tools and Methods

Given that for Gowalla there were a large number of links for
which we needed to calculate features, Apache Hadoop® was em-
ployed for feature construction. We used Apache Hive” to run our

8http://hadoop.apache.org/
9https ://cwiki.apache.org/confluence/
display/Hive/Home

jobs on a Hadoop cluster. Hive provides a SQL-like query interface
in which users input a query that is then converted into a job that is
executed on the Hadoop cluster.

Most of the ML was done with Weka [10], an open-source soft-
ware featuring a collection of ML algorithms. For Weka to work
with the massive data sets, we performed random sampling to ex-
tract a manageable number of records for the software (running on
only one computer) to train on. The ML techniques we report re-
sults for here are Decision Tree, Naive Bayes, Logistic Regression,
and Support Vector Machine (SVM). The features reported in Ta-
ble 3 and Table 4 were used in the experiments reported on in this
section.

For both data sets, there are periods of time in which there is
simply not enough data to confidently predict links. To take this
into account, only the data within time periods having a substantial
amount of activity were used in this study.

5.2 Effect of Varying the Threshold

The Reality Mining data set featured call data records that could
be leveraged to predict patterns of use and networks between callers.
Figure 2 reports on our experimental results with this data set.
Along the x-axis, the threshold for the number of calls is varied
from 7. = 1 to . = 21. Applying a threshold to the original Reality
Mining data created smaller derived data sets D" (purple curves).
Along the y-axis, precision (blue curves), recall (red curves), and
F-measure (green curves) are reported for Decision Tree classifiers
constructed from derived Reality Mining data sets constructed by
varying the threshold 7.

Varying Strength of Social Tie: To investigate the issue of so-
cial tie strength for Reality Mining, we ran several experiments to
study the effect of varying the threshold 7. on the quality of the
prediction of the learned Decision Tree classifier.

As indicated by Figure 2(a), the prediction accuracy of the De-
cision Tree classifier generally improves with increasing 7., sug-
gesting a stronger social tie. We can also see that the data set Dzr
size drops significantly as the threshold 7. is increased. For training
data, the maximal data set size is 7,902 while the minimal data set
size is 349.

Unobserved Links: We added random 5k unobserved links from
Dy into the learning data set and studied its effect on the quality of
the Decision Tree prediction, while also applying a threshold ..
The maximal data set size is 12,902 while the minimal data set size
is 5,349.

The results are shown in Figure 2(b). Overall, the conclusion is
that adding the unobserved links had little or minor impacts; results
are similar to those reported in Figure 2(a).

Data Cleanup: During the Reality Mining study, some users
were joining while others were leaving [7]. On the other hand, cer-
tain users were active for the entire duration of the study. Even
among consistently active users, the activity level varied dramati-
cally. These observations helped us to clean up the data set, and in
particular remove users who dropped out of the study. We then
reran the Decision Tree algorithm on the filtered data set. Fig-
ure 2(c) summarizes the results; overall the results are improved.
However, the data clean up activity limits the data set size. With a
threshold of 7, = 21, used for both training and testing, a precision
of 0.85, a recall of 0.93, and F-measure of 0.89 was obtained. One
can also see improvements for link prediction for smaller values
of 7. (reflecting weaker social ties) compared to Figure 2(a) and
Figure 2(b). For email data, optimizing thresholds gives around
30% improvement [5]. Our improvements are similar even though
the data sets are quite different and our (approximately) optimal
thresholds are different as well. In fact, in our case there are rela-
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Figure 3: Comparing the performance of different ML algo-
rithms. (a) Reality mining: Comparative experimental results
for predicting future calls x.; (b) Gowalla: Comparative exper-
imental results for predicting links x in the friendship graph.

tively clear improvements up to a threshold 7, € [9,13], after which
the link prediction metrics flatten out or improve only slightly.

5.3 Effect of Machine Learning Algorithm

Comparative Experiments, Reality Mining: We ran several
experiments to compare the performance of different ML algo-
rithms on the Reality Mining data set. We used a contact threshold
value of 7, = 10 calls, see Figure 2(c), for these experiments. The
results are shown in Figure 3(a). They indicate that we achieve
good quality results, especially with Logistic Regression as mea-
sured by ROC area, even on this relatively small data set.

Comparative Experiments, Gowalla: We now turn our atten-

tion to the Gowalla data set; we used a similar approach to prepro-
cess this data as was used for Reality Mining. Here we are using the
check-in data for link prediction; in particular we use co-location
information to predict links & (u,v) in the friendship graph.!0

A social tie between two users is more likely if they repeatedly
check in at the same place within a time interval. For the Gowalla
data set, we extracted all the pairs of check-ins that happened at
the same place for different 7;: an hour, half an hour, and fifteen
minutes. Based on these experiments, we hypothesized a social tie
when a pair of users checks in within a span of 7; = 15 minutes, and
the pair of users shares ¢, = 10 or more check-ins in the Gowalla
data set. In other words, 7; and ¢., were the parameters used for
thresholding.

Results for different ML algorithms are shown in Figure 3(b).
We are able to predict social relationship using the co-location check-
in information with high accuracy. Except for SVM, all the clas-
sifiers are producing quality results in terms of ROC area. If we
consider ROC area, Decision Tree performs almost as well as Lo-
gistic Regression. For the three other metrics—precision, recall,
and F-measure—Decision Tree out-performs the other ML tech-
niques.

5.4 Future Co-location Prediction

In these experiments, link prediction used co-location K (u,v)
instead of friendship graph k(u,v). We used past co-location in-
formation to predict the future possibility of co-location. These
experiments are very similar to Reality Mining, where there is no
friendship graph and we used the CDR information to predict fu-
ture call between pairs of users. The results, shown in Figure 4(a),
look promising. For Decision Tree, precision is 0.99, recall is 0.96,
F-measure is 0.97, and ROC area is 0.99. We attribute these strong
results in part to the large data set size, in combination with our
features and use of thresholds and data cleaning. In addition, our
approach does simplify the very difficult link prediction task and,
consequently, we obtain very good results.

SVM’s results using polykernel in Figure 4(a) were surprisingly
poor, hence we ran some SVM experiments with polykernel nor-
malization. Unfortunately, on the large data set with normaliza-
tion, SVM ran very slowly. Therefore, we performed smaller-scale
experiments, in which SVM learned from a random sample of the
original data set. The results, shown in Figure 4(b), indicate an im-
provement for several of the metrics when normalized polykernel is
used. The first part of the figure is for 50k data set size and the sec-
ond part of the figure is for 20k data set size. We see that SVM with

10Ty other words, the friendship graph acts as the gold standard.
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Figure 4: Performance of different ML algorithms on the
Gowalla data set. (a) Predicting future collocation x; using four
different classifiers; SVM uses polykernel. (b) Improving sev-
eral SVM performance metrics, when predicting future collo-
cation x;, by introducing normalized polykernel.

polykernel normalization performs approximately as well as Logis-
tic Regression in Figure 4(a), but not as well as Decision Tree.

6. CONCLUSION AND FUTURE WORK

In this paper, we investigate link prediction in the sense of pre-
dicting a social tie in the future, given that certain users already
share a tie. Specifically, we apply several supervised ML algo-
rithms to the Gowalla and Reality Mining data sets, and our find-
ings clearly demonstrate their capacity to predict such social in-
teractions. In particular, the Decision Tree and Logistic Regres-
sion techniques perform consistently well, especially in conjunc-
tion with proper preprocessing and thresholding of the data sets.

As for future work, instead of simply predicting the existence of
a link, it would be interesting to predict its weight. For example,
in the case of mobile device networks, predict the number of calls
that are going to happen during a future time interval.
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