
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

Summer 2013

A Novel Mating Approach for Genetic Algorithms
Severino Galan
Ole J Mengshoel, Carnegie Mellon University
Rafael Pinter

Available at: https://works.bepress.com/ole_mengshoel/46/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/46/


A Novel Mating Approach for Genetic
Algorithms

Severino F. Galán seve@dia.uned.es
Department of Artificial Intelligence, UNED, Madrid, 28040, Spain

Ole J. Mengshoel ole.mengshoel@sv.cmu.edu
CMU, NASA Ames Research Center, Moffett Field, CA, 94035, USA

Rafael Pinter pinter@dia.uned.es
Department of Artificial Intelligence, UNED, Madrid, 28040, Spain

Abstract
Genetic algorithms typically use crossover, which relies on mating a set of selected par-
ents. As part of crossover, random mating is often carried out. A novel approach to
parent mating is presented in this work. Our novel approach can be applied in combi-
nation with a traditional similarity-based criterion to measure distance between indi-
viduals or with a fitness-based criterion. We introduce a parameter called mating index
that allows different mating strategies to be developed within a uniform framework:
from an exploitative strategy called BEST-FIRST to an explorative one called BEST-
LAST. SELF-ADAPTIVE mating is defined in the context of the novel algorithm in order
to achieve a balance between exploitation and exploration in a domain-independent
manner. The present work formally defines the novel mating approach, analyzes its
behavior, and conducts an extensive experimental study to quantitatively determine
its benefits. In the domain of real function optimization, the experiments show that,
as the degree of multimodality of the function at hand grows, it is convenient to in-
crease the mating index in order to obtain good performance. In the case of the SELF-
ADAPTIVE mating strategy, the experiments give good results for a significant set of
the studied cases.

Keywords
Genetic algorithms, premature convergence, mating strategies, mating index, self-
adaptive mating.

1 Introduction

Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989) use stochastic search meth-
ods based on natural evolution in order to solve adaptation problems in fields like
optimization, design, learning, or scheduling, among others. A GA creates a set of can-
didate solutions each generation. The quality of a solution, its fitness, determines its
chance to survive and reproduce. Two processes form the basis of genetic algorithms:
variation (recombination and mutation) and selection. While the former facilitates di-
versity and novelty, the latter favours quality. Ideally, at the end of running a GA, a
solution with optimal or near-optimal fitness is found.

Premature convergence to local optima is one of the most frequent difficulties that
arise when applying GAs to complex problems. It occurs when genetic operators can
no longer generate offspring that are fitter than their suboptimal parents. Premature
convergence is associated with the loss of diversity in the population. However, too
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much population diversity can lead to a dramatic deterioration of GA efficiency. There-
fore, an important issue in the design and application of GAs is the trade-off between
exploitation of the best individuals and exploration of alternative regions of the search
space.

By focusing on the mating phase of GAs, the present work deals with achieving
a proper balance between exploitation and exploration. Traditionally, mating takes
place after parent selection and prior to recombination. Normally, parents are mated in
pairs so that each pair can subsequently be recombined. A key question is how mating
should be carried out in order to give strong GA performance. The traditional mat-
ing approach consists of selecting a parent’s mate uniformly at random from the set
of remaining parents. In addition to the traditional random mating approach, other
approaches exist that apply mating restriction techniques based on similarity relations
between parents (Deb and Goldberg, 1989; Eshelman and Schaffer, 1991; Smith and
Bonacina, 2003). Although these methods have been shown to benefit GA performance,
they are costly in computational terms. This disadvantage is due to the fact that sim-
ilarity comparisons between two parents’ chromosomes are performed gene by gene.
Furthermore, these methods were designed for rather specific contexts like fitness shar-
ing (Deb and Goldberg, 1989) and incest prevention (Eshelman and Schaffer, 1991) and,
therefore, their impact has been quite limited.

The goal of this work is to develop, analyze, and evaluate a novel and general ap-
proach to mating in GAs. The novel approach uses a parameter called mating index,
which allows the degree of exploration to be controlled depending on the hardness of
the problem to be solved. In this way, we hope that our approach can easily be applied
to a wide variety of problems of different complexity. In addition, by using fitness-
based comparisons between parents, rather than only similarity-based comparisons,
the computational complexity of the applied mating algorithm can be reduced. Fur-
thermore, the novel approach lends itself to a self-adaptive algorithm which gives rise
to a useful mating strategy.

The domain of real function optimization is used in this work to experimentally
study the benefits of the new approach. The results of the study are the following:

• The main parameters of the new approach, mating size and mating index, have a
strong influence on GA performance.

• The degree of multimodality (number of local optima) for the function at hand de-
termines which mating strategy produces best performance. In general, the higher
the degree of multimodality is, the higher the mating index should be.

• Experiments with the SELF-ADAPTIVE mating strategy give good results for uni-
modal functions. For multimodal functions, the results under SELF-ADAPTIVE
mating are highly dependent on the mating size.

• From a qualitative point of view, fitness-based mating produces analogous results
to those of similarity-based mating for an important set of the studied cases. How-
ever, fitness-based mating needs less computation time.

• ANOVA tests have been performed in order to determine the statistical signifi-
cance of the experimental results obtained in this work.

The rest of this paper is structured as follows. Section 2 reviews previous work
on restricted mating in GAs. Section 3 introduces our novel approach to mating, along
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with the different mating strategies derived from it. Section 4 analyzes the mating ap-
proach. Section 5 includes an extensive empirical evaluation of the novel mating strate-
gies. A discussion of our experimental results for mating in GAs is made in Section 6.
Finally, Section 7 contains the main conclusions and discusses futur work.

2 Restricted Mating in Genetic Algorithms

The usual way of mating parents in GAs consists of taking a parent from the mating
pool and selecting its mate by choosing uniformly at random one of the remaining par-
ents. The mated parents are then removed from the mating pool, and the same process
is repeated until all the individuals have been mated. Restricted mating techniques,
which do not select a mate uniformly at random, have been successfully developed for
specific contexts such as fitness sharing (Deb and Goldberg, 1989) and incest prevention
(Eshelman and Schaffer, 1991). Other approaches that incorporate mating preferences
into evolutionary systems are: assortative mating genetic algorithms (Fernandes et al.,
2001; Huang, 2001; Ochoa et al., 2005), correlative tournament selection (Matsui, 1999),
seduction (Ronald, 1995), tabu genetic algorithm (Ting et al., 2003), and evolving agents
(Smith et al., 2000; Smith and Bonacina, 2003; Unemi and Nagayoshi, 1997).

Fitness sharing (Deb and Goldberg, 1989) is a method that forces the population
to maintain different niches. In multimodal optimization problems, where a number
of high-fitness individuals corresponding to various local optima are identified, niches
are search space regions around local optima, and high-fitness niches are of particu-
lar interest. Fitness sharing adjusts fitnesses of individuals prior to parent selection,
so that individuals are allocated to niches in proportion to the niches fitness. In or-
der to improve the efficiency of fitness sharing, Deb and Goldberg (Deb and Goldberg,
1989) used a restricted mating approach whose goal was to avoid the creation of lethal
(low fitness) individuals. Once niches are formed in the population, the recombina-
tion of two parents from different niches is likely to form lethal offspring. Therefore,
restricted mating among individuals of the same niche is promoted. This is achieved
by following the same scheme as random mating but, given a parent, a candidate mate
is accepted only if the phenotype/genotype distance between them is smaller than a
given threshold. Otherwise, another candidate is sought. If no candidate is found,
one is chosen uniformly at random as in random mating. In the case of fitness shar-
ing for real functions optimization, the phenotype space corresponds to the real values
of the variables, while the genotype space uses a binary representation for them. If
similarity is measured within the phenotypic space, Euclidean distance is used. Ham-
ming distance is employed when similarity between individuals is measured within
the genotypic space. Other GA approaches applying restricted mating in the specific
context of multimodal optimization problems are: island models (Cohoon et al., 1987;
Martin et al., 1997), diffusion models (Manderick and Spiessens, 1989; White and Pettey,
1997), and automatic speciation models (Booker, 1982; Spears, 1994).

In contrast to fitness sharing, incest prevention (Eshelman and Schaffer, 1991) was
defined in the context of global optimization rather than niching. Incest prevention
promotes restricted mating between dissimilar enough individuals. In general, when
two similar individuals are mated, their offspring may not introduce significant new
information about the search space, which provokes a reduction in the performance
of the GA. Incest prevention follows a dual scheme to that used in fitness sharing:
A candidate mate is accepted only if its phenotype/genotype distance to the current
parent is greater than a given threshold. Usually, this threshold is reduced when better
offspring is not obtained during the search process.
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In comparison to random mating, similarity-based restricted mating was shown
to produce a more effective exploration of the search space both in fitness sharing (Deb
and Goldberg, 1989) and in incest prevention (Eshelman and Schaffer, 1991). How-
ever, these similarity-based approaches are in some sense the polar opposites, and in
this work we develop a uniform framework for the similarity-based approach, thus
improving the understanding of it. At the same time, the time cost associated with
measuring the distances between individuals is a disadvantage of the similarity-based
approach. This work explores fitness-based mating as an alternative for establishing
mating preferences with a lower computational cost. Although fitness-based restricted
mating was addressed in (De et al., 1998; Chakraborty and Chakraborty, 1999), this
technique has not been sufficiently investigated in the past, due to the widespread use
of similarity in the definition of mating approaches. One of the goals of this work is to
thoroughly compare fitness-based mating strategies with their similarity-based coun-
terparts.

The present work aims at formalizing a general mating approach which allows
a wide range of mating strategies to be defined and effectively applied to the task of
global optimization in GAs. Finally, a self-adaptive mating method is developed.

3 The New Mating Approach

This section presents a novel approach to mating in GAs. Our novel approach has
three main characteristics. Firstly, a parameter named mating index allows the degree
of exploration to be controlled in a simple way, which makes our approach flexible
and general. Secondly, it allows mating preferences to be defined either in terms of
similarity between individuals or in terms of fitness of individuals, in contrast to most
of the mating strategies reviewed in Section 2, which are typically based on similarity
between individuals. Thirdly, the novel approach lends itself to a self-adaptive imple-
mentation, in which each individual in the population has its own mating preference;
in this way, different mating strategies can be applied depending on the hardness of
the fitness function and the current state of the search process.

The novel approach is defined by the algorithm in Figure 1, which constitutes a GA
mating phase, taking place between parent selection and parent recombination. In this
algorithm, γ (mating size) different parents are randomly chosen for the next round of
mating, and the fittest of them is mated with another individual as determined by cr
(mating criterion) and α (mating index). Note that Ps in Figure 1 could contain multiple
copies of individuals after parent selection, depending on the fitness value.

Similarity in the phenotype space is the traditional criterion used to establish mat-
ing preferences in GAs (Deb and Goldberg, 1989; Eshelman and Schaffer, 1991). This
is why similarity has been included in the domain of cr in our algorithm. Due to the
computational complexity of similarity comparisons, a new fitness-based criterion for
establishing mating preferences is also introduced. While determining the similarity of
two individuals requires examining their chromosomes gene by gene, comparing their
fitnesses involves examining only two numbers.

Note that the novel mating approach defined by the algorithm in Figure 1 becomes
the traditional mating approach when γ = 2, since parents are then mated uniformly
at random. Therefore, the novel mating approach is a generalization of the traditional
approach. The values of mating index α induce different mating strategies correspond-
ing to a wide range of degrees of exploitation versus exploration. In this way, a specific
α value defines a mating strategy that we name BEST-(α − 1)TH, since the best parent
is mated with the (α − 1)-th mating candidate. Several variants of the general scheme
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Algorithm: Mating Step of the Novel Mating Approach for GAs

Input:
Ps Population of selected parents
γ Mating Size: number of eligible parents for next mating
cr Criterion used for defining mating preferences

(cr ∈ {similarity, fitness})
α Mating Index: integer used for defining a mating preference

(2 ≤ α ≤ γ)
Output:

Pm Population of mated parents
{⟨p1(1), p2(1)⟩ , . . . , ⟨p1(i), p2(i)⟩ , . . . , ⟨p1(|Ps| /2), p2(|Ps| /2)⟩ , p}

begin
Pm ← ∅
i← 0

while (|Ps| > 1)

i← i+ 1

Ch← Set of γ parents chosen uniformly at random from Ps without replacement
p1(i)← Parent in Ch with highest fitness
Remove p1(i) from Ps and Ch, and include it in Pm. (Set Ch now includes the
candidate mates for p1(i).)

From the set of γ − 1 candidates in Ch, obtain the ordered subset of α− 1 best
candidates under criterion cr. When cr = similarity, candidates are ranked
according to decreasing phenotype similarity with p1. When cr = fitness,
candidates with higher fitness are ranked first. Let

Bα−1(p1(i)) = {b2, b3, . . . , bα−1, bα}

be the resulting ordered subset. (Note that bi is the ith order statistic of the
original sample set Ch when cr = fitness and a minimization problem is
considered, or when cr = similarity and phenotype distance is used to meausre
similarity.)
p2(i)← bα

Remove p2(i) from Ps and include it in Pm. Note that p1(i) and its mate p2(i) are
placed in contiguous positions in Pm. (If |Bα−1(p1(i))| < α− 1, the last element
in Bα−1(p1(i)) is chosen as mate for p1(i).)

endwhile
if (|Ps| = 1) then include in Pm the remaining individual p of Ps

return Pm

end

Figure 1: Algorithm for the mating step of the novel mating approach for GAs.
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in the algorithm of Figure 1 are possible. This work focuses on three of them:

1. When α = 2, the best parent is mated with the first mating candidate under crite-
rion cr. Thus, the resulting scheme is called BEST-FIRST mating strategy.

2. When α = γ, the best parent is mated with the last mating candidate under crite-
rion cr. This strategy is called BEST-LAST mating.

3. When the parameter α is made local to each individual, encoded into the chro-
mosome, and subjected to recombination and mutation, a SELF-ADAPTIVE mating
strategy results.

In the rest of this section, these variants are discussed in more detail.

3.1 BEST-FIRST Mating

Exploitation of the best solutions in the current population can be achieved by setting
α = 2 in the algorithm of Figure 1. In this way, the fittest of the chosen parents, p1, is
mated with the first of the candidates under criterion cr. If a fitness-based criterion is
used, p1’s mating preference is clearly an exploitative strategy, since fitter candidates
are preferred over the rest. If a similarity-based criterion is used, p1’s mating preference
is exploitative as well, since it is implicitly assumed that fitter candidates are more sim-
ilar to p1 than the rest. Since Ps in Figure 1 could contain multiple copies of individuals,
it is possible that some clones are mated by BEST-FIRST.

In the algorithm of Figure 1, an ordering of the first α − 1 candidates in Ch under
criterion cr is in fact not necessary in BEST-FIRST mating. Just the first of the candidates
under criterion cr is sought. Thus, only a variable storing the currently first candidate
is needed to implement BEST-FIRST.

BEST-FIRST mating with a similarity-based criterion is inspired by the mating strat-
egy used by Deb and Goldberg (Deb and Goldberg, 1989) in the context of fitness shar-
ing. Whereas Deb and Goldberg used a similarity threshold to guide the mating process
within niches, BEST-FIRST mating employs a mating size parameter in order to obtain
a certain degree of exploitation. Similarity-based BEST-FIRST mating is also similar
to positive assortative mating (Fernandes et al., 2001; Huang, 2001; Ochoa et al., 2005),
which chooses the most similar candidate as mate for the current individual. At the
same time, BEST-FIRST mating with a fitness-based criterion has common characteris-
tics with some of the mating methods developed in (De et al., 1998; Chakraborty and
Chakraborty, 1999).

3.2 BEST-LAST Mating

Exploration of alternative solutions to the best ones in the current population can be
performed by setting α = γ in the algorithm of Figure 1. By doing that, the fittest of
the chosen parents, p1, is mated with the last of the candidates under criterion cr. If a
fitness-based criterion is used, p1’s mating preference is clearly an explorative strategy,
since the fittest parent prefers less fit candidates over the rest. If a similarity-based
criterion is used, p1’s mating preference is explorative as well, since the most distant
candidate in the phenotype space is chosen for mating.

In the algorithm of Figure 1, an ordering of the first α − 1 candidates in Ch under
criterion cr is not necessary in BEST-LAST mating. Only the last of the candidates un-
der such a criterion is sought. Therefore, a unique variable storing the currently last
candidate is needed to implement BEST-LAST.
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Algorithm: SELF-ADAPTIVE Mate Election

Input:
p1 Individual to be mated
Ch Candidate mates for p1
cr Criterion used for defining mating preferences

(cr ∈ {similarity with respect to p1, fitness})
Ps Population of selected parents
Pm Population of mated parents

Output:
p2 Mate for p1

begin
p2 ← (αp1 − 1)-th candidate in Ch under criterion cr
Remove p2 from Ps

Include p2 in Pm

end

Figure 2: Algorithm for SELF-ADAPTIVE mate election.

BEST-LAST mating with a similarity-based criterion is inspired by the mating strat-
egy used by Eshelman and Schaffer (Eshelman and Schaffer, 1991) for incest prevention.
While Eshelman and Schaffer used a similarity threshold to prevent incest, BEST-LAST
mating achieves a particular degree of exploration by setting the mating size value.
Similarity-based BEST-LAST mating is also similar to negative assortative mating (Fer-
nandes et al., 2001; Huang, 2001; Ochoa et al., 2005), which chooses the most dissimilar
candidate as mate for the current individual. On the other hand, to the best of our
knowledge BEST-LAST mating with a fitness-based criterion has not yet been investi-
gated in the literature.

3.3 Self-Adaptive Mating

A GA’s parameters can either be manually tuned in advance or automatically con-
trolled during execution. Compared to manual parameter tuning, advantages of auto-
matic parameter control are that (i) it is less taxing on the GA’s user and (ii) parameters
can be adapted to the state of the search process. A classification of parameter set-
ting techniques for evolutionary algorithms can be found in (Eiben et al., 1999; Eiben
and Smith, 2003, Chapter 8). This section deals with self-adaptive control of mating
parameters. Self-adaptive parameter control consists of encoding the parameters into
the chromosomes and performing recombination and mutation on them. In this way,
the values of the parameters leading to better individuals will have a greater chance to
survive.

If an individual j is represented as ⟨xj,1, . . . , xj,n⟩, its extended representation un-
der SELF-ADAPTIVE mating would be ⟨xj,1, . . . , xj,n, xj,n+1⟩, where xj,n+1 = αj is the
mating index for individual j. In other words, the mating index is now a local param-
eter, and each individual has an independent mating preference. The algorithm per-
forming SELF-ADAPTIVE mating can easily be obtained from the algorithm in Figure 1
by removing α from the input and substituting α − 1 with xp1,n+1 − 1 when calculat-
ing the ordered subset of best candidates. Figure 2 shows the algorithm for the mate
election step under SELF-ADAPTIVE mating.
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Figure 3: Population of six parents {A,B,C,D,E, F} to be mated. These parents be-
long to a real interval I ⊂ R.

It remains to consider how mating indices are initialized, recombined, and mu-
tated. As far as initialization is concerned, each mating index is assigned an integer
generated uniformly at random from range [2, γ]. Recombination of the mating indices
of two parents can be carried out in several ways: by assigning to the two children the
mean of the parents’ mating indices, or by letting the two children inherit the parents’
mating indices, among other possibilities. This work uses the latter method, since we
have found it to produce better experimental results. Mutation of mating indices is
implemented by setting a probability p= that mating index is unchanged, a probabil-
ity p+ that mating index is incremented by one, a probability p− that mating index is
decremented by one, and a probability 1− p= − p+ − p− that mating index is changed
uniformly at random. Values p= = 0.5 and p+ = p− . 0.25 were employed, since they
led to better performance in the experiments.

3.4 An Example of the Novel Mating Strategies

We now discuss an example illustrating BEST-FIRST mating, BEST-LAST mating, and
SELF-ADAPTIVE mating. Consider in the algorithm of Figure 1 a population of six se-
lected parents, Ps = {A,B,C,D,E, F}, resulting after parent selection in a GA. The six
parents have to be mated before recombination. Figure 3 depicts the parents according
to their phenotype (x-axis) and their fitness (y-axis), where it is assumed that there is a
bijection between phenotypes of individuals and a certain interval of real numbers.

The random mating strategy (RANDOM) mates parents by choosing a mate uni-
formly at random among the remaining parents. A possible mating resulting from this
strategy is {CF,EA,BD}. It is important to note that fitness or similarity information is
not used at any step of RANDOM mating.

If a mating size γ = 6 is assumed for simplicity, the BEST-FIRST, the BEST-LAST,
and the SELF-ADAPTIVE mating strategies create Ch = {A,B,C,D,E, F}. The first
mate, p1, is the parent with highest fitness in Ch; p1 = F in this case. In BEST-FIRST,
the second mate, p2, is the first of the candidates in {A,B,C,D,E} under criterion cr.
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Mating Strategy Criterion Pairing
RANDOM {CF,EA,BD}

BEST-FIRST
similarity {FE,CB,DA}

fitness {FE,CD,BA}

BEST-LAST
similarity {FA,EB,CD}

fitness {FA,EB,CD}

SELF-ADAPTIVE
similarity {FE,CD,BA}

fitness {FE,CB,DA}

Table 1: Pairings obtained for the example in Figure 3.

First, we discuss the similarity-based criterion, under which p2 = E. As a result, F and
E are mated, and the same process continues until all of the parents have been mated.
A new set Ch would be formed prior to each pairing between p1 and p2. Ultimately,
the mating resulting from this strategy is {FE,CB,DA}. Second, we discuss the fitness-
based criterion, under which p2 = E for p1 = F like under similarity-based criterion.
Next, C is paired with D, instead of with B as in the similarity case. The final pairing
is {FE,CD,BA}.

The BEST-LAST mating strategy works analogously to BEST-FIRST, but now the
last of the candidates under criterion cr is assigned to p2 at each iteration of the mating
algorithm. In this way, under similarity-based mating, F and A are first mated. In the
end, the mating resulting from this strategy is {FA,EB,CD}. For fitness-based mating,
the final pairing is {FA,EB,CD} as well.

The SELF-ADAPTIVE mating is now considered. The following mating indices will
be assumed: {αA = 5, αB = 2, αC = 3, αD = 3, αE = 4, αF = 2}. The first mate, p1, is
again the parent with highest fitness in Ch; p1 = F in this case. The second mate, p2,
is the (αF − 1)-th candidate in {A,B,C,D,E} under criterion cr. First, we discuss the
similarity-based criterion, under which p2 = E. As a result, F and E are mated, and
the same process continues until all of the parents have been mated. A new set Ch is
formed prior to each pairing between p1 and p2. When the number of candidates for
p1 in Ch is smaller than αp1 , the last element in Ch under criterion cr is selected as mate
for p1. The mating resulting from this strategy is {FE,CD,BA}. Second, we discuss the
fitness-based criterion, under which p2 = E like under similarity-based criterion. Then,
C is paired with B, instead of with D as in similarity-based mating. The final pairing
is {FE,CB,DA}.

The pairings obtained for the different mating strategies considered in this section
are summarized in Table 1. It should be noted that BEST-FIRST produces the best po-
tential mating for the simple fitness function in Figure 3, since mating parents with
high fitness will favor the creation of children with high fitness with higher probability.
However, in more realistic and interesting fitness functions, it is clear that BEST-FIRST
is not always optimal, as Section 5 shows.

4 Analysis

The present section analyzes the novel mating approach introduced in this work. The
analysis is developed for the two types of domains that can be encountered in function
optimization: on the one hand, unimodal fitness functions with a unique optimum and,
on the other hand, multimodal fitness functions with many local optima. In both cases,
the influence of mating on the effectiveness to reach the global optimum is studied. For
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Figure 4: A linear unimodal fitness function with no local optima except for the global
optimum. Individual x′ ∈ [x1, x2] is mated with individual x′′ ∈ [x1, x

′].

simplicity, this section only deals with similarity-based mating. As in Section 3.4, it will
be assumed that there is a bijection between phenotypes of individuals and a certain
interval of real numbers.

4.1 Analysis for Unimodal Fitness Functions

We divide the analysis for unimodal fitness functions into two cases: functions with no
peaks and functions with one peak. In either case, without loss of generality, simplified
linear functions will be used.

4.1.1 Functions without Peaks
Consider the maximization problem of the linear fitness function depicted in Figure
4, f(x) = m · x, where x represents individuals’ phenotype defined in the range
[x1, x2] ⊂ R (with x1 < x2) and m is a positive constant. Let x′ ∈ (x1, x2) denote
the fittest individual within set Ch of the algorithm in Figure 1; in other words, x′ is the
best individual resulting from selecting (uniformly at random) γ individuals from the
current population of parents. Therefore, as shown in Figure 4, x′ is the next individual
to be assigned a mate x′′. Candidate mates for x′ can only belong to range [x1, x

′], since
f(x′) ≥ f(x′′) from the algorithm in Figure 1.

Assume that the recombination of two parents, xp1 ∈ [x1, x2] and xp2 ∈ [x1, x2]
with xp1 < xp2 , is performed in the phenotype space and produces children,
xchild(xp1 ,xp2 )

, uniformly distributed over [xp1 , xp2 ]. Consequently, the expected fitness
of a child of xp1 and xp2 can be calculated as:

f(xchild(xp1
,xp2

)) =
f(xp1) + f(xp2)

2
, (1)

since the probability that xchild(xp1 ,xp2 )
/∈ [xp1 , xp2 ] is equal to zero and f is linear with

respect to x. Given that f(x) = m · x, Equation 1 turns into:

f(xchild(xp1 ,xp2 )
) = m · xp1 + xp2

2
. (2)
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Figure 5: A one-peak fitness function. The case is shown where individual x′ ∈ (x1, xp)
is mated with individual x′′ ∈ [2xp − x′, x2].

From Equation 2, the expected fitness of a child resulting from the recombination of x′

and x′′, with x′′ ∈ [x1, x
′], is the following:

f(xchild(x′,x′′)) = m · x
′ + x′′

2
. (3)

It is important to note that, for a fixed x′, f(xchild(x′,x′′)) in Equation 3 increases as
x′′ approaches x′ and reaches a maximum when x′′ = x′. This indicates that the closer
x′′ is to x′ the fitter are their expected children. Furthermore, since we are dealing
with an unimodal fitness function, higher values of f(xchild(x′,x′′)) indicate children
closer to the global optimum. It can be concluded from this result that, in the case
of unimodal fitness functions with no peaks, those mating strategies under the novel
approach favoring recombination with similar individuals produce a more effective
search for the global optimum.

4.1.2 Functions with One Peak
Consider the maximization problem of the fitness function shown in Figure 5, defined
as follows:

f(x) =

{
mx if x ∈ [x1, xp]

−mx+ 2mxp if x ∈ [xp, x2]
,

where m is a positive constant and xp ∈ (x1, x2) is a peak for the function. If we
asssume that x′ ∈ (x1, xp) then x′′ ∈ [x1, x

′] ∪ [2xp − x′, x2]. Since the case where
x′′ ∈ [x1, x

′] was already studied in the previous section, we will focus on the case
where x′′ ∈ [2xp − x′, x2].

When x′′ ∈ [2xp − x′, x2], the expected fitness for a child of x′ and x′′ can be calcu-
lated as follows:

f(xchild(x′,x′′)) =

∫ x′′

x′ f(x)dx

x′′ − x′ =

∫ xp

x′ mxdx+
∫ x′′

xp
(−mx+ 2mxp)dx

x′′ − x′

= m ·
{
x′′ + x′

2
− (x′′ − xp)

2

x′′ − x′

}
, (4)

Evolutionary Computation Volume x, Number x 11



S. F. Galán and O. J. Mengshoel

which takes positive and monotonically decreasing values with x′′ in interval [2xp −
x′, x2] provided that f(x2) > 0. The following important results can be derived from
Equation 4:

1. If x′′ = 2xp − x′ then f(xchild(x′,x′′)) = m · x′+xp

2 > m · x′. Since m · x′ is the
maximum value that f(xchild(x′,x′′)) can take when x′′ ∈ [x1, x

′] (see Section 4.1.1),
in the case of the type of unimodal fitness functions with one peak considered
in this section, symmetric mates with respect to the optimum produce the best
expected children. These symmetric mates can be easily identified by adopting the
following values for the parameters of the algorithm in Figure 1: a mating size γ
as high as possible, a mating index α as low as possible, and cr = fitness. The
superiority of cr = fitness with respect to cr = similarity in unimodal functions is
confirmed by Figures 8(a) and 9(a) of Section 5.1.1, where convergence is reached
earlier when cr = fitness.

2. For x′′ ∈ [2xp−x′, x′′
∗ ], mating always produces better expected children than those

obtained for x′′ ∈ [x1, x
′] and x′′ . x′ (see Section 4.1.1). The value of x′′

∗ can be
calculated by making f(xchild(x′,x′′)) = m · x′ in Equation 4, which yields:

x′′
∗ = 2xp − x′ ±

√
2(x′ − xp).

Since x′′
∗ > 2xp− x′ and xp > x′, the first solution is not valid. The second solution

can be written as follows:

x′′
∗ = (2 +

√
2)xp − (1 +

√
2)x′.

It should be noted that the length of interval [2xp − x′, x′′
∗ ] is equal to

√
2(xp − x′),

which is proportional to xp − x′.

Given an individual x′, interval [2xp−x′, x′′
∗ ] constitutes a promising area for mate

election: The resulting children are expected to be fitter than parent x′ if x′′ ∈
[2xp − x′, x′′

∗ ]. In terms of the novel mating approach presented in this paper, if
mating size γ is high enough then the lowest mating indices (giving rise to x′′ .
x′) would produce worse expected children than those obtained with somewhat
higher mating indices (giving rise to x′′ ∈ [2xp − x′, x′′

∗ ]).

4.2 Analysis for Multimodal Fitness Functions

The method used in Section 4.1 to establish how beneficial it is for x′ to elect x′′ as mate
consists in obtaining the expected fitness for the children of x′ and x′′, f(xchild(x′,x′′)),
which in principle can be calculated for any fitness function shape. However, it is im-
portant to note that, for multimodal or deceptive fitness functions, higher f(xchild(x′,x′′))
values do not necessarily correspond to closer children to the global optimum. (For this
type of functions, higher f(xchild(x′,x′′)) values might even correspond to children less
close to the global optimum than their parent x′.) As a consequence, in the rest of this
section we adopt an alternative analysis method to that used in Section 4.1. The new
analysis method is centered on the concept of hitting the basin of attraction for the
global optimum.

Consider the maximization problem of a multimodal fitness function, g(x), where
x represents individuals’ phenotype defined in the range [x1, x2] with x1 < x2, as de-
picted in Figure 6. Assume that function g(x) has a global optimum at xop, whose basin
of attraction lies in the range [xop − b, xop + b]. The basin of attraction for a maximum
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Figure 6: A multimodal fitness function.

is the set of points in the fitness landscape from which a steepest-ascent hill-climbing
search would finish reaching that maximum.

Without loss of generality, consider that individual x′ = x1 is to be assigned a
mate x′′. Assume that the function g(x) has several local optima between x′ and xop−b.
Contrary to Section 4.1, whose argument can only be applied to individuals in the basin
of attraction for the global optimum, the individual x′ has now been chosen outside that
basin. This is the usual situation for the population individuals when a multimodal
fitness function is optimized.

As in Section 4.1, assume that the recombination of two parents, xp1 ∈ [x1, x2] and
xp2 ∈ [x1, x2] with xp1 < xp2 , is performed in the phenotype space and produces chil-
dren, xchild(xp1 ,xp2 )

, uniformly distributed over [xp1 , xp2 ]. Since the problem of global
optimization is to be solved, it is convenient to calculate the probability of reaching the
basin of attraction for the global optimum by recombining x′ with a candidate mate
x′′ ∈ [x1, x2]. (We are not interested in reaching the regions of the fitness landscape
located outside the basin of attraction for the global optimum, since that would lead
to premature convergence.) Such a probability is zero for x′′ ∈ [x1, xop − b), since
[x′, x′′] ∩ [xop − b, xop + b] = ∅. For x′′ ∈ [xop − b, xop + b], the probability that the child

reaches [xop − b, xop + b] is equal to x′′−(xop−b)

x′′−x′ . Finally, for x′′ ∈ (xop + b, x2], the proba-
bility is equal to 2b

x′′−x′ , since [x′, x′′]∩ [xop− b, xop + b] = [xop− b, xop + b]. In summary,
as shown in Figure 7,

Pr basin(x
′′) =


0 if x′′ ∈ [x1, xop − b)

x′′−(xop−b)

x′′−x′ if x′′ ∈ [xop − b, xop + b]
2b

x′′−x′ if x′′ ∈ (xop + b, x2]

. (5)

Figure 7 shows that, while mates in [x1, xop−b) lead to local optima, there is always
a probability greater than zero that the basin of attraction for the global optimum is
reached if mates are taken from [xop−b, x2]. Note that interval [x1, xop−b) corresponds
to the more similar individuals to x′, which are chosen as mates by x′ when using
low mating indices under the novel mating approach. The other interval, [xop − b, x2],
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xop 

x” 

x2 x’= x1 xop− b xop+ b 

2b xop+b−x’ 
Figure 7: Probability that a child of x′ and x′′ reaches the basin of attraction for the
global optimum [xop − b, xop + b].

contains distant individuals to x′ corresponding to high mating indices. (Note also
that, the higher the mating size is in the algorithm of Figure 1, the more probable is
that a low mating index produces a similar mate for x′ and that a high mating index
produces a dissimilar mate for x′.) Therefore, those mating strategies using high mating
indices produce in general a more effective search for the global optimum in the case
of multimodal functions.

4.3 Analysis Discussion

The analysis in this section has covered optimization problems of increasing complex-
ity: from unimodal problems to multimodal ones. Although we have dealt with sim-
plified fitness functions for illustration purposes, we believe that our analysis gives
insight into more general fitness functions that one can find in practice.

One way in which the analysis in Section 4.1.2 can be extended is by allowing
f(x) to be a non-linear function. For example, the Sphere function (see Section 5.1.1)
is an unimodal function that assigns quadratic fitness depending on the distance to
the global optimum. Even if quadratic f(x) is used in Equation 4 instead of linear f(x),
similar results to those explained in Point 1 and Point 2 of Section 4.1.2 can be obtained.

Another way to extend the analysis in Section 4.1.2 is to consider multidimensional
functions. In this case, Equation 4 calculating the expected fitness for the children of x′

and x′′ needs to be defined for the multidimensional case. The experiments in Section
5.1.1 confirm that, as in the case of the simplified function studied in Section 4.1.2, low
mating indices are more advantageous in the case of multidimensional quadratic uni-
modal functions. In the case of the multimodal functions analysis of Section 4.2, both
the concept of basin of attraction and Equation 5 can be generalized to the multidimen-
sional case. An example of multimodal function defined over several variables is the
Schwefel function, which is experimentally studied in Section 5.1.2. The experiments
in this section for the Schwefel function confirm the conclusions derived in Section 4.2
for unidimensional multimodal functions: High mating indices yield the best results in
this case.
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5 Experiments

The domain studied in the experiments is optimization of real functions. Given an n-
dimensional function, f : Rn −→ R, global optimization consists of determining x∗ ∈
Rn such that f(x∗) ≥ f(x) for all x ̸= x∗ with x ∈ Rn. This definition corresponds to a
maximization problem. In the case of minimization, the inequality to be considered is
f(x∗) ≤ f(x).

In Sections 5.1 and 5.2, a discretized real interval is considered for each dimen-
sion of the function domain. Each interval point is encoded as a binary string by using
a Gray code. The experiments in these two sections were performed by means of a
simple GA using tournament parent selection with tournament size equal to two, one-
point crossover with crossover probability equal to one, bit-flip mutation with muta-
tion probability equal to the inverse of the chromosome length, generational survivor
selection, and elitism for the best individual. Different seeds for the random number
generator were used for each run of the simple GA. All of the experiments were carried
out on a 2 GHz processor running Windows.

In order to determine whether the results for mating under binary representation
extend to real representation of variables, Sections 5.3 and 5.4 apply to a GA using
real-coded variables the same type of experiments that Sections 5.1 and 5.2 apply to
a GA using binary-coded variables. In the case of real representation, new crossover
and mutation operators need to be introduced. We implemented crossover as discrete
recombination: If an offspring z is created from parents x and y, the allele value (real
number) for gene i, zi, is taken from {xi, yi}with equal probability. We used a mutation
operator that selects uniformly at random one of the n genes (or variables) and adds
to its real value an amount drawn randomly from a Gaussian distribution with mean
zero and given standard deviation (0.5 in our case).

5.1 Binary Variables: Mating Size Experiments

This section contains a comparative evaluation of the following mating strategies:
RANDOM mating, BEST-FIRST mating, BEST-LAST mating, and SELF-ADAPTIVE mat-
ing. In general, the BEST-FIRST mating strategy produces exploitation of the best solu-
tions in the current population, BEST-LAST mating produces exploration of alternative
solutions to the best ones in the current population, and SELF-ADAPTIVE mating pro-
duces a combination of exploration and exploitation that depends on the shape of the
fitness function and the state of the search process.

The rest of this section is structured so that the following comparisons are progres-
sively made:

(a) unimodal vs. multimodal fitness functions: Two different types of functions were
tested, namely the Sphere function in Section 5.1.1 and the Schwefel function in
Section 5.1.2. While Sphere is an unimodal function with just one local optimum
(the global optimum), Schwefel is a multimodal function that contains a high num-
ber of local optima.

(b) fitness-based vs. similarity-based mating preferences: Both cases are explored in Sec-
tion 5.1.1 and Section 5.1.2.

(c) traditional (RANDOM) vs. advanced (BEST-FIRST, BEST-LAST, and SELF-ADAPTIVE)
mating strategies

(d) varying mating sizes: The range of explored values is γ ∈ {3, 5, 10, 20, 30}.
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5.1.1 Binary Variables: Mating Size Experiments for the Sphere Function
The Sphere function is defined as follows:

f1(x) =
n∑

i=1

x2
i .

This function has a minimum at (x1 = 0, . . . , xn = 0) whose value is 0. The experiments
were designed for n = 20, −10 ≤ xi ≤ 10 for all i ∈ {1, . . . , 20}, and 10 bits were used
to represent each variable; as a result, chromosomes with 200 genes were employed.
The population size selected was 100 individuals.

Figure 8 represents the evolution, generation by generation, of the mean best fit-
ness for the Sphere function when fitness-based mating strategies are used. One hun-
dred runs were carried out for each experiment. Whereas the RANDOM mating strategy
is depicted in the three graphs of Figure 8 for illustrative purposes, the rest of the mat-
ing strategies (BEST-FIRST, BEST-LAST, and SELF-ADAPTIVE) are depicted in just one
graph. For these three advanced strategies, experiments were performed for different
mating size values: γ ∈ {3, 5, 10, 20, 30}.

The BEST-FIRST mating strategy performs better than the RANDOM strategy, as
shown in Figure 8(a). In general, the performance improvement obtained by BEST-
FIRST increases with the mating size. This behavior can also be observed in Figure
8(c) for the SELF-ADAPTIVE strategy, although it takes mating size γ = 10 to begin to
see an improvement over the RANDOM strategy. From Figure 8(b), it is clear that the
BEST-LAST mating strategy performs worse than the traditional RANDOM strategy in
the case of the Sphere function. This behavior gets worse as mating size increases.

Figure 9 shows the evolution of the mean best fitness for the Sphere function when
similarity-based mating strategies are utilized. In general, the results for similarity-
based mating follow a similar pattern to those in Figure 8 for fitness-based mating.
However, in the case of the similarity-based BEST-FIRST strategy, more generations are
needed in order to outperform RANDOM mating, as shown in Figure 9(a). This is a
disadvantage of similarity-based BEST-FIRST compared to fitness-based BEST-FIRST in
the case of the Sphere function.

5.1.2 Binary Variables: Mating Size Experiments for the Schwefel Function
The Schwefel function (Schwefel, 1981, pages 292-293) is defined in the following way:

f2(x) =
n∑

i=1

xi · sin
(√
|xi|

)
.

This function has a maximum at (x1 = 420.9687, . . . , xn = 420.9687) whose value is
n ·418.9829. The experiments in this section were designed for n = 10,−500 ≤ xi ≤ 500
for all i ∈ {1, . . . , 10}, and 100 bits were used to represent each variable; consequently,
chromosomes with 1000 genes were created. The population size was 100 individuals.
Due to the complexity of the Schwefel function, five hundred runs were performed for
each experiment.

Figure 10 depicts the evolution of the mean best fitness for the Schwefel function
and fitness-based mating strategies. The opposite performance to that of the Sphere
function is to some extent obtained for BEST-LAST and BEST-FIRST versus RANDOM
mating. Firstly, Figure 10(b) shows that the BEST-LAST mating strategy performs better
than the RANDOM strategy in the case of the Schwefel function. In general, the perfor-
mance improvement obtained by BEST-LAST increases with the mating size. Secondly,
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Figure 8: Mean best fitness results for the Sphere minimization problem with binary-
coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b), and the
SELF-ADAPTIVE (c) fitness-based mating strategies. For the advanced strategies, mat-
ing size varies from 3 to 30.
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Figure 9: Mean best fitness results for the Sphere minimization problem with binary-
coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b), and the
SELF-ADAPTIVE (c) similarity-based mating strategies. For the advanced strategies,
mating size varies from 3 to 30.
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the BEST-FIRST mating strategy performs worse than the RANDOM strategy, as shown
in Figure 10(a). This behavior gets worse as mating size increases. On the other hand,
contrarily to the case of the Sphere function shown in Figure 8(c), fitness-based SELF-
ADAPTIVE mating for the Schwefel function behaves worse as mating size grows. As
depicted in Figure 10(c), although γ ∈ {3, 5} outperforms RANDOM mating, that is not
the case for γ ∈ {10, 20, 30}.

Figure 11 contains the evolution of the mean best fitness for the Schwefel function
when similarity-based mating strategies are used. In general, the results for similarity-
based mating follow a similar pattern to those in Figure 10 for fitness-based mating.
However, in the case of similarity-based strategies, the outperformances of both the
BEST-LAST and the SELF-ADAPTIVE strategies with respect to the RANDOM strategy
are superior to those obtained from their fitness-based counterparts. This represents an
advantage of similarity-based strategies over fitness-based strategies in the case of the
Schwefel function.

5.2 Binary Variables: Mating Index Experiments

The present section empirically compares RANDOM mating and BEST-αTH mating. In
general, the greather α is, the higher the degree of exploration is. The following com-
parisons are progressively made throughout the rest of this section:

(a) unimodal vs. multimodal fitness functions: Besides the Sphere and the Schwefel
functions, the Rastrigin function is now evaluated. Regarding multimodality, the
Rastrigin function lies between the Sphere and the Schwefel functions.

(b) fitness-based vs. similarity-based mating

(c) traditional (RANDOM) vs. advanced (BEST-αTH) mating strategies

(d) varying mating indices: The range of explored values is α ∈ {2, 5, 10, 15, 20} for a
constant mating size of value γ = 20.

The Rastrigin function (Mühlenbein et al., 1991) is defined as follows:

f3(x) = 10 · n+

n∑
i=1

(
x2
i − 10 · cos(2 · π · xi)

)
.

This function has a minimum at (x1 = 0, . . . , xn = 0) whose value is 0. The Rast-
rigin function is based on the Sphere function with the addition of a cosine modula-
tion to produce many local optima; therefore, in terms of multimodality, the Rastrigin
function is more complex than the Sphere function and less complex than the Schwe-
fel function1. The experiments were designed for n = 5, −5.12 ≤ xi ≤ 5.12 for all
i ∈ {1, . . . , 5}, and 10 bits were used to represent each variable; in this way, chromo-
somes with 50 binary genes were generated. Table 2 summarizes the parameters used
in these experiments for the three functions considered: Sphere, Rastrigin, and Schwe-
fel.

Figure 12 illustrates the evolution of the mean best fitness for the three functions
under both similarity-based and fitness-based criterion. For the BEST-αTH strategies,
the mating size is kept constant (γ = 20), while the mating index is assigned values
α ∈ {2, 5, 10, 15, 20}.

The following results can be derived from Figure 12:
1In the Schwefel function, the global maximum is distant from the next best local maximum, which makes

convergence to frequently take place in the wrong direction.
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Figure 10: Mean best fitness results for the Schwefel maximization problem with
binary-coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b),
and the SELF-ADAPTIVE (c) fitness-based mating strategies. For the advanced strate-
gies, mating size varies from 3 to 30.
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Figure 11: Mean best fitness results for the Schwefel maximization problem with
binary-coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b), and
the SELF-ADAPTIVE (c) similarity-based mating strategies. For the advanced strategies,
mating size varies from 3 to 30.
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Parameter / Function Sphere Rastrigin Schwefel
Dimensions 10 5 5

Bits per Dimension 10 10 20
Chromosome Length 100 50 100

Runs 100 250 for similarity criterion
500 for fitness criterion

Generations 400 400 250
Individuals 50 50 50

Table 2: Parameters used in the experiments of Section 5.2.
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Figure 12: Mean best fitness results for the Sphere, the Rastrigin, and the Schwe-
fel optimization problems with binary-coded variables under the RANDOM and the
(similarity-based and fitness-based) BEST-αTH mating strategies. For the advanced
strategy, mating size is equal to 20 and mating index varies from 2 to 20.
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1. As depicted in Figure 12(a), lower mating indices produce better performance in
the case of the Sphere function, where RANDOM mating is outperformed by BEST-
αTH when α ≤ 10. In principle, it could seem paradoxical that α = 2 behaves
worse than α = {5, 10} in Figure 12(a), but an explanation for this effect is offered
in Point 2 of Section 4.1.2.

2. Figure 12(c) shows that higher mating indices lead to better performance for the
Schwefel function, and RANDOM mating is outperformed by BEST-αTH when α >
10. This is the opposite behavior to that observed for the Sphere function.

3. Figure 12(b) includes an interesting result. While the middle mating indices
(α ∈ {5, 10}) outperform RANDOM mating, both the lowest (α ∈ {2}) and the
highest (α ∈ {15, 20}) mating indices suffer from a poorer performance than that
of RANDOM mating. In other words, in the case of the Rastrigin function as defined
in this section, neither a pure explorative estrategy (α ∼ γ) nor a pure exploitative
one (α ∼ 2) are good options, and the mating index parameter provides us with
intermediate strategies (α ∼ γ

2 ) leading to the best performance. This is a novel
result from this work.

4. Figures 12(d), 12(e), and 12(f ) for fitness-based strategies show qualitatively similar
results to those just described for similarity-based strategies in Points 1-3.

5.3 Real Variables: Mating Size Experiments

The aim of this section and Section 5.4 is to determine whether the qualitative exper-
imental results obtained for mating in Sections 5.1 and 5.2 are also valid when real-
coded variables are used within chromosomes. Since the representation of individuals
is now based on n real variables, where n is the dimension of the function being opti-
mized, new crossover and mutation operators need to be considered. As explained in
the previous paragraph to Section 5.1, we selected two widely used variation operators
for real-coded variables: discrete recombination and Gaussian mutation.

Figures 13 through 16 depict for real-coded variables the same type of experiments
for the Sphere and Schwefel functions that are respectively shown in Figures 8 through
11 for binary-coded variables. In general, the use of real variables produces similar
qualitative results regarding how the different mating strategies behave.

5.4 Real Variables: Mating Index Experiments

Like Section 5.3, this section presents experimental results for different mating strate-
gies when real-coded variables are used in the chromosome. Specifically, Figure 17
shows for read-coded variables and the Sphere, the Rastrigin, and the Schwefel func-
tions the same type of experiments appearing in Figure 12 for binary-coded variables.
Under real representation, the behavior of the different mating strategies evaluated in
Figure 17 is qualitatively comparable to that observed in Figure 12 under binary repre-
sentation.

6 Discussion on the Experiments

The results obtained in Sections 5.1 through 5.4 demonstrate that, as long as mating
preferences are defined in the phenotype space, the genotype has no significant influ-
ence on the qualitative behavior of mating. For the real-function optimization problem
addressed in this work, we always consider the Euclidean distance as similarity mea-
sure between two individuals, regardless of whether binary or real representation is
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Figure 13: Mean best fitness results for the Sphere minimization problem with real-
coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b), and the
SELF-ADAPTIVE (c) fitness-based mating strategies. For the advanced strategies, mat-
ing size varies from 3 to 30.
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Figure 14: Mean best fitness results for the Sphere minimization problem with real-
coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b), and the
SELF-ADAPTIVE (c) similarity-based mating strategies. For the advanced strategies,
mating size varies from 3 to 30.
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Figure 15: Mean best fitness results for the Schwefel maximization problem with real-
coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b), and the
SELF-ADAPTIVE (c) fitness-based mating strategies. For the advanced strategies, mat-
ing size varies from 3 to 30.
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Figure 16: Mean best fitness results for the Schwefel maximization problem with real-
coded variables under the RANDOM, the BEST-FIRST (a), the BEST-LAST (b), and the
SELF-ADAPTIVE (c) similarity-based mating strategies. For the advanced strategies,
mating size varies from 3 to 30.
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Figure 17: Mean best fitness results for the Sphere, the Rastrigin, and the Schwefel opti-
mization problems with real-coded variables under the RANDOM and the (similarity-
based and fitness-based) BEST-αTH mating strategies. For the advanced strategy, mat-
ing size is equal to 20 and mating index varies from 2 to 20.
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being used. Therefore, for the sake of simplicity, in the rest of this section we will refer
to the experiments using binary-coded variables.

Before discussing the experimental results obtained in Section 5, the statistical sig-
nificance of such results needs to be established. In other words, for each figure in
Section 5 (from Figure 8(a) to Figure 17(f )), it has to be determined whether or not
the six graphs in the figure come from the same distribution and, therefore, the differ-
ences are due to random effects (null hypothesis). ANOVA tests were performed on
the best-fitness data for the last generation depicted in each of the six graphs contained
in Figures 8(a) through 17(f ). For each graph, one hundred samples were taken. Ta-
ble 3 includes the results for ANOVA tests on groups of samples constituted by mean
best fitness values under the {RANDOM, γ = 3, γ = 5, γ = 10, γ = 20, γ = 30} mating
strategies (Figures 8(a) through 11(c) in Section 5.1 and Figures 13(a) through 16(c) in
Section 5.3) and on groups of samples constituted by mean best fitness values under
the {RANDOM, α = 2, α = 5, α = 10, α = 15, α = 20} mating strategies (Figures 12(a)
through 12(f ) in Section 5.2 and Figures 17(a) through 17(f ) in Section 5.4). Besides F
value, probability p of the corresponding result assuming the null hypothesis is shown.
The values for p in Table 3 can be considered as significant enough to discard the null
hypothesis for the data obtained, suggesting that mating has an important influence on
GA performance.

6.1 Discussion on the Mating Size Experiments

The experimental results obtained in Section 5.1 for the BEST-FIRST, the BEST-LAST,
and the SELF-ADAPTIVE mating strategies suggest that BEST-FIRST mating is the best
option for unimodal problems, while BEST-LAST mating is the best option for highly
multimodal problems. When the degree of multimodality is unknown, the SELF-
ADAPTIVE mating approach behaves differently depending on the problem at hand.
In unimodal problems, SELF-ADAPTIVE mating clearly outperforms RANDOM mating
as γ increases. In multimodal problems, SELF-ADAPTIVE mating produces better re-
sults than RANDOM mating for middle and low γ values. For mating size values in the
range γ ∈ [3, 10], SELF-ADAPTIVE mating performs better than (or at least comparably
to) RANDOM mating over the experiments in Section 5.1. However, for multimodal
problems, SELF-ADAPTIVE mating does not offer a good robust behavior for all the
mating sizes.

An example of how SELF-ADAPTIVE mating works is shown in Figure 18. This
figure depicts the mean α value in the population, generation by generation, for the
two cases in which the SELF-ADAPTIVE strategy had the best behavior in Section
5.1: fitness-based mating for the Sphere function and similarity-based mating for the
Schwefel function. The results are averaged over one hundred runs for the Sphere func-
tion and over five hundred runs for the Schwefel function. In both cases, the mating size
was assigned value γ = 20. Only the results for the first one hundred generations are
depicted, since this is the range in which significant changes are obtained for the mean
mating index. From Figure 18, the population mean mating index value in the initial
population (approximately α = 11) decreases rapidly for the Sphere function. This is in
accordance with the experimental results obtained in Section 5.1.1, which showed that
BEST-FIRST (where α is small) produces the best results for the Sphere function. On
the other hand, the mean mating index for the Schwefel function is greater than that
for the Sphere function throughout the generations. This is what should be expected
taking into account that, from Section 5.1.2, BEST-LAST (where α is large) produces the
best results for the Schwefel function. However, due to the fact that individuals with
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Figure Function F Fcritical p

8(a) Sphere 148.367 2.229 4.704E−102
8(b) Sphere 95.771 2.229 6.4498E−74
8(c) Sphere 88.373 2.229 2.019E−69
9(a) Sphere 10.373 2.229 1.4855E−9
9(b) Sphere 40.309 2.229 1.0403E−35
9(c) Sphere 5.112 2.229 1.3378E−4

10(a) Schwefel 10.399 2.229 1.4042E−9
10(b) Schwefel 2.367 2.229 0.03838
10(c) Schwefel 3.128 2.229 0.00849
11(a) Schwefel 80.781 2.229 1.2221E−64
11(b) Schwefel 2.929 2.229 0.01269
11(c) Schwefel 2.505 2.229 0.02935
12(a) Sphere 81.266 2.229 5.9728E−65
12(b) Rastrigin 2.273 2.229 0.04596
12(c) Schwefel 12.158 2.229 3.1114E−11
12(d) Sphere 90.772 2.229 6.7666E−71
12(e) Rastrigin 2.784 2.229 0.01695
12(f ) Schwefel 3.933 2.229 0.00162
13(a) Sphere 132.875 2.229 2.2126E−94
13(b) Sphere 113.289 2.229 5.5539E−84
13(c) Sphere 71.565 2.229 1.3731E−58
14(a) Sphere 49.813 2.229 4.2947E−43
14(b) Sphere 175.26 2.229 2.226E−114
14(c) Sphere 51.582 2.229 2.0078E−44
15(a) Schwefel 7.404 2.229 9.4783E−7
15(b) Schwefel 2.468 2.229 0.0315
15(c) Schwefel 3.089 2.229 0.0092
16(a) Schwefel 118.977 2.229 4.3373E−87
16(b) Schwefel 2.295 2.229 0.0441
16(c) Schwefel 2.326 2.229 0.0415
17(a) Sphere 100.58 2.229 9.2883E−77
17(b) Rastrigin 119.007 2.229 4.1807E-87
17(c) Schwefel 38.55 2.229 2.6903E−34
17(d) Sphere 112.609 2.229 1.3215E−83
17(e) Rastrigin 49.542 2.229 6.8876E−43
17(f ) Schwefel 5.728 2.229 3.5761E−5

Table 3: ANOVA test results for the experiments in Section 5. When F ≥ Fcritical, the
result is significant at the level of probability p = 0.05.
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Figure 18: Mean α value in the population for the Sphere and the Schwefel functions
under the SELF-ADAPTIVE strategy with γ = 20.

high mating index may produce lethal individuals after recombination in the case of
the Schwefel function, the graph for this function is not as close to α = 20 as the graph
for the Sphere function is to α = 2. (In principle, the lower graph in Figure 18 should
be close to α = 2; however, note that α = 2 and α = 5 produce similar results in Figure
12(d). Therefore, a convergence value of 7.5 in Figure 18 is quite close to the optimal be-
havior.) This explains the results obtained in Section 5.1, in which SELF-ADAPTIVE mat-
ing applied to the Sphere function produced similar results to those obtained through
the BEST-FIRST strategy, while SELF-ADAPTIVE mating applied to the Schwefel func-
tion could not reach the good results produced by the BEST-LAST strategy.

While fitness-based strategies produce better results than similarity-based strate-
gies for unimodal problems like the Sphere function optimization, similarity-based
strategies outperform fitness-based strategies in the case of multimodal problems like
the Schwefel function optimization. However, an advantage of fitness-based strategies
is that they lead to computation time savings as shown in Table 4. The differences in
computation times between fitness-based and similarity-based mating derive from the
fact that similarity comparisons need to explore long binary strings. These differences
are smaller in the case of real-coded variables.

6.2 Discussion on the Mating Index Experiments

The mating index experiments in Section 5.2 show an important result derived from the
present work. As a consequence of parameterizing the degree of exploration applied
in the mating phase, new mating strategies have arisen apart from the traditional ran-
dom one and apart from the pure exploratory/exploitative strategies also found in the
literature. The introduction of the mating index allows us to define a whole range of
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Sphere Schwefel
tf ts ts/tf tf ts ts/tf

γ = 3 7.37 22.05 2.99 37.94 111.32 2.93
γ = 5 7.23 36.85 5.1 38.39 198.82 5.18

Best-First γ = 10 7.46 67.15 9 38.79 369.9 9.54
γ = 20 7.62 115.94 15.21 38.74 680.56 17.57
γ = 30 7.45 154.87 20.79 38.29 944.99 24.68
γ = 3 7.5 21 2.8 38.24 123.79 3.24
γ = 5 7.42 36.86 4.97 37.98 203.7 5.36

Best-Last γ = 10 7.57 66.16 8.74 37.86 389.39 10.28
γ = 20 7.63 124.88 16.37 35.88 687.93 19.17
γ = 30 7.87 166.38 21.14 36.33 956.08 26.32
γ = 3 8.81 26.86 3.05 45.32 129.42 2.86
γ = 5 8.2 57.82 7.05 43.8 298.66 6.82

Self-Adaptive γ = 10 8.89 203.54 22.89 43.05 1056.43 24.54
γ = 20 9.06 675.39 74.55 43.91 3636.85 82.82
γ = 30 9.38 1304.7 139.09 44.31 7235.56 163.29

Table 4: Mean computation times (in seconds) for each run of the experiments in Section
5.1, with tf and ts referring to fitness-based and similarity-based mating respectively.
The number of function evaluations is the same for all cases in this table, number of
generations × population size, due to the fact that establishing the fittest parent in set Ch
of the algorithm in Figure 1 requires all the individuals in the current population to be
evaluated previously to mating.

exploratory degrees in a GA, and it turns out that some fitness landscapes can be better
optimized by adopting intermediate exploratory strategies. To the best of our knowl-
edge, this intermediate strategies have never been applied in the literature. Given an
arbitrary fitness landscape, it remains to investigate how to calculate the most appro-
priate α value for the optimization problem.

7 Conclusion

Most of the existing approaches to mating in GAs apply restrictions based on similar-
ity between individuals. The novel mating approach introduced in this work considers
also an alternative fitness-based criterion for defining mating strategies, which is com-
pared to the widespread similarity-based criterion. The fitness-based criterion offers
advantages regarding computation time savings and, in cases like unimodal function
optimization, greater efficiency to approach the optimum in fewer generations.

An important group of mating methods for GAs, for instance assortative mating
(Fernandes et al., 2001; Huang, 2001; Ochoa et al., 2005), use mating strategies that se-
lect just the most similar or the most dissimilar individual from a set of candidates.
In our novel approach, a parameter called mating index (see Section 3) allows any of
the candidates to be chosen. In this way, if a similarity-based criterion is considered,
a candidate with an arbitrary degree of similarity can be obtained or, if a fitness-based
criterion is considered, a candidate with an arbitrary fitness can be selected. Therefore,
a wide spectrum of mating strategies can be investigated by varying the mating index.
Intermediate mating indices, which are supported by our approach but not by previ-
ous approaches, happen to be the best option in cases where either a pure exploratory
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strategy or a pure exploitative strategy yield poor performance.
The novel mating approach facilitates the definition of a SELF-ADAPTIVE mating

strategy in which each individual has its own mating preference (or mating index). In
this way, the fittest individuals determine the most successful mating strategies gen-
eration by generation. While SELF-ADAPTIVE mating does not perform well on all
problems we investigate, it is a good strategy in the case of unimodal problems and
also in the case of mutimodal problems when low or middle mating sizes are used.
Strategies such as BEST-FIRST and BEST-LAST greatly outperform RANDOM mating in
different types of problems. While unimodal problems greatly benefit from using the
BEST-FIRST strategy, the same applies to multimodal problems in the case of the BEST-
LAST strategy.

A future research topic is the definition of a mating strategy that deterministically
controls mating index parameter throughout the GA generations. In this way, although
the mating index would be the same for every individual in the population, it would
change from generation to generation. A possible scheme would consist of assigning
α = γ at GA initialization and letting α be a monotonically non-increasing function
of the number of generations. (Both linear and non-linear reduction schemes could be
possible.) This deterministic scheme applies more exploration in the initial generations
of the GA, when promising search areas are sought, and applies more exploitation in
the final generations, when population diversity has decreased.

Another future research topic is the inclusion of the mating size parameter γ as a
local parameter in the chromosome of each individual. The performance of the new
SELF-ADAPTIVE strategy, resulting from including mating size γ along with mating
index α as local parameters, should be compared to the strategies defined in this work.
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through grant JC2007-00110 from its José Castillejo Program. This material is based
upon work by Ole J. Mengshoel supported by NASA under awards NCC2-1426 and
NNA07BB97C.

References
Booker, L. B. (1982). Intelligent Behaviour as an Adaptation to the Task Environment. PhD thesis,

Department of Computer and Communication Science, University of Michigan, Ann Arbor,
MI.

Chakraborty, G. and Chakraborty, B. (1999). Ideal marriage for fine tuning in GA. In Proceed-
ings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC’99),
volume 1, pages 631–636, Tokyo, Japan.

Cohoon, H. P., Hedge, S. U., Martin, W. N., and Richards, D. (1987). Punctuated equilibria: A
parallel genetic algorithm. In Proceedings of the 2nd International Conference on Genetic Algorithms
(ICGA’87), pages 148–154, MIT, Cambridge, MA. Lawrence Erlbaum, Hillsdale, NJ.

De, S., Pal, S. K., and Ghosh, A. (1998). Genotypic and phenotypic assortative mating in genetic
algorithm. Information Sciences: an International Journal, 105(1-4):209–226.

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation in genetic
function optimization. In Proceedings of the 3rd International Conference on Genetic Algorithms
(ICGA’89), pages 42–50, George Mason University, Fairfax, VA. Morgan Kaufmann, San Fran-
cisco, CA.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary algo-
rithms. IEEE Transactions on Evolurionary Computation, 3(2):124–141.

Evolutionary Computation Volume x, Number x 33



S. F. Galán and O. J. Mengshoel

Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer, Berlin.

Eshelman, L. J. and Schaffer, J. D. (1991). Preventing premature convergence in genetic algo-
rithms by preventing incest. In Proceedings of the 4th International Conference on Genetic Algo-
rithms (ICGA’91), pages 115–122, San Diego, CA. Morgan Kaufmann, San Francisco, CA.

Fernandes, C., Tavares, R., Munteanu, C., and Rosa, A. (2001). Using assortative mating in genetic
algorithms for vector quantization problems. In Proceedings of the 2001 ACM Symposium on
Applied Computing (ACM SAC’2001), pages 361–365, Las Vegas, NV. ACM, New York.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, MI. Second edition, The MIT Press, Boston, MA, 1992.

Huang, C. F. (2001). An analysis of mate selection in genetic algorithms. Technical Report CSCS-
2001-002, Center for the Study of Complex Systems, University of Michigan.

Manderick, B. and Spiessens, P. (1989). Fine-grained parallel genetic algorithms. In Proceedings of
the 3rd International Conference on Genetic Algorithms (ICGA’89), pages 428–433, George Mason
University, Fairfax, VA. Morgan Kaufmann, San Francisco, CA.

Martin, W. N., Lienig, J., and Cohoon, J. P. (1997). Island (migration) models: evolutionary algo-
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