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Abstract

The genetic algorithm technique known as crowding preserves population diversity by pairing
each offspring with a similar individual in the current population (pairing phase) and deciding
which of the two will survive (replacement phase). The replacement phase of crowding is usually
carried out through deterministic or probabilistic crowding, which have the limitations that they
apply the same selective pressure regardless of the problem being solved and the stage of genetic
algorithm search. The recently developed generalized crowding approach introduces a scaling
factor in the replacement phase, thus generalizing and potentially overcoming the limitations of
both deterministic and probabilistic crowding. A key problem not previously addressed, however,
is how the scaling factor should be adapted during the search process in order to effectively obtain
optimal or near-optimal solutions. The present work investigates this problem by developing
and evaluating two methods for adapting, during search, the scaling factor. We call these two
methods diversity-adaptive and self-adaptive generalized crowding respectively. Whereas the
former method adapts the scaling factor according to the population’s diversity, the latter method
includes the scaling factor in the chromosome for self-adaptation. Our experiments with real
function optimization, Bayesian network inference, and the Traveling Salesman Problem show
that both diversity-adaptive and self-adaptive generalized crowding are consistent techniques
that produce strong results, often outperforming traditional generalized crowding.

Keywords: Genetic algorithms, premature convergence, generalized crowding, scaling factor control.



1 Introduction

Genetic algorithms (GAs) [19, 16, 11] are stochastic search methods based on natural evolution.
They have been successfully applied to optimization problems in numerous fields. The processes of
variation (recombination and mutation) and selection form the basis of GAs; whereas the former
facilitates diversity and novelty, the latter favors quality. Generally, a GA’s goal is to find an optimal
(or near-optimal) solution, but this goal can be extended to identifying a set of diverse high-fitness
solutions. In both cases, premature convergence to local but poor optima is a difficulty that frequently
arises when applying GAs to complex problems. It is associated with the loss of population diversity;
however, too much diversity can dramatically reduce GA efficiency. Therefore, the trade-off between
exploitation of the best individuals and exploration of alternative search space regions is important
in GA research and practice.

Crowding was introduced by De Jong [9] as a technique for preserving population diversity and
preventing premature convergence. Crowding is applied in the survivor selection step of GAs in order
to decide which individuals, among those in the current population and their offspring, will pass
on to the next generation. It consists of two main phases: pairing and replacement [30]. In the
pairing phase, offspring individuals are paired with individuals in the current population according
to a similarity metric. In the replacement phase, a decision is made for each pair of individuals as to
which of them will remain in the population.

Depending on how the replacement phase is carried out, there are two main types of crowding:
deterministic [25, 26] and probabilistic [29, 28]. Whereas deterministic crowding selects the fittest
individual in each pair in the replacement phase, probabilistic crowding selects the surviving individ-
ual for each pair based on a probabilistic formula that takes fitness into account. The design of the
replacement rule has great impact on the performance of crowding. On the one hand, deterministic
crowding develops an exploitative replacement strategy. This may be a disadvantage, since exploita-
tive methods in GAs frequently lead to premature convergence. On the other hand, probabilistic
crowding promotes the exploration of alternative (less fit) solutions. In probabilistic crowding, the
degree of exploration is defined through a probabilistic formula that is not changed during GA execu-
tion. However, a more careful trade-off between exploration and exploitation can perhaps be achieved
if selective pressure is adapted to the problem being solved and to the GA stage. These observations
motivated the introduction of generalized crowding [14]. Generalized crowding is inspired by proba-
bilistic crowding, however the degree of exploration can be controlled by means of a parameter named
scaling factor. It turns out that both deterministic and probabilistic crowding are special cases of
generalized crowding, obtained by assigning the scaling factor the values 0 and 1 respectively.

Since the introduction of generalized crowding [14], it has only been applied by keeping the scaling
factor fixed throughout the GA generations. As the scaling factor parameter determines the applied
selective pressure, the present work investigates how this parameter can be varied during the search
process in order to effectively obtain optimal or near-optimal solutions. For example, more exploration
in the first generations of the GA and more exploitation in the final generations usually produces a
more effective search [10, Section 3]; simulated annealing is another search technique that takes
advantage of this fact through a cooling schedule [22, 1]. We explore in this work two novel approaches
to automatically changing, or adapting, the scaling factor. Our methods still require an initial value
for the scaling factor, however it is now changed during a GA’s run and thus the impact of using a poor
initial value is reduced. In particular, the novel diversity-adaptive and self-adaptive control techniques
rely entirely on the GA’s population to determine how the scaling factor is changed. In the diversity-
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adaptive method, the scaling factor is adapted according to the population’s diversity. In the self-
adaptive method, the scaling factor is adapted by including it in the chromosome. The impact of the
scaling factor’s initial value, as provided by the user, is much smaller for both these adaptive variants
of generalized crowding compared to the fixed scaling factor used in traditional generalized crowding.
As a consequence, the user can be much less concerned about how the scaling factor is initialized.
Our experiments with GAs applied to real function optimization, Bayesian network inference, and
the Traveling Salesman Problem show that diversity-adaptive and self-adaptive generalized crowding
often produce better results, in a more consistent way, compared to generalized crowding using a fixed
scaling factor. We perform ANOVA tests that confirm the statistical significance of the experimental
results obtained.

The rest of this article is structured as follows. Section 2 reviews previous research on crowding in
GAs and focuses on generalized crowding. Section 3 discusses several control methods for generalized
crowding’s scaling factor parameter, including the novel diversity-adaptive and self-adaptive methods.
Section 4 presents experimental results for traditional, diversity-adaptive, and self-adaptive general-
ized crowding applied to real function optimization, Bayesian networks inference, and the Traveling
Salesman Problem. These experimental results are discussed in detail in Section 5. Finally, Section 6
contains the main conclusions from this work and outlines future research.

2 Crowding Techniques

In general, crowding techniques give rise to overlapping-generation evolutionary algorithms (parents
and offspring compete for survival) with a replacement-oriented survival mechanism.

The original crowding scheme developed by De Jong [9] consists of randomly selecting, for each
offspring, γ individuals from the current population. The offspring will replace the most similar
selected individual. The parameter γ is known as the crowding factor, and usually γ = 2 is used.

De Jong’s scheme was changed slightly by Mahfoud [25, 26]. Since an offspring is likely to be
similar to its parents, the following crowding GA scheme can be used to efficiently preserve diversity
in the population:

1. The individuals in the current population are randomly paired. (Since parent selection is not
usually applied under crowding, every individual in the population becomes a parent.)

2. With probability PC (crossover probability), the parents in each pair (p1, p2) are recombined.
The two resulting children (c1, c2) are mutated with probability PM (mutation probability).

3. Each child competes with one of its two parents to be included in the population of the next
generation. Let d(i1, i2) denote the distance between two individuals, i1 and i2:

If d(p1, c1) + d(p2, c2) < d(p1, c2) + d(p2, c1)
p1 ← winner of competition between p1 and c1
p2 ← winner of competition between p2 and c2

else
p1 ← winner of competition between p1 and c2
p2 ← winner of competition between p2 and c1

Under this scheme, each offspring competes for survival with its most similar parent, although other
variants exist that pick up more than two parents and children before the similarity metric is applied
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[30, Section 4.2]. The “family competition” idea has been the basis of a number of widely-used
crowding algorithms [25, 26, 29, 28, 27], although other approaches like restricted tournament selection
achieve a similar effect [18]. One key difference between these approaches is the rule used to decide
the winner for each competition.

In crowding, the way a competition takes place between parent p and child c is defined through a so-
called replacement rule. We now discuss two of the most widely used replacement rules: deterministic
replacement and probabilistic replacement.

In Mahfoud’s deterministic crowding [25, 26], the winner of a competition between parent p and
child c is the one with higher fitness. Let Pc denote the probability that child c replaces parent p in
the population. This probability can be expressed in the following way for deterministic replacement:

Pc =


1 if f(c) > f(p)
0.5 if f(c) = f(p)
0 if f(c) < f(p)

,

where we assume maximization of a real-valued fitness function f . (Without loss of generality, maxi-
mization problems will be assumed throughout this article unless otherwise stated.)

Unlike deterministic crowding, probabilistic crowding as introduced by Mengshoel and Goldberg
[29, 28] uses a non-deterministic rule to establish the winner of a competition between parent p and
child c. The probability that c replaces p in the population is the following:

Pc =
f(c)

f(c) + f(p)
.

Similar to the deterministic and probabilistic crowding schemes, generalized crowding introduced
by Galan and Mengshoel [14] consists of a pairing phase and a replacement phase. The novelty is that
the replacement phase relies on a scaling factor ϕ, which enables a broad range of replacement rules
just by varying ϕ. In generalized crowding, the winner of a competition between parent p and child c
is established using this formula:

Pc =


f(c)

f(c)+ϕ·f(p) if f(c) > f(p)

0.5 if f(c) = f(p)
ϕ·f(c)

ϕ·f(c)+f(p)
if f(c) < f(p)

, (1)

where Pc is the probability that child c replaces parent p in the population, f is the fitness function
to be maximized, and ϕ ∈ ℜ+ ∪ {0} denotes the parameter named scaling factor.

The key idea in generalized crowding is that fitness scaling of the least fit individual, among p and
c, is done before probabilistic crowding is applied. As shown in Equation 1, if f(p) < f(c) then f(p)
is transformed into ϕ · f(p); otherwise, if f(c) < f(p) then f(c) is transformed into ϕ · f(c).

When ϕ = 0 in Equation 1, generalized crowding becomes equivalent to deterministic crowding.
When ϕ ∈ (0, 1), it is possible that the least fit among p and c wins in the replacement phase.
When ϕ = 1, generalized crowding turns into probabilistic crowding. Finally, when ϕ ∈ (1,+∞) the
probability that the least fit of p and c wins is greater than in probabilistic crowding, which perhaps
sounds counter-intuitive but can be beneficial for deceptive or highly multimodal problems [14].

To avoid having to deal with three separate cases in Equation 1, one can use instead the logistic
function ℓ(x) = 1/(1 + e−x) to obtain:

Pc =
ϕℓ(f(p)−f(c)) · f(c)

ϕℓ(f(p)−f(c)) · f(c) + ϕℓ(f(c)−f(p)) · f(p)
.
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The scaling factor ϕ allows a wide range of selective pressures to be applied: The greater ϕ is, the
more probable it is that locally non-optimal parts of the search space are explored.

3 Scaling Factor Control

A GA’s parameters can be either manually tuned in advance of its run or automatically controlled
during execution. Compared to manual parameter tuning, advantages of automatic parameter control
are that (i) it is less taxing on the GA’s user and (ii) parameters can be adapted to the state of
the search process, thus potentially producing better results. A classification of parameter setting
techniques for evolutionary algorithms can be found in the book of Eiben and Smith [11, Chapter 8].

Setting the proper value of ϕ in generalized crowding GAs is crucial for good performance. At
the same time, choosing the right ϕ-value is a hard and problem-dependent task [14, Section 5].
This section introduces two approaches for automatically controlling the ϕ parameter of generalized
crowding: diversity-adaptive control and self-adaptive control. One main objective of this work is to
study whether these approaches can improve the traditional method of setting ϕ prior to GA execution
and keeping it fixed throughout the search process.

As a motivation for the introduction of diversity-adaptive and self-adaptive control of ϕ, we first
describe nonadaptive control, a simple but limited method for varying ϕ. Nonadaptive control of the
scaling factor ϕ consists of changing ϕ by means of a deterministic rule. This rule is predetermined by
the user, remains fixed throughout the GA’s execution, and uses no feedback from the GA population.
Given that it is reasonable to gradually reduce the degree of exploration during a GA’s run, a few
examples of this control technique are the following:

• Exponentially decaying scaling factor
Under this scheme, the scaling factor at generation t, ϕ(t), is calculated by multiplying ϕ(t− 1)
by a decay constant k ∈ [0, 1]. In this way,

ϕ(t) = ϕ(1) · kt−1,

where ϕ(1) is the scaling factor defined by the user for t = 1, the first generation of the GA.
When k = 1 this scheme is identical to the traditional generalized crowding GA that keeps ϕ
fixed [14]. Additionally, when k = 0 this scheme becomes equivalent to deterministic crowding.
In general, the greater k is, the more exploration is applied.

• Linearly decaying scaling factor
Under this scheme, the scaling factor at generation t, ϕ(t), is calculated by subtracting from
ϕ(t− 1) a decay constant k ∈ ℜ+ ∪ {0}. Therefore,

ϕ(t) = ϕ(1)− {k · (t− 1)},

where ϕ(1) is the scaling factor defined by the user for the first generation. Obviously, if the
formula produces negative values then ϕ(t) is considered to be equal to zero. In this scheme,
the greater k is, the less exploration is applied.

A disadvantage of these methods is that the user needs to assign a value to k before running the
GA. Since k determines the degree of exploration applied, a similar problem as in the case of fixed ϕ
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Figure 1: Overview of how the traditional (a), diversity-adaptive (b), and self-adaptive (c) control
methods work in a generalized crowding GA.

arises: It is impossible to know in advance the proper degree of exploration for a given optimization
problem, which forces the user to either pick a “reasonable” value for k or spend time to manually
tune its value. This disadvantage appears also in crowding GAs applying a replacement rule based on
simulated annealing [27, 30], where deciding the proper cooling schedule for the temperature is a hard
task. For these reasons, this work focuses on diversity-adaptive and self-adaptive control methods for
ϕ, which require no additional parameters like k to be defined and, consequently, appear easier to use
compared to nonadaptive methods.

Fig. 1 summarizes how the adaptive and nonadaptive control methods work. The traditional
method applies a fixed scaling factor to the crowding process (see Fig. 1[a]); more generally, one of the
exponentially or linearly decaying scaling factors discussed above can be used. The diversity-adaptive
control method, discussed in Section 3.1, updates the scaling factor, prior to the crowding process, by
using information on the diversity of the current population (see Fig. 1[b]). Finally, the self-adaptive
control method, discussed in Section 3.2, incorporates the scaling factor in the chromosome of the
individuals, and the scaling factor is subjected to initialization, recombination, and mutation (see
Fig. 1[c]).

3.1 Diversity-Adaptive Control

Diversity-adaptive control of the scaling factor ϕ uses feedback from the GA population to determine
the magnitude of the change to ϕ. The updating mechanism used to control ϕ is applied between
consecutive GA generations. Specifically, ϕ can be set proportionally to the population diversity at
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each generation in the following way:

ϕ(t) = ϕ(1) · ∆(t)

∆(1)
, (2)

where ϕ(1) is the scaling factor defined by the user for the first generation, and ∆(t) is the population
diversity at generation t. In this way, ϕ is lowered at the same rate as the population diversity
decreases. Consequently, the degree of exploration is reduced as the GA progresses. The high values
of ϕ(t) in the first generations prevent premature convergence to local optima with poor fitness. The
low values of ϕ(t) in the last generations, when population diversity is nearly lost, favor that regions
close to (local or global) optima are effectively exploited.

In this work, we use a diversity measure based on the concept of population entropy. Entropy
has been used in the context of GAs to prevent premature convergence. For example, Farhang-Mehr
and Azarm [12] introduce an entropy-based multi-objective genetic algorithm. Tsujimura and Gen
[42] calculate the entropy of each gene for the individuals in the population and compare it with a
threshold value; when the number of genes whose entropy is lower than the threshold is greater than
a given amount, the diversity of the population is increased by a process of allele exchange. Finally,
Liu, Mernik, and Bryant [24] calculate entropy from the fitness distribution in the population and
the entropy value is employed to change the mutation probability: When the entropy is greater than
0.5, the mutation probability is decreased to facilitate exploitation. If entropy is smaller than 0.5, the
mutation probability is increased to diversify the search process.

We use entropy as a measure to directly determine the value of the scaling factor, generation by
generation. Specifically, we define ∆(t) = H(t) in Equation 2, where H(t) is the mean entropy (over
the genes) for the individuals in the population at generation t. If the genotype is formed by n genes,
the mean entropy at t is defined as follows:

H(t) =
1

n

n∑
i=1

Hi(t),

where Hi(t) is the entropy of gene i. Hi(t) can be calculated in the following way:

Hi(t) = −
vi∑
j=1

Pij · logvi Pij, (3)

where vi is the number of alleles (or possibles values) for gene i, and Pij is the frequency of individuals in
the population whose gene i adopts the j-th possible value for that gene. Regardless of the magnitude
of vi in Equation 3, Hi(t) always belongs to interval [0, 1], and so does H(t).

3.2 Self-Adaptive Control

Self-adaptive parameter control has been extensively performed by evolutionary algorithms. In evolu-
tion strategies [36, 37], the mutation step sizes are self-adapted throughout the search process. Both
mutation rate [3] and crossover [31] have been self-adapted as well. In mating for GAs, the self-adapted
parameter is the mating index, which defines the particular mating preference of an individual during
a GA’s mating phase [15].
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Self-adaptive control of the scaling factor ϕ can be carried out by encoding this parameter into
the chromosome, and performing recombination and mutation on the ϕ-values in the population. In
this way, the ϕ-values leading to better individuals will have a greater chance of surviving.

If an individual j is represented as ⟨xj,1, . . . , xj,n⟩, its extended representation under the self-
adaptive scaling factor scheme is ⟨xj,1, . . . , xj,n, xj,n+1⟩, where xj,n+1 = ϕj is the scaling factor. In
other words, ϕ is now a local parameter, and each individual has an independent behavior in the
replacement phase.

In self-adaptive generalized crowding, the replacement rule for parent p ≡ ⟨xp,1, . . . , xp,n, ϕp⟩ and
child c ≡ ⟨xc,1, . . . , xc,n, ϕc⟩ operates so that the probability Pc that child c replaces parent p is:

Pc =


f(c)

f(c)+ϕp·f(p) if f(c) > f(p)

0.5 if f(c) = f(p)
ϕc·f(c)

ϕc·f(c)+f(p)
if f(c) < f(p)

.

Note that in self-adaptive generalized crowding, the scaling factor applied in the replacement rule is
that of the least fit individual among p and c. This is in accordance with generalized crowding, where
the fitness of the worse individual among p and c is the one multiplied by the scaling factor.

It remains to consider how scaling factors are initialized, recombined, and mutated. As far as
initialization is concerned, each scaling factor is assigned a real number generated uniformly at random
from the range [0, ϕmax], where ϕmax is defined by the user. Recombination of the scaling factors of
two parents can be carried out in several ways: by assigning to the children the mean of the parents’
scaling factors, or by letting the children inherit the parents’ scaling factors, among other possibilities.
This work uses the latter method, since we have found that it produces better experimental results.
Mutation of scaling factor is implemented by adding to its real value an amount drawn randomly from
a Gaussian distribution with mean zero and standard deviation ϕmax ·0.1. In the case that the mutated
scaling factor is located outside the interval [0, ϕmax], the original scaling factor is kept unchanged.

4 Experiments

The main purpose of this experimental section is twofold: on the one hand, we investigate whether
generalized crowding with fixed scaling factor is outperformed by diversity-adaptive and self-adaptive
generalized crowding; on the other hand, we conduct a comparative experimental study between
diversity-adaptive and self-adaptive generalized crowding.

In this section, we compare the performance of these three scaling-factor control techniques in the
context of generalized crowding:

1. Fixed scaling factor, as in traditional generalized crowding [14]

2. Diversity-adaptive scaling factor based on population entropy (see Section 3.1)

3. Self-adaptive scaling factor (see Section 3.2)

For each control technique, the user needs to set the value of a parameter before the GA is started. For
simplicity, we call this parameter ϕ0, and its meaning is different depending on the control technique.
When fixed scaling factor is used, as in traditional generalized crowding, ϕ0 is the ϕ-value that is kept
constant for all GA generations (ϕ(t) = ϕ0 for t ≥ 1). In the case of diversity-adaptive scaling, ϕ0 is
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the initial scaling factor at the first generation (ϕ(1) = ϕ0). If self-adaptive scaling is employed, then
ϕ0 is the maximum scaling factor that can be assigned to individuals (ϕmax = ϕ0).

When designing a GA, one has to decide what variation and selection methods to use among a
set of possibilities; furthermore, each method may include parameters whose values have to be set by
the user. In our case, we have made these choices based on the literature on GAs, our accumulated
knowledge, and preliminary experiments carried out as part of this work. Obviously, finding the
optimal configuration of methods and parameters values is problem-dependent and a highly complex
task, and our claim is only to have employed approximately optimal configurations rather than optimal
configurations in the experiments.

For the sake of generality, several distinct domains leading to different genotype representations
were experimented with: (1) real-function optimization for which we use a GA with real-valued
representation; (2) Bayesian network inference for which we employ a GA with integer encoding of
genes values; and (3) the Traveling Salesman Problem where individuals are represented through
permutations of different elements.

4.1 Real Function Optimization

Given an n-dimensional function, f : ℜn −→ ℜ, global optimization consists of determining x∗ ∈ ℜn

such that f(x∗) ≥ f(x) for all x ̸= x∗ with x ∈ ℜn. This definition corresponds to a maximization
problem. In the case of minimization, the inequality is f(x∗) ≤ f(x).

The experiments in this section were performed by means of a GA using n real-coded variables as
genotype, no parent selection, random mating, uniform crossover [40] with crossover probability equal
to one for each pair of parents, uniform mutation (that draws a value uniformly at random from the
interval where the corresponding real variable is defined) with a given low mutation probability for
each gene or real variable, generational survivor selection, and no kind of elitism. Different seeds for
the random number generator were used for each run of the GA.

In preliminary experiments with generalized crowding using a fixed scaling factor, we extensively
tested various unimodal and multimodal fitness functions. We identified the following two groups of
functions:

• Group 1: Functions for which the lower ϕ is, the better is the performance obtained. This means
that a more exploitative generalized crowding, or lower ϕ, tends to produce better results for this
kind of function. Typical multimodal functions like Michalewicz [32], Schwefel [37], Rastrigin
[33], and Ackley [2] turned out to belong to this group. We obtained this result from several
experiments (partly reported at the end of this section) for different dimensions, population
sizes, and crossover rates, among other parameters.

• Group 2: Functions for which the best performance is obtained for some specific ϕ > 0, and not
for ϕ = 0 as in the other group. Finding functions belonging to this group was more difficult in
comparison to group 1; below we enumerate several of them.

For the sake of generality, we experimented extensively with functions from each group. Previously,
six two-dimensional functions F1-F6 were used by Ballester and Carter [4] to empirically demonstrate
that GAs with random selection of parents and crowding replacement are robust optimizers, whereas
GAs with tournament selection of parents and random replacement perform poorly in comparison.
The present work constitutes a further step in this direction, since new, adaptive, and more consistent
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GA Parameters Values

Population size M = 20
Genes per individual n = 2

Mating random
Crossover uniform (PC = 1)
Mutation uniform (PM = {0.0125, 0.025})

Survivor selection generational
ϕ0 {0, 0.25, 0.5, 0.75, 1, 1.25}

Entropy intervals 100 per dimension
Runs number 1000

Table 1: GA configuration for the experiments in Figs. 2 and 3.

crowding GAs are introduced. Our preliminary experiments showed that Ballester and Carter’s F1,
F3, and F6 (see [4, Section 2]) belong to Group 1, whereas F2, F4, and F5 belong to Group 2. We
chose for our extensive experiments presented below the functions F1 and F2, which are defined over
the range −10 ≤ x1, x2 ≤ 10, as follows:

F1(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

F2(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3.

Since these two functions were designed for minimization, we transformed them (without loss of
generality) so that maximization is applied and their values are always positive over range [−10, 10],
as required by Equation 1. The resulting transformed functions used in this work are the following:

F ∗
1 (x1, x2) = −F1(x1, x2) + 301.4

F ∗
2 (x1, x2) = −F2(x1, x2) + 300.6.

Since x2
1 + 2x2

2 ≤ 300 for −10 ≤ x1, x2 ≤ 10 and −1 ≤ cos(·) ≤ 1, the election of constants 301.4 and
300.6 guarantees that F ∗

1 and F ∗
2 are positive. In this way, the optimal value for F ∗

1 is 301.4, and the
optimal value for F ∗

2 is 300.6. For simplicity, in the rest of the article we will refer to F ∗
1 and F ∗

2 as
F1 and F2 respectively.

Table 1 summarizes the GA configuration in the experiments for F1 and F2. Fig. 2 represents
the evolution, generation by generation, of the mean best fitness (considering the best individual
found from the first generation to the current generation) for function F1. Three cases are depicted
in Fig. 2: fixed scaling (Figs. 2[a] and 2[d]), diversity-adaptive scaling (Figs. 2[b] and 2[e]), and self-
adaptive scaling (Figs. 2[c] and 2[f ]). Fig. 3 depicts, for F2, the same metrics as Fig. 2 depicts for F1.
Note that the case of fixed scaling factor for ϕ0 = 0 corresponds to deterministic crowding, and the
case of fixed scaling factor for ϕ0 = 1 corresponds to probabilistic crowding.

We next consider the Michalewicz and Schwefel functions. The Michalewicz function [32] is defined
as follows:

fMichalewicz(x) =
n∑

i=1

sin(xi) ·
{
sin

(
i · x2

i

π

)}2·m

with 0 ≤ xi ≤ π,
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(e) F1, PM = 0.025, Diversity-Adaptive Scaling Factor
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(f) F1, PM = 0.025, Self-Adaptive Scaling Factor
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Figure 2: Mean best fitness results over 1000 runs for F1 with population size M = 20 and mutation
probabilities: PM = 0.0125 (left graphs) and PM = 0.025 (right graphs). Cases studied: fixed scaling
factor (graphs [a] and [d]), diversity-adaptive scaling factor (graphs [b] and [e]), and self-adaptive
scaling factor (graphs [c] and [f ]). Each graph contains tests for ϕ0 = {0, 0.25, 0.5, 0.75, 1, 1.25}.
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(a) F2, PM = 0.0125, Fixed Scaling Factor
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(d) F2, PM = 0.025, Fixed Scaling Factor
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(b) F2, PM = 0.0125, Diversity-Adaptive Scaling Factor
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(e) F2, PM = 0.025, Diversity-Adaptive Scaling Factor
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(c) F2, PM = 0.0125, Self-Adaptive Scaling Factor
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(f) F2, PM = 0.025, Self-Adaptive Scaling Factor
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Figure 3: Mean best fitness results over 1000 runs for F2 with population size M = 20 and mutation
probabilities: PM = 0.0125 (left graphs) and PM = 0.025 (right graphs). Cases studied: fixed scaling
factor (graphs [a] and [d]), diversity-adaptive scaling factor (graphs [b] and [e]), and self-adaptive
scaling factor (graphs [c] and [f ]). Each graph contains tests for ϕ0 = {0, 0.25, 0.5, 0.75, 1, 1.25}.
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where m usually takes on a value of 10. The Schwefel function [37] is defined as:

fSchwefel(x) =
n∑

i=1

xi · sin
(√
|xi|

)
with − 500 ≤ xi ≤ 500

and has a maximum at (x1 = 420.9687, . . . , xn = 420.9687) whose value is n · 418.9829. We added
500 · n to the Schwefel function in order to transform it into a positive function.

Fig. 4 shows experimental results for the Michalewicz and the Schwefel functions. The experiments
in Fig. 4 were carried out for n = 80 and M = 100, and produced results qualitatively similar to those
of F1 in Fig. 2.

4.2 Bayesian Network Optimization

A Bayesian network (BN) [34, 20, 7] is an acyclic directed graph whose nodes represent random
variables and whose arcs establish probabilistic dependence and independence relations between the
random variables. In this article, we only consider discrete random variables. The parametric part
of a BN is formed by a set of conditional probability tables (CPTs) that contain the probabilities of
a node’s states given any possible configuration of values for its parents. For root nodes, only their
prior probabilities are needed. Given a BN with nodes V = {V1, . . . , Vn}, the joint probability over
the random variables in the network is defined as follows:

P (v1, . . . , vn) =
n∏

i=1

P (vi | pa(vi)),

where pa(vi) stands for a configuration of the set of parents for variable Vi. Note that a random
variable is represented by an uppercase letter, whereas a value (or state) it can take is denoted by the
same lowercase letter.

This section deals with abductive inference in BNs, also known as belief revision. Given some
evidence or set of observations, e = {E1 = e1, . . . , Em = em} with Ei ∈ {V1, . . . , Vn} ∀i, an explanation
is defined as a configuration of values for the network variables, v = {V1 = v1, . . . , Vn = vn}, such
that e ⊂ v. The goal of abductive inference is to find an explanation v∗ with maximum posterior
probability:

v∗ = argmax
v

P (v | e),

which is usually referred to as a most probable explanation.
The estimation of a most probable explanation in BNs is of interest in many applications includ-

ing diagnosis, image recognition, genetic linkage analysis, and error correction decoding. Abductive
inference in BNs has been proven to be an NP-hard problem [38], but some approximate and heuris-
tic methods exist that allow optimal or approximately optimal explanations to be computed even
for complex networks. The present section deals with approximate methods that use evolutionary
computing to perform abductive inference in BNs [13]. We employ a GA in which the representation
of individuals (or explanations) uses a string whose elements are defined over a finite alphabet, such
that each position (or gene) in the string corresponds to one variable in the BN. Each gene can take
on a number of discrete values (or alleles) which correspond to the domain values of its associated
random variable.
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(d) Schwefel, PM = 0.000125, Fixed Scaling Factor
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(b) Michalewicz, PM = 0.000125, Diversity-Adaptive 
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(e) Schwefel, PM = 0.000125, Diversity-Adaptive 
Scaling Factor
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(c) Michalewicz, PM = 0.000125, Self-Adaptive Scaling 
Factor
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(f) Schwefel, PM = 0.000125, Self-Adaptive Scaling 
Factor
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Figure 4: Mean best fitness results over 100 runs for the Michalewicz (left graphs) and Schwefel
(right graphs) functions with dimension n = 80, population size M = 100, and mutation probability
PM = 0.000125. Cases studied: fixed scaling factor (graphs [a] and [d]), diversity-adaptive scaling
factor (graphs [b] and [e]), and self-adaptive scaling factor (graphs [c] and [f ]). Each graph contains
tests for ϕ0 = {0, 0.25, 0.5, 0.75, 1, 1.25}.
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GA Parameters Values

Population size M = 20
Genes per individual n = 37

Mating random
Crossover uniform (PC = 1)
Mutation random

(
PM = 1

n
= 1

37

)
Survivor selection generational

ϕ0 {0, 10, 20, 30, 40}
Runs number 1000

Table 2: GA configuration for the experiments in Fig. 5.

We used in our experiments variants of the well-known Alarm BN [5], which has 37 nodes and 752
conditional probabilities. As done previously [13], we randomly introduced zeros into the CPTs of the
Alarm BN in order to vary its search space characteristics. Specifically, zeros were introduced with
probability ρ ∈ {0.0, 0.2} as reflected in the notation Alarmρ. An Alarmρ BN is not the same as the
Alarm BN; they have the same graph structure, node cardinalities, and number of CPT values, but
CPT values are generated in a randomized way for Alarmρ, where the number of CPT values equal
to zero is approximately ρ · 752.

We varied ϕ0 in our experiments with Alarmρ BNs and investigated ϕ0 = {0, 10, 20, 30, 40}. Table
2 contains the GA configuration employed in these experiments. Uniform crossover was used with
crossover probability PC = 1. For a BN with n nodes, we used mutation probability for each gene given
by PM = 1/n, and mutation amounted to changing a node’s state uniformly at random. Experimental
results were averaged over one thousand runs. The results of the experiments are summarized in Fig. 5.

4.3 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a combinatorial optimization problem which has been
widely studied in the scientific literature on evolutionary computation [17, 8, 43, 41, 23]. The TSP
consists of finding a path of minimum length between several cities, such that any possible path visits
each of the cities only once, departing and arriving at the same city.

We employed in the experiments two problems of different complexity. The first problem, called
TSPsquare16, is a simple TSP consisting of 16 cities placed as a square, such that there are five
cities on each side of the square. Since each city is separated one hundred units from its nearest city,
the optimum has a value of 1600. The second problem, called TSPBerlin52, is a more complex TSP
consisting of 52 locations in Berlin.1 In this case, the optimum path has a length of 7542. These
two problems are different in one important aspect: While our GAs reach the optimum for TSP-
square16 in some of the experiments, they suffer from premature convergence in all the experiments
for TSPBerlin52. We are thus able to study two main classes of behavior that can be found in this
domain. Another important point is the fitness function, which should be adapted to maximization
when crowding is applied; in order to do that, we internally used in our GAs the inverse of path

1We obtained this problem from the TSP library that can be found at:
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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(d) Alarm 0.2,  Fixed Scaling Factor
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(b) Alarm 0.0,  Diversity-Adaptive Scaling Factor
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(e) Alarm 0.2,  Diversity-Adaptive Scaling Factor
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(c) Alarm 0.0,  Self-Adaptive Scaling Factor
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(f) Alarm 0.2,  Self-Adaptive Scaling Factor
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Figure 5: Mean best fitness results over 1000 runs for Alarm0.0 (left graphs) and Alarm0.2 (right
graphs) with population size M = 20. Cases studied: fixed scaling factor (graphs [a] and [d]),
diversity-adaptive scaling factor (graphs [b] and [e]), and self-adaptive scaling factor (graphs [c] and
[f ]). Each graph contains tests for ϕ0 = {0, 10, 20, 30, 40}.
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GA Parameters Values

Population size M = 100
Genes per individual n = {16, 52}

Mating random
Crossover modified order crossover (PC = 0.9)
Mutation swap mutation (PM = 0.6)

Survivor selection generational
ϕ0 {0, 0.02, 0.04, 0.06, 0.08, 0.1}

Runs number 1000

Table 3: GA configuration for the experiments in Fig. 6.

length as fitness function. Nonetheless, for the sake of clarity, we still use path length in the graphs
to illustrate the results obtained in the experiments.

Experiments were carried out with a GA using permutation of cities as genotype, no parent
selection, random mating, modified order crossover [44] with crossover probability 0.9, swap mutation
[41] with mutation probability for each individual of 0.6, and generational survivor selection. Table 3
shows the GA configuration for these experiments.

Fig. 6 depicts the results obtained for TSPsquare16 and TSPBerlin52. The population size was
set to M = 100, one thousand runs were completed for each particular experiment, and no kind of
elitism was used. As in our previous experiments, three cases are shown in Fig. 6: fixed scaling factor
(Figs. 6[a] and 6[d]), diversity-adaptive scaling factor (Figs. 6[b] and 6[e]), and self-adaptive scaling
factor (Figs. 6[c] and 6[f ]). Each graph in Fig. 6 contains tests for ϕ0 = {0, 0.02, 0.04, 0.06, 0.08, 0.1}.

5 Discussion of Experiments

The experimental study carried out in Section 4 used different domains leading to different genotype
representations and genetic operators. We also tried to cover problems of varying complexity in
each domain and ϕ-values contained in distinct ranges; for example, in the real functions domain
ϕ ∈ [0, 1.25], in the BNs domain ϕ ∈ [0, 40], and in the TSP domain ϕ ∈ [0, 0.1]. For each domain
and the case of fixed ϕ, we tried to cover, on the one hand, problems in which lower ϕ leads to better
results and, on the other hand, problems where the best behavior is not obtained when ϕ = 0. The
experimental results obtained in Section 4 for the three domains studied in this article are summarized
in Table 4. The table focuses on the mean best fitness produced in the final GA generation.

Before discussing the experimental results obtained in Section 4, their statistical significance needs
to be established. In other words, for each figure in Section 4 (from Fig. 2[a] to Fig. 6[f ]), it has to be
determined whether or not the graphs in the figure come from the same distribution and, therefore,
the differences are due to random effects (null hypothesis). ANOVA tests were performed on the
best-fitness data for the last generation depicted in each of the graphs contained in Figs. 2(a) through
6(f); for each graph, one thousand samples were taken. Table 5 contains the results for ANOVA tests
on groups of samples constituted by mean best fitness values under ϕ0 ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}
for real-function optimization (Figs. 2[a] through 3[f ]), under ϕ0 ∈ {0, 10, 20, 30, 40} for BN inference
(Figs. 5[a] through 5[f ]), and under ϕ0 ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1} for TSP (Figs. 6[a] through
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(b) TSPsquare16, Diversity-Adaptive Scaling Factor
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(e) TSPBerlin52, Diversity-Adaptive Scaling Factor

0

0.02

0.04

0.06

0.08

0.1

φ(1):

1600

1700

1800

1900

2000

2100

2200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
 B

es
t 

F
it

n
es

s

Generation

(c) TSPsquare16, Self-Adaptive Scaling Factor
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Figure 6: Mean best fitness results over 1000 runs for TSPsquare16 and TSPBerlin52 with population
size M = 100. Cases studied: fixed scaling factor (graphs [a] and [d]), diversity-adaptive scaling factor
(graphs [b] and [e]), and self-adaptive scaling factor (graphs [c] and [f ]). Each graph contains tests
for ϕ0 = {0, 0.02, 0.04, 0.06, 0.08, 0.1}.
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MEAN BEST FITNESS
Scaling-Factor Control Methods:

Optimization Problem PM ϕ0 Nonadaptive (Fixed) Diversity-Adaptive Self-Adaptive

F1

0.0125

0 301.399 (7.72E-4) 301.399 (5.29E-4) 301.399 (5.36E-4)
0.25 301.399 (1.08E-3) 301.399 (6.45E-4) 301.399 (7.18E-4)
0.5 301.398 (2.13E-3) 301.399 (6.65E-4) 301.399 (1.34E-3)
0.75 301.393 (8E-3) 301.399 (7.52E-4) 301.399 (1.79E-3)
1 301.289 (0.111) 301.399 (6.58E-4) 301.398 (1.76E-3)

1.25 301.106 (0.184) 301.399 (7.75E-4) 301.397 (3.99E-3)

0.025

0 301.399 (1.61E-4) 301.399 (1.67E-4) 301.399 (1.56E-4)
0.25 301.399 (3.99E-4) 301.399 (1.56E-4) 301.399 (2.01E-4)
0.5 301.399 (5.28E-4) 301.399 (1.54E-4) 301.399 (2.93E-4)
0.75 301.397 (3.53E-3) 301.399 (1.86E-4) 301.399 (3.63E-4)
1 301.347 (0.059) 301.399 (2.32E-4) 301.399 (6.38E-4)

1.25 301.248 (0.137) 301.399 (3.37E-4) 301.397 (2.86E-3)

F2

0.0125

0 300.537 (0.096) 300.538 (0.098) 300.533 (0.097)
0.25 300.550 (0.08) 300.503 (0.104) 300.543 (0.083)
0.5 300.562 (0.069) 300.508 (0.104) 300.549 (0.081)
0.75 300.572 (0.036) 300.510 (0.103) 300.556 (0.074)
1 300.512 (0.074) 300.516 (0.099) 300.567 (0.065)

1.25 300.417 (0.102) 300.527 (0.097) 300.577 (0.038)

0.025

0 300.547 (0.096) 300.543 (0.091) 300.540 (0.093)
0.25 300.586 (0.043) 300.510 (0.101) 300.578 (0.05)
0.5 300.591 (0.025) 300.524 (0.099) 300.584 (0.043)
0.75 300.589 (0.013) 300.534 (0.092) 300.589 (0.027)
1 300.553 (0.047) 300.553 (0.077) 300.594 (0.013)

1.25 300.487 (0.082) 300.584 (0.042) 300.591 (0.012)

Alarm0.0 1
37

0 1.15E-7 (3.61E-8) 1.18E-7 (3.56E-8) 1.16E-7 (3.78E-8)
10 1.04E-7 (2.69E-8) 1.08E-7 (3.94E-8) 1.09E-7 (3.29E-8)
20 9.17E-8 (2.15E-8) 1.06E-7 (2.91E-8) 1.02E-7 (2.37E-8)
30 8.01E-8 (2.06E-8) 1.00E-7 (2.43E-8) 9.29E-8 (2.08E-8)
40 6.87E-8 (2E-8) 9.26E-8 (2.21E-8) 8.59E-8 (2.13E-8)

Alarm0.2 1
37

0 2.99E-6 (2.77E-6) 2.83E-6 (2.54E-6) 2.68E-6 (2.63E-6)
10 4.31E-6 (2.73E-6) 3.07E-6 (2.71E-6) 4.11E-6 (2.77E-6)
20 3.13E-6 (2.12E-6) 4.04E-6 (2.79E-6) 4.05E-6 (2.56E-6)
30 1.56E-6 (1.39E-6) 4.15E-6 (2.79E-6) 3.30E-6 (2.12E-6)
40 8.65E-7 (7.62E-7) 4.16E-6 (2.61E-6) 2.31E-6 (1.78E-6)

TSPsquare16 0.6

0 1600 (0) 1600 (0) 1600 (0)
0.02 1606.45 (35.34) 1603.48 (24.96) 1601.31 (15.12)
0.04 1722.59 (122.86) 1674.56 (103.61) 1607.88 (34.34)
0.06 1888.63 (141.03) 1842.9 (139.95) 1659.68 (95.4)
0.08 2002.38 (137.09) 1966.8 (137.92) 1741.81 (125.33)
0.1 2079.55 (130.75) 2049 (138.52) 1842.77 (138.62)

TSPBerlin52 0.6

0 10338.1 (546.74) 10324.69 (542.96) 10339.64 (550.69)
0.02 10792.3 (554.34) 10588.62 (570.67) 10579.98 (563.44)
0.04 11368.54 (555.8) 10977.97 (597.75) 10842.24 (570.88)
0.06 11977.92 (552.43) 11428.98 (614.34) 11114.52 (563.87)
0.08 12495.87 (559.26) 11822.98 (589) 11448.94 (569.24)
0.1 13012.7 (541.4) 12332.29 (620.39) 11811.83 (575.1)

Table 4: Mean best fitness results in the final GA generation for the experiments in Figs. 2 through
6. (The optimum mean value in each row appears highlighted, and standard deviations are included
in parentheses.)
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Figure Problem F Fcritical p

2(a) F1 1679.224 2.216 0
2(b) F1 5.070 2.216 1.218E-004
2(c) F1 182.194 2.216 4.199E-181
2(d) F1 1049.810 2.216 0
2(e) F1 27.748 2.216 7.066E-028
2(f) F1 411.453 2.216 0

3(a) F2 530.233 2.216 0
3(b) F2 8.898 2.216 1.976E-008
3(c) F2 44.719 2.216 1.826E-045
3(d) F2 442.608 2.216 0
3(e) F2 91.712 2.216 2.643E-093
3(f) F2 147.058 2.216 1.107E-147

5(a) Alarm0.0 536.773 2.374 0
5(b) Alarm0.0 75.537 2.374 2.845E-062
5(c) Alarm0.0 149.417 2.374 6.947E-121

5(d) Alarm0.2 416.051 2.374 0
5(e) Alarm0.2 68.272 2.374 2.395E-056
5(f) Alarm0.2 125.232 2.374 5.001E-102

6(a) TSPsquare16 3634.109 2.216 0
6(b) TSPsquare16 3096.916 2.216 0
6(c) TSPsquare16 1209.700 2.216 0

6(d) TSPBerlin52 3351.240 2.216 0
6(e) TSPBerlin52 1620.826 2.216 0
6(f) TSPBerlin52 941.866 2.216 0

Table 5: ANOVA test results for the experiments in Section 4. When F ≥ Fcritical, the result is
significant at the level of p = 0.05.

6[f ]). Besides the F value, the probability p of the corresponding result assuming the null hypothesis
is shown. When probability p is less than a small threshold (typically, p = 0.05 is used in the
literature), one is justified in rejecting the null hypothesis. In other words, the results are significant
at the 5% significance level when F > Fcritical. The values for p in Table 5 are small enough to discard
the null hypothesis for all the experiments.

5.1 Real Function Optimization

Note that, for function F1, both diversity-adaptive control of ϕ (Figs. 2[b] and 2[e]) and self-adaptive
control of ϕ (Figs. 2[c] and 2[f ]) outperform generalized crowding using fixed ϕ (Figs. 2[a] and 2[c]).
The greater ϕ is, the more improvement is obtained. Furthermore, diversity-adaptive control of ϕ
produces better results than self-adaptive control.

When F2 is used as fitness function, on the one hand, generalized crowding using fixed ϕ (Figs. 3[a]
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and 3[d]) gives, compared to diversity-adaptive control of ϕ (Figs. 3[b] and 3[e]), better results for
ϕ0 ∈ {0.25, 0.5, 0.75}, comparable results for ϕ0 = 1, and much worse results for ϕ0 = 1.25. On
the other hand, generalized crowding using fixed ϕ (Figs. 3[a] and 3[d]) produces, compared to self-
adaptive control of ϕ (Figs. 3[c] and 3[f ]), comparable results for ϕ0 ∈ {0.25, 0.5, 0.75} and much
worse results for ϕ0 ∈ {1, 1.25}. Interestingly, a different result appears in the case of F2 compared to
F1: Diversity-adaptive control of ϕ now produces worse results than self-adaptive control.

Overall, Figs. 2 and 3 suggest that adaptive control of ϕ is much more consistent to ϕ0 changes
than what fixed ϕ is. Furthermore, whereas fixed ϕ and adaptive ϕ are nearly comparable in the
case of low ϕ-values, for the case of larger ϕ-values the performance of fixed ϕ greatly deteriorates
compared to that of adaptive ϕ.

5.2 Bayesian Network Optimization

The experimental BN results suggest that, as the number of zeros in the CPTs grows and consequently
the complexity of the search space increases (with more plateaus of fitness, or probability, equal to
zero), it is useful to increase ϕ under fixed scaling factor in order to increase the degree of GA
exploration. For example, in Fig. 5(d), a fixed ϕ = 10 yields much better results than a fixed
ϕ = 0. On the other hand, as in the case of real function optimization included in Section 4.1, both
diversity-adaptive control of ϕ (Figs. 5[b] and 5[e]) and self-adaptive control of ϕ (Figs. 5[c] and 5[f ])
produce better global optimization results than generalized crowding using fixed ϕ (Figs. 5[a] and
5[d]). Consistency is also higher for the adaptive techniques, since their graphs are closer to each
other. Moreover, diversity-adaptive control of ϕ produces better results than self-adaptive control
in Fig. 5; this constitutes the same behavior as that obtained for real function F1 and the opposite
behavior to that obtained from F2.

5.3 Traveling Salesman Problem

The results obtained for TSP in Fig. 6 clearly show that adaptive control of ϕ (Figs. 6[b], 6[c], 6[e], and
6[f ]) significantly improves on fixed ϕ (Figs. 6[a] and 6[b]) in terms of performance and consistency;
furthermore, this fact is independent of the type of TSP problem: one in which the optimum is reached
(TSPsquare16 in Fig. 6) or one in which premature convergence takes place (TSPBerlin52 in Fig. 6).

Figs. 6[b], 6[c], 6[e], and 6[f ] demonstrate that, for TSP, self-adaptive control of ϕ outperforms
control of ϕ through population diversity. This behavior is similar to that observed for F2 in the
domain of real function optimization.

5.4 Scaling Factor Evolution

It is interesting to study how the ϕ-values change over generations depending on the optimization
problem considered, the type of adaptive control applied to ϕ, and the values of ϕ0. For the sake of
brevity, we selected the BN optimization domain in order to illustrate this change. Fig. 7 depicts the
(averaged over 1000 runs) current scaling factor in the population for the diversity-adaptive case and
the (averaged over 1000 runs) mean scaling factor in the population for the self-adaptive case. In this
way, Fig. 7(a) corresponds to Fig. 5(b), Fig. 7(b) corresponds to Fig. 5(c), Fig. 7(c) corresponds to
Fig. 5(e), and Fig. 7(d) corresponds to Fig. 5(f).
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(c) Alarm0.2, Diversity-Adaptive Scaling Factor
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(b) Alarm0.0, Self-Adaptive Scaling Factor
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(d) Alarm0.2, Self-Adaptive Scaling Factor
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Figure 7: Scaling-factor values averaged over 1000 runs for Alarm0.0 (left graphs) and Alarm0.2 (right
graphs) with population size M = 20. Cases studied: diversity-adaptive scaling factor (graphs [a]
and [c]), and self-adaptive scaling factor (graphs [b] and [d]). Each graph contains tests for ϕ0 =
{0, 10, 20, 30, 40}. These graphs correspond to Figs. 5(b), 5(c), 5(e), and 5(f).

Fig. 7 shows that the convergence speed of scaling-factor values depends on the complexity of the
optimization problem; for example, for Alarm0.0 (more simple problem, represented in Figs. 7[a] and
7[b]) convergence takes place around generation 100, whereas for Alarm0.2 (more complex problem,
represented in Figs. 7[c] and 7[d]) convergence occurs around generation 300.

By comparing the convergence values for diversity-adaptive scaling factor (Figs. 7[a] and 7[c)])
with those for self-adaptive scaling factor (Figs. 7[b] and 7[d)]), it can be observed that self-adaptation
produces somewhat higher scaling-factor convergence values; for example, diversity-adaptive control
for ϕ0 = 40 converges to a scaling-factor value of 21, whereas self-adaptive control for ϕ0 = 40
converges to a scaling-factor value of 27. This tendency is observed for all the cases represented in
Fig. 7. Given that diversity-adaptive control slightly outperforms self-adaptive control in this case
(see Figs. 5[b]), 5[c], 5[e], and 5[f ]), this suggests that self-adaptive control of ϕ would benefit from
applying a slightly lower degree of exploration in this domain. Nonethelesss, the similar mean best-
fitness values obtained for self-adaptive and diversity-adaptive control of ϕ in all the domains studied
in this work demonstrate that self-adaptation is a robust method when applied to crowding GAs.
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5.5 Self-Adaptation and Survivor Selection

Survivor selection is typically performed in crowding GAs by means of a generational method. Al-
though Section 4 demonstrated the benefits of self-adapting the scaling factor under generational
survivor selection, it is interesting to investigate the potential influence of other survivor selection
methods on self-adaptive generalized crowding. In particular, we can consider other evolutionary
algorithms that successfully apply self-adaptation [36, 37, 3, 31, 15].

Evolution strategies are perhaps the most widely used evolutionary approach among those that
carry out self-adaptation of parameters, namely the mutation step sizes. The survivor selection
mechanisms recommended in evolution strategies are the so-called (µ + λ) and (µ, λ) methods. The
(µ + λ) method amounts to generating λ offspring from the µ individuals in the current population
and selecting the best µ individuals from the union of the current individuals and their offspring.
The (µ, λ) method is similar to (µ+ λ), but the final selection is performed only from the λ offspring
(λ ≥ µ in this case).

Self-adaptation in generalized crowding can benefit from the use of (µ, λ) survivor selection method.2

Since λ ≥ µ, which means that every individual can be taking part on average in λ/µ recombinations
and subsequent crowding replacements, more opportunities are given to the ϕi value of every individ-
ual i to be tested. (Bear in mind that in generational survivor selection for crowding GAs, which is a
(µ, µ) method, for each generation each individual takes part in only one recombination and crowding
replacement process.) Therefore, the (µ, λ) method would provide self-adaptive generalized crowding
with additional robustness regarding how the more effective ϕ-values survive in the population.

Fig. 8 depicts the behavior of self-adaptive generalized crowding under (µ, λ) survivor selection for
several values of λ. In Fig. 8, Alarm0.2 BN was used, µ = 20, λ = {20, 30, 40, 50, 60}, and ϕ0 = 100.
Note that the results in Fig. 8(a) for fixed scaling factor are outperformed in Fig. 8(b) by self-adaptive
scaling factor for the different λ values. Fig. 8(c) shows the evolution, generation by generation, of
the mean scaling factor in the population over one thousand runs for the self-adaptive method; the
high value chosen for ϕmax, ϕmax = 100, illustrates robustness and allows the mean scaling factor’s
changes to be clearly perceived in Fig. 8(c) throughout the generations. An increase in λ gives rise to
a change in the corresponding mean scaling factor graph in Fig. 8(c). Intuitively, as λ is increased,
more states of the search space are visited in each generation and, as a consequence, less exploration
is needed in the replacement phase. The self-adaptive mechanism acts in accordance with this result,
as can be deduced from Fig. 8(c), where higher λ corresponds to mean scaling factor graphs closer
to the horizontal axis. Fig. 8(c) shows that the mean scaling factor in the final generation of the
Alarm0.2 GA is more sensitive to λ changes when λ ≈ µ. For example, λ = 20 and λ = 30 produce
quite different curves, whereas λ = 50 and λ = 60 yield almost identical curves.

5.6 Summary

One important conclusion that can be drawn from the experimental results described in Section 4 is
that adaptive control of ϕ throughout the search process often produces important advantages with
regards to GA performance and consistency. The control schedule for ϕ is directed by the GA itself,

2The (µ+ λ) survivor selection method does not fully preserve the effects of crowding, since the replacement phase
may result in the worse among parent and child to survive. However, this may be subsequently undone by the (µ+ λ)
method, under which the surviving individuals are those with higher fitness. This never happens in the case of (µ, λ),
where the result of the generalized crowding replacement phase is always maintained.
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Figure 8: Mean best fitness results over 1000 runs for Alarm0.2 under (20, λ) survivor selection and
ϕ0 = 100. Cases studied: (a) fixed scaling factor and (b) self-adaptive scaling factor. Each case was
tested for λ = {20, 30, 40, 50, 60}. Graph (c) depicts the evolution of the mean scaling factor in the
population for the self-adaptive case (b).
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STANDARD DEVIATION
Scaling-Factor Control Methods:

Optimization Problem PM Nonadaptive (Fixed) Diversity-Adaptive Self-Adaptive

F1
0.0125 0.1183 0 0.00084
0.025 0.06084 0 0.00082

F2
0.0125 0.05689 0.01318 0.01606
0.025 0.04004 0.02567 0.02008

Alarm0.0 1
37

1.84E-8 9.46E-9 1.21E-8

Alarm0.2 1
37

1.36E-6 6.46E-7 8.03E-7

TSPsquare16 0.6 204.33 192.54 98.39

TSPBerlin52 0.6 1021.25 761.47 549.18

Table 6: Standard deviations of the mean best fitnesses in the final GA generation obtained in Table
4 for the different ϕ0 values.

releasing the user from this non-trivial and problem-dependent task.
The improved consistency of the adaptive methods (consistency of their results in Table 4 when ϕ0

is varied) is quantified in Table 6. This table shows the standard deviations of the mean best fitnesses
in the final GA generation obtained in Table 4 for the different ϕ0 values. Note that Table 6 has the
same columns as Table 4 except that for ϕ0, and that each configuration for one optimization problem
and one PM value in Table 4 is assigned one row in Table 6. The results in Table 6 quantitatively
demonstrate that the adaptive methods are more consistent (give rise to smaller standard deviations)
than the fixed method when ϕ0 is varied.

It is interesting to compare the performance obtained for diversity-adaptive and self-adaptive
control of ϕ in Section 4. In general, diversity-adaptive ϕ outperforms self-adaptive ϕ for the F1,
Michalewicz, Schwefel, and Alarmρ cases, whereas the opposite happens for F2 and TSP. As a con-
sequence, it is difficult to say which one of these two adaptive methods is best. Being comparable
to diversity-adaptive control of ϕ is a remarkable result for our self-adaptive generalized crowding
GA, since diversity-adaptive control of ϕ takes advantage of heuristic knowledge establishing that the
degree of exploration should be proportional to the diversity of the current population.

Although this article addresses the application of adaptive generalized crowding techniques in the
context of GAs, many population-based search algorithm can take advantage of these techniques.
The only requirement is that, at each iteration of the algorithm, a population of individuals is used
to generate new candidate individuals. Specifically, adaptive generalized crowding techniques can be
applied to the set of current and candidate individuals in order to determine which individuals will
survive. Some examples of other population-based algorithms where generalized crowding techniques
can be applied are the following:

1. In Differential Evolution [39, 6], for each individual x in the population a potential new individual
y is generated from the recombination of x and an intermediate individual z calculated from a
simple formula. If y is more adapted than x, y replaces x in the population. Instead of this
deterministic rule for the competition between x and y, the different replacement rules discussed
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in this article could be applied.

2. In Particle Swarm Optimization [21, 35], the position of each particle in the swarm is normally
updated at each iteration depending on its velocity, its local best known position, and the best
known position in the search space. Instead of always updating the particle’s position, the
replacement rules discussed in this article could be used to decide whether or not the particle is
moved to its next calculated position.

3. In Simulated Annealing [22, 1], after picking some initial candidate solution, a new neighboring
candidate is chosen at each iteration. The neighboring candidate is evaluated and possibly
replaces the current candidate after the application of the Metropolis criterion. Instead of this
criterion, any of the replacement rules described in this article could be employed.

6 Conclusion and Future Work

Generalized crowding is used in GAs as a technique for preventing premature convergence and keeping
diversity in the population. This is done by means of a scaling factor parameter, which traditionally
is kept fixed throughout search [14]. Determining the proper value for the scaling factor is a tedious
and problem-dependent task. In order to solve this problem, this work introduces two techniques for
adapting the scaling factor: diversity-adaptive control and self-adaptive control. Fig. 9 summarizes
how the proposed methods work, compared to the traditional method, during the replacement phase of
crowding. Whereas traditional generalized crowding uses a fixed scaling factor, the diversity-adaptive
method employs information on the entropy of the current population to update the scaling factor,
and the self-adaptive method incorporates the scaling factor into the chromosomes of individuals.

The experiments illustrate, in many cases, a benefit when the scaling factor is adapted compared
to when it is kept fixed. As summarized in Table 4, the two new techniques give, compared to the
original fixed scaling factor method, comparable or better results for solution quality in most of the
experiments, and also have better consistency.

With regards to which adaptive control method is best, the experiments show that there is no
clear winner between diversity-adaptive and self-adaptive control. Specifically, diversity-adaptive ϕ
outperforms self-adaptive ϕ for the F1, Michalewicz, Schwefel, and Alarmρ cases, whereas the opposite
happens for F2 and TSP. Further experimental studies may determine under what conditions and to
what extent one of the methods outperfoms the other and vice versa.

Although we mainly used generational survivor selection in our experiments, we also established in
Section 5 that the survivor selection method (µ, λ) adapts well to self-adaptive generalized crowding.
A more detailed study of the (µ, λ) method in the context of self-adaptive generalized crowding could
be performed as future research.

Finally, this work puts emphasis on global optimization through generalized crowding GAs, rather
than on analyzing niche formation for adaptive methods. The latter problem would be interesting to
investigate in future research.
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(a) Traditional control 

f(c) 

f(p) Replacement Phase (Equation 1) 
p ≡ 〈xp,1,…,xp,n〉 

c ≡ 〈xc,1,…,xc,n〉 

φ = Constant Survivor{p,c} 

         
(b) Diversity-adaptive control 

f(c) 

f(p) Replacement Phase (Equation 1) 
p ≡ 〈xp,1,…,xp,n〉 

c ≡ 〈xc,1,…,xc,n〉 

φ ∝ H(P) Survivor{p,c} 

Population P Entropy H (Equation 2) 

        
(c) Self-adaptive control 

f(c) 

f(p) Replacement Phase (Equation 1) 
p ≡ 〈xp,1,…,xp,n,φp〉 

c ≡ 〈xc,1,…,xc,n,φc〉 

φ = φ least-fit{p,c} Survivor{p,c} 

Figure 9: Operation of the traditional (a), diversity-adaptive (b), and self-adaptive (c) control methods
during the replacement phase of generalized crowding.
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