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Abstract

Belief propagation over junction trees is
known to be computationally challenging in
the general case. One way of addressing this
computational challenge is to use node-level
parallel computing, and parallelize the com-
putation associated with each separator po-
tential table cell. However, this approach is
not efficient for junction trees that mainly
contain small separators. In this paper,
we analyze this problem, and address it by
studying a new dimension of node-level par-
allelism, namely arithmetic parallelism. In
addition, on the graph level, we use a clique
merging technique to further adapt junction
trees to parallel computing platforms. We
apply our parallel approach to both marginal
and most probable explanation (MPE) infer-
ence in junction trees. In experiments with a
Graphics Processing Unit (GPU), we obtain
for marginal inference an average speedup
of 5.54x and a maximum speedup of 11.94x;
speedups for MPE inference are similar.

1 INTRODUCTION

Bayesian networks (BN) are frequently used to repre-
sent and reason about uncertainty. The junction tree
is a secondary data structure which can be compiled
from a BN [2, 4, 5, 9, 10, 19]. Junction trees can be
used for both marginal and most probable explanation
(MPE) inference in BNs. Sum-product belief propaga-
tion on junction tree is perhaps the most popular ex-
act marginal inference algorithm [8], and max-product
belief propagation can be used to compute the most
probable explanations [2, 15]. However, belief propa-
gation is computationally hard and the computational
difficulty increases dramatically with the density of the
BN, the number of states of each network node, and

the treewidth of BN, which is upper bounded by the
generated junction tree [13]. This computational chal-
lenge may hinder the application of BNs in cases where
real-time inference is required.

Parallelization of Bayesian network computation is a
feasible way of addressing this computational challenge
[1,6,7,9,11,12,14,19,20]. A data parallel implementa-
tion for junction tree inference has been developed for
a cache-coherent shared-address-space machine with
physically distributed main memory [9]. Parallelism
in the basic sum-product computation has been in-
vestigated for Graphics Processing Units (GPUs) [19].
The efficiency in using disk memory for exact infer-
ence, using parallelism and other techniques, has been
improved [7]. An algorithm for parallel BN inference
using pointer jumping has been developed [14]. Both
parallelization based on graph structure [12] as well as
node level primitives for parallel computing based on
a table extension idea have been introduced [20]; this
idea was later implemented on a GPU [6]. Gonzalez
et al. developed a parallel belief propagation algorithm
based on parallel graph traversal to accelerate the com-
putation [3].

A parallel message computation algorithm for junc-
tion tree belief propagation, based on the cluster-
sepset mapping method [4], has been introduced [22].
Cluster-sepset based node level parallelism (denoted
element-wise parallelism in this paper) can accelerate
the junction tree algorithm [22]; unfortunately the per-
formance varies substantially between different junc-
tion trees. In particular, for small separators in junc-
tion trees, element-wise parallelism [22] provides lim-
ited parallel opportunity as explained in this paper.

Our work aims at addressing the small separator issue.
Specifically, this paper makes these contributions that
further speed up computation and make performance
more robust over different BNs from applications:

• We discuss another dimension of parallelism,
namely arithmetic parallelism (Section 3.1). Inte-



grating arithmetic parallelism with element-wise
parallelism, we develop an improved parallel sum-
product propagation algorithm as discussed in
Section 3.2.

• We also develop and test a parallel max-product
(Section 3.3) propagation algorithm based on the
two dimensions of parallelism.

• On the graph level, we use a clique merging tech-
nique (Section 4), which leverages the two dimen-
sions of parallelism, to adapt the various Bayesian
networks to the parallel computing platform.

In our GPU experiments, we test the novel two-
dimensional parallel approach for both regular sum-
propagation and max-propagation. Results show that
our algorithms improve the performance of both kinds
of belief propagation significantly.

Our paper is organized as follows: In Section 2, we
review BNs, junction trees parallel computing using
GPUs, and the small-separator problem. In Section
3 and Section 4, we describe our parallel approach to
message computation for belief propagation in junc-
tion trees. Theoretical analysis of our approach is in
Section 5. Experimental results are discussed in Sec-
tion 6, while Section 7 concludes and outlines future
research.

2 BACKGROUND

2.1 Belief Propagation in Junction Trees

A BN is a compact representation of a joint distribu-
tion over a set of random variables X . A BN is struc-
tured as a directed acyclic graph (DAG) whose vertices
are the random variables. The directed edges induce
dependence and independence relationships among the
random variables. The evidence in a Bayesian network
consists of instantiated random variables.

The junction tree algorithm propagates beliefs (or pos-
teriors) over a derived graph called a junction tree. A
junction tree is generated from a BN by means of mor-
alization and triangulation [10]. Each vertex Ci of the
junction tree contains a subset of the random variables
and forms a clique in the moralized and triangulated
BN, denoted by Xi ⊆ X . Each vertex of the junction
tree has a potential table φXi

. With the above nota-
tions, a junction tree can be defined as J = (T,Φ),
where T represents a tree and Φ represents all the po-
tential tables associated with this tree. Assuming Ci
and Cj are adjacent, a separator Sij is induced on a
connecting edge. The variables contained in Sij are
defined to be Xi ∩ Xj .

The junction tree size, and hence also junction tree
computation, can be lower bounded by treewidth,
which is defined to be the minimal size of the largest
junction tree clique minus one. Considering a junction
tree with a treewidth tw, the amount of computation is
lower-bounded by O(exp(c∗tw)) where c is a constant.

Belief propagation is invoked when we get new evi-
dence e for a set of variables E ⊆ X . We need to up-
date the potential tables Φ to reflect this new informa-
tion. To do this, belief propagation over the junction
tree is used. This is a two-phase procedure: evidence
collection and evidence distribution. For the evidence
collection phase, messages are collected from the leaf
vertices all the way up to a designated root vertex.
For the evidence distribution phase, messages are dis-
tributed from the root vertex to the leaf vertices.

2.2 Junction Trees and Parallelism

Current emerging many-core platforms, like the recent
Graphical Processing Units (GPUs) from NVIDIA and
Intel’s Knights Ferry, are built around an array of pro-
cessors running many threads of execution in parallel.
These chips employ a Single Instruction Multiple Data
(SIMD) architecture. Threads are grouped using a
SIMD structure and each group shares a multithreaded
instruction unit. The key to good performance on such
platforms is finding enough parallel opportunities.

We now consider opportunities for parallel computing
in junction trees. Associated with each junction tree
vertex Ci and its variables Xi, there is a potential ta-
ble φXi containing non-negative real numbers that are
proportional to the joint distribution of Xi. If each
variable contains sj states, the minimal size of the

potential table is |φXi
| =

∏|Xi|
j=1 sj , where |Xi| is the

cardinality of Xi.

Message passing from Ci to an adjacent vertex Ck, with
separator Sik, involves two steps:

1. Reduction step. In sum-propagation, the po-
tential table φSik of the separator is updated to
φ∗Sik by reducing the potential table φXi :

φ∗Sik =
∑
Xi/Sik

φXi
. (1)

2. Scattering step. The potential table of Ck is
updated using both the old and new table of Sik:

φ∗Xk
= φXk

φ∗Sik
φSik

. (2)

We define 0
0 = 0 in this case, that is, if the de-

nominator in (2) is zero, then we simply set the
corresponding φ∗Xk

to zeros.



Figure 1: Histograms of the separator potential table
sizes of junction trees Pigs and Munin3. For both junc-
tion trees, the great majority of the separator tables
contain 20 or fewer elements.

Equation (1) and (2) reveal two dimensions of par-
allelism opportunity. The first dimension, which we
return to in Section 3, is arithmetic parallelism. The
second dimension is element-wise parallelism [22].

Element-wise parallelism in junction trees is based on
the fact that the computation related to each sepa-
rator potential table cell are independent, and takes
advantage of an index mapping table, see Figure 2. In
Figure 2, this independence is illustrated by the white
and grey coloring of cells in the cliques, the separa-
tor, and the index mapping tables. More formally, an
index mapping table µX ,S stores the index mappings
from φX to φS [4]. We create |φSik | such mapping
tables. In each mapping table µXi,φSik (j)

we store the
indices of the elements of φXi

mapping to the j-th sep-
arator table element. Mathematically,

µXi,φSik (j)
= {r ∈ [0, |φXi

| − 1] |
φXi

(r) is mapped to φSik(j)}.

With the index mapping table, element-wise paral-
lelism is obtained by assigning one thread per map-
ping table of a separator potential table as illustrated
in Figure 2 and Figure 3. Consequently, belief prop-
agation over junction trees can often be sped up by
using a hybrid CPU/GPU approach [22].

2.3 Small Separator Problem

Figure 1 contains the histograms of two real-world BNs
Pigs and Munin3.1 We see that most separators in
these two BNs are quite small and have a potential
table size of less than 20.

In general, small separators can be found in these three
scenarios: (i) due to two small neighboring cliques (we

1These BNs can be downloaded at http://bndg.cs.
aau.dk/html/bayesian_networks.html

Figure 2: Due to the small separator in the B-S-S
pattern, a long index mapping table is produced. If
only element-wise parallelism is used, there is just one
thread per index mapping table, resulting in slow se-
quential computation.

call it the S-S-S pattern); (ii) due to a small intersec-
tion set of two big neighboring cliques (the B-S-B pat-
tern); and (iii) due to one small neighboring clique and
one big neighboring clique (the B-S-S pattern).2 Due
to parallel computing issues, detailed next, these three
patterns characterize what we call the small-separator
problem.

Unfortunately, element-wise parallelism may not pro-
vide enough parallel opportunities when a separator
is very small and the mapping tables to one or both
cliques are very long. A small-scale example, reflect-
ing the B-S-S pattern, is shown in Figure 2.3 While
the mapping tables may be processed in parallel, the
long mapping tables result in a significant amount of
sequential computation within each mapping table.

A state of the art GPU typically supports more than
one thousand concurrent threads, thus message pass-
ing through small separators will leave most of the
GPU resources idle. This is a major bottleneck for the
performance, which we address next.

In this paper, to handle the small separator problem,
we use clique merging to eliminate small separators
(see Section 4) resulting from the S-S-S pattern and
arithmetic parallelism (see Section 3) to attack the B-

2These patterns, when read left-to-right, describe the
size of a clique, the size of a neigboring separator, and
the size of a neigboring clique (different from the first) as
found in a junction tree. For example, the pattern B-S-S
describes a big clique, a small separator, and a small clique.

3In fact, both the “long” and “short” index mapping
tables have for presentation purposes been made short–in
a realistic junction tree a “long” table can have more than
10,000 entries.



Figure 3: Example of data structure for two GPU
cliques and their separator. Arithmetic parallelism
(the reverse pyramid at the bottom) is integrated with
element-wise parallelism (mapping tables at the top).
The arithmetic parallelism achieves parallel summa-
tion of 2d terms in d cycles.

S-S and B-S-B patterns.

3 PARALLEL MESSAGE PASSING
IN JUNCTION TREES

In order to handle the small-separator problem, we
discuss another dimension of parallelism in addition
to element-wise parallelism, namely arithmetic paral-
lelism. Arithmetic parallelim explores the parallel op-
portunity in the sum of (1) and in the multiplication
of (2). By considering also arithmetic parallelism, we
can better match the junction tree and the many-core
GPU platform by optimizing the computing resources
allocated to the two dimensions of parallelism.

Mathematically, this optimization can be modeled as
a computation time minimization problem:

minpe,pa T (pe, pa, Ci, Cj ,Φ),
subject to : pe + pa ≤ ptot

(3)

where T (·) is the time consumed for a message pass-
ing from clique Ci to clique Cj ; pe and pa are the num-
ber of parallel threads allocated to the element-wise
and arithmetic dimensions respectively; ptot is the to-
tal number of parallel threads available in the GPU;
and Φ is a collection of GPU-related parameters, such
as the cache size, etc. Equation (3) is a formulation of
optimizing algorithm performance on a parallel com-
puting platform. Unfortunately, traditional optimiza-
tion techniques can typically not be applied to this
optimization problem. This is because the analytical
form of T (·) is usually not available, due to the com-
plexity of the hardware platform. So in our work we
choose pe and pa empirically for our implementation.

In the rest of this section, we will describe our algo-
rithm design, seeking to explore both element-wise and
arithmetic parallelism.

3.1 Arithmetic Parallelism

Arithmetic parallelism needs to be explored in different
ways for reduction and scattering, and also integrated
with element-wise parallelism, as we will discuss now.

For reduction, given a certain fixed element j, Equa-
tion (1) is essentially a summation over all the clique
potential table φXi elements indicated by the corre-
sponding mapping table µXi,φSik (j)

. The number of

sums is |µXi,φSik (j)
|. We compute the summation in

parallel by using the approach illustrated in Figure 3.
This improves the handling of long index mapping ta-
bles induced, for example, by the B-S-B and B-S-S
patterns. The summation is done in several iterations.
In each iteration, the numbers are divided into two
groups and the corresponding two numbers in each



group are added in parallel. At the end of this recur-
sive process, the sum is obtained, as shown in Algo-
rithm 1. The input parameter d is discussed in Section
3.2; the remaining inputs are an array of floats.

Algorithm 1 ParAdd(d, op(0), . . . , op(2d − 1))

Input: d, op(0), . . . , op(2d − 1).
sum = 0
for i = 1 to d do
for j = 0 to 2d−i − 1 in parallel do
op(j) = op(j) + op(j + 2d−i)

end for
end for
return op(0)

For scattering, Equation (2) updates the elements
of φXk

independently despite that φSik and φ∗Sik are
re-used to update different elements. Therefore, we
can compute each multiplication in (2) with a single
thread. The parallel multiplication algorithm is given
in Algorithm 2. The input parameter p is discussed
in Section 3.2; the remaining inputs are an array of
floats.

Algorithm 2 ParMul(p, op1, op2(0), . . . , op2(p− 1))

Input: p, op1, op2(0), . . . , op2(p− 1).
sum = 0
for j = 0 to p− 1 in parallel do
op2(j) = op1 ∗ op2(j)

end for

3.2 Parallel Belief Propagation

Combining element-wise and arithmetic parallelism,
we design the reduction and scattering operations as
shown in Algorithm 3 and Algorithm 4. Both of these
algorithms take advantage of arithmetic parallelism.
In Algorithm 3, the parameter d is the number of cy-
cles used to compute the reduction (summation), while
in Algorithm 4, p is the number of threads operating
in parallel. Both p and d are parameters that deter-
mine the degree of arithmetic parallelism. They can
be viewed as a special form of pa in (3). Based on
Algorithm 3 and Algorithm 4, junction tree message
passing can be written as shown in Algorithm 5.

Belief propagation can be done using both breadth-
first and depth-first traversal over a junction tree. We
use the Hugin algorithm [5], which adopts depth-first
belief propagation. Given a junction tree J with root
vertex Croot, we first initialize the junction tree by
multiplying together the Bayesian network potential
tables (CPTs). Then, two phase belief propagation
is adopted [10]: collect evidence and then distribute
evidence [22].

Algorithm 3 Reduction(d, φXi , φSik , µXi,Sik)

Input: d, φXi
, φSik , µXi,Sik .

for n = 1 to |φSik | in parallel do
for j = 0 to d|µXi,Sik(n)|/2de do

sum = sum + ParAdd(d, φXi
(µXi,Sik(n)(j ∗

2d)), . . . , φXi
(µXi,Sik(n)((j + 1) ∗ 2d − 1)))

end for
end for

Algorithm 4 Scattering(p, φXk
, φSik , µXk,Sik)

Input: p, φXk
, φSik , µXk,Sik .

for n = 1 to |φSik | in parallel do
for j = 0 to d|φSik |/pe do

sum = sum +

ParMul(p,
φ∗Sik

(n)

φSik (n)
, φXk

(µXk,Sik(n)(j ∗
p)), . . . , φXk

(µXk,Sik(n)((j + 1) ∗ p− 1)))
end for

end for

3.3 Max-product Belief Propagation

In this paper, we also apply our parallel tech-
niques to max-product propagation (or in short, max-
propagation), which is also referred as the Viterbi
algorithm. Max-propagation solves the problem of
computing a most probable explanation. For max-
propagation, the

∑
in (1) is replaced by max [2,15]. In

this paper we use sum-product propagation to explain
our parallel algorithms; the explanation can generally
be changed to discuss max-propagation by replacing
add with max.

4 CLIQUE MERGING FOR
JUNCTION TREES

The performance of our parallel algorithm is to a large
extent determined by the degree of parallelism avail-
able in message passing, which intuitively can be mea-
sured by the separator size |φSik |, which determines
the element-wise parallelism, and the mapping table
size |µXi,Sik(n)| which upper bounds the arithmetic
parallelism. In other words, the larger |φSik | and
|µXi,Sik(n)| are, the greater is the parallelism opportu-
nity. Therefore, message passing between small cliques
(the S-S-S pattern), where |φSik | and |µXi,Sik(n)| are
small, is not expected to have good performance.
There is not enough parallelism to make full use of

Algorithm 5 PassMessage(p, d, φXi
, φXk

, φSik , µXi,Sik)

Input: p, d, φXi , φXk
, φSik , µXi,Sik .

Reduction(d, φXi
, φSik , µXi,Sik)

Scattering(p, φXk
, φSik , µXk,Sik)



a GPU’s computing resources.

In order to better use the GPU computing power,
we propose to remove small separators (that follow
the S-S-S pattern) by selectively merging neighboring
cliques. This increases the length of mapping tables,
however the arithmetic parallelism techniques intro-
duced in Section 3 can handle this. Clique merging
can be done offline according to this theorem [8].

Theorem 4.1 Two neighboring cliques Ci and Cj in
a junction tree J with the separator Sij can be merged
together into an equivalent new clique Cij with the po-
tential function

φ(xCij ) =
φ(xCi

)φ(xCj
)

φ(xSij
)

, (4)

while keeping all the other part of the junction tree
unchanged.

The result of merging cliques is three-fold: (i) it pro-
duces larger clique nodes and thus longer mapping ta-
bles; (ii) it eliminates small separators; and (iii) it re-
duces the number of cliques. Larger clique nodes will
result in more computation and therefore longer pro-
cessing time for each single thread, but getting rid of
small separators will improve utilization of the GPU
and reduce computation time. We have to manage
these two conflicting objectives to improve the overall
performance of our parallel junction tree algorithm.

Our algorithm for clique merging is shown in Algo-
rithm 6. It uses two heuristic thresholds, the sepa-
rator size threshold τs and the index mapping table
size threshold τµ, to control the above-mentioned two
effects. We only merge two neighboring cliques Ci
and Cj into a new clique Cij when |φSij | < τs and
|µXj ,φS

| < τµ.

Algorithm 6 MergeCliques(J , τs, τµ)

merge flag = 1
while merge flag do

merge flag = 0
for each adjacent clique pair (Ci, Cj) in J do
if φS < τs and |µXj ,φS

| < τµ then
Merge (J,Ci, Cj)
merge flag = 1

end if
end for

end while

Given an S-S-S-S-S pattern, Algorithm 6 may merge
two S cliques and produce an S-B-S pattern. Here, B
is the merged clique. Note that the B-S sub-pattern
creates a long index mapping table, which is exactly
what arithmetic parallelism handles. There is in other

words potential synergy between clique merging and
arithmetic parallelism, as is further explored in exper-
iments in Section 6.

5 ANALYSIS AND DISCUSSION

In this section, we analyze the theoretical speedup for
our two-dimensional parallel junction tree inference al-
gorithm under the idealized assumption that there is
unlimited parallel threads available from the many-
core computing platform.

The degree of parallelism opportunity is jointly de-
termined by the size of the separators’ potential ta-
ble, |φS |, and the size of the index mapping table
|µX ,φS

|. Consider a message passed from Ci to Ck.
Since we employ separator table element-wise paral-
lelism in our algorithm, we only need to focus on the
computation related to one particular separator table
element. With the assumption of unlimited parallel
threads, we can choose d = dlog |µXi,φS

|e. The time
complexity for the reduction is then dlog |µXi,φS

|e, due
to our use of summation parallelism.4 Note since

|µXi,φS
| =

|φXi
|

|φS | , the time complexity can be written

as dlog |φXi
| − log |φS |e. For the scattering phase, we

choose p = |µXk,φS
| and the time complexity is given

by |µXk,φS
|/p+ 1 = 2 due to the multiplication paral-

lelism. Thus the overall time complexity of the two-
dimensional belief propagation algorithm is:

dlog |φXi
| − log |φS |e+ 2, (5)

which is the theoretical optimal time complexity un-
der the assumption of an infinite number of threads.
Nevertheless, this value is hard to achieve in practice
since the value of d and p are subject to the concur-
rency limit of the computing platform. For example, in
the above-mentioned BN Pigs, some message passing
requires p = 1120 while the GTX460 GPU supports at
most 1024 threads per thread block.

Belief propagation is a sequence of messages passed in
a certain order [10], for both CPU and GPU [22]. Let
Ne(C) denote the neighbors of C in the junction tree.
The time complexity for belief propagation is∑

i

∑
k∈Ne(Ci)

(dlog |φXi | − log |φS |e+ 2) ,

Kernel invocation overhead, incurred each time Algo-
rithm 5 is invoked, turns out to be an important per-
formance factor. If we model the invocation overhead
for each kernel call to be a constant τ , then the time

4We assume, for simplicity, sum-propagation. The anal-
ysis for max-propagation is similar.



complexity becomes∑
i

diτ +
∑
i

∑
k∈Ne(Ci)

(dlog |φXi
| − log |φS |e+ 2) ,

where di is the degree of a node Ci. In a tree structure,∑
di = 2(n− 1). Thus the GPU time complexity is

2(n− 1)τ +
∑
i

∑
k∈Ne(Ci)

(dlog |φXi | − log |φS |e+ 2) .

From this equation, we can see that the junction tree
topology impacts GPU performance in at least two
ways: the total invocation overhead is proportional to
the number of nodes in the junction tree, while the
separator and clique table sizes determine the degree
of parallelism.

The overall speedup of our parallel belief propagation
approach is determined by the equation

Speedup =

∑
i

∑
k∈Ne(Ci)(|φXi

|+ |φXk
|)

2(n− 1)τ +
∑
i

∑
k∈Ne(Ci)

(⌈
log
|φXi
|

|φS |

⌉
+ 2
) .

Clearly, the speedup depends on the distribution of
the sizes of the separators’ and cliques’ potential ta-
bles. That is the reason we propose the clique merging
technique. Using clique merging, we change the num-
ber of nodes in the junction tree and distribution of
the size of the separators’ and cliques’ potential ta-
ble as well, adapting the junction tree for the specific
parallel computing platform.

From the equations above, we can estimate the overall
belief propagation speedup. However, taking into ac-
count that the CPU/GPU platform incurs invocation
overhead and the long memory latency when loading
data from slow device memory to fast shared memory,
the theoretical speedup is hard to achieve in practice.
We take an experimental approach to study how the
structure of the junction trees affects the performance
of our parallel technique on the CPU/GPU setting in
Section 6.

6 EXPERIMENTAL RESULTS

In experiments, we study Bayesian networks compiled
into junction trees. We not only want to compare
the two-dimensional parallel junction tree algorithm to
the sequential algorithm, but also study how effective
the arithmetic parallelism and clique merging methods
are. Consequently, we experiment with different com-
binations of element-wise parallelism (EP), arithmetic
parallelism (AP), and clique merging (CM).

6.1 Computing Platform

We use the NVIDIA GeForce GTX460 as the platform
for our implementation. This GPU consists of seven
multiprocessors, and each multiprocessor consists of
48 cores and 48K on-chip shared memory per thread
block. The peak thread level parallelism achieves
907GFlop/s. In addition to the fast shared memory,
a much larger but slower off-chip global memory (785
MB) that is shared by all multiprocessors is provided.
The bandwidth between the global and shared mem-
ories is about 90 Gbps. In the junction tree compu-
tations we are using single precision for the GPU and
the thread block size is set to 256.

6.2 Methods and Data

For the purpose of comparison, we use the same set
of BNs as used previously [22] (see http://bndg.cs.

aau.dk/html/bayesian_networks.html). They are
from different domains, with varying structures and
state spaces. These differences lead to very differ-
ent junction trees, see Table 1, resulting in varying
opportunities for element-wise and arithmetic paral-
lelism. Thus, we use clique merging to carefully con-
trol our two dimensions of parallelism to optimize per-
formance. The Bayesian networks are compiled into
junction trees and merged offline and then junction
tree propagation is performed.

6.3 GPU Optimization: Arithmetic
Parallelism

Arithmetic parallelism gives us more freedom to match
the parallelism in message passing and the concur-
rency provided by a GPU: when there is not enough
potential table element-wise parallelism available, we
can increase the degree of arithmetic parallelism. The
number of threads assigned to arithmetic parallelism
affects the performance significantly. The parameter
p in parallel scattering and the parameter 2d in the
parallel reduction should be chosen carefully (see Al-
gorithm 1 and 2). Since the GPU can provide only
limited concurrency, we need to balance the arithmetic
parallelism and the element-wise parallelism for each
message passing to get the best performance.

Consider message passing between big cliques, for ex-
ample according to the B-S-B pattern. Intuitively, the
values of the arithmetic parallelism parameters p and
d should be set higher than for the message passing
between smaller cliques. Thus, based on extensive ex-
perimentation, we currently employ a simple heuristic
parameter selection scheme for the scattering param-
eter p

p =

{
4 if|µXi,Sik(n)| ≤ 100

128 if|µXi,Sik(n)| > 100
(6)



Dataset Pigs Munin2 Munin3 Munin4 Mildew Water Barley Diabetes
# of original JT nodes 368 860 904 872 28 20 36 337
# of JT nodes after merge 162 553 653 564 22 18 35 334
Avg. CPT size before merge 1,972 5,653 3,443 16,444 341,651 173,297 512,044 32,443
Avg. CPT size after merge 5,393 10,191 7,374 26,720 447,268 192,870 527,902 33,445
Avg. SPT size before merge 339 713 533 2,099 9,273 26,065 39,318 1,845
Avg. SPT size after merge 757 1,104 865 3,214 11,883 29,129 40,475 1,860
GPU time (sum-prop) [ms] 22.61 86.40 74.99 141.08 41.31 16.33 81.82 68.26
GPU time (max-prop) [ms] 22.8 86.8 72.6 114.9 38.6 12.1 94.3 78.3
CPU time (sum-prop) [ms] 51 210 137 473 355 120 974 397
CPU time (max-prop) [ms] 59 258 119 505 259 133 894 415
Speedup (sum-prop) 2.26x 2.43x 1.82x 3.35x 8.59x 7.35x 11.94x 5.81x
Speedup (max-prop) 2.58x 2.97x 1.64x 4.39x 6.71x 10.99x 9.48x 5.30x

Table 1: Junction tree (JT) statistics and belief propagation (BP) performance for various junction trees, with
speedup for our GPU approach (GPU EP + AP + CM) compared to CPU-only in the two bottom rows. The
row “CPU time (sum-prop)” gives previous results [22].

(a) Junction tree sum-propagation

(b) Junction tree max-propagation

Figure 4: Comparison of combinations of junction
tree optimization techniques CM, AP, and EP for (a)
sum- and (b) max-propagation. Best performance is
achieved for GPU EP + AP + CM.

Figure 5: GPU execution times with CM (GPU EP
+ AP + CM) and without CM (GPU EP + AP) for
junction trees compiled from sparse BNs representing
electrical power systems.

and the reduction parameter d

d =

{
2 if|µXi,Sik(n)| ≤ 100
7 if|µXi,Sik(n)| > 100

(7)

We compare the execution time when using element-
wise parallelism alone and the case when element-wise
parallelism is used in combination with arithmetic par-
allelism. Results, for both sum-propagation and max-
propagation, are shown in Figure 4(a) and Figure 4(b).
In all cases, the GPU EP + AP + CM outperforms all
the other approaches.5

6.4 GPU Optimization: Clique Merging

Clique merging is based on the observation that many
junction trees mostly consist of small cliques. This
lack of parallelism opportunity will hinder the efficient

5The GPU EP + CM combination is included for com-
pleteness, but as expected it often performs very poorly.
The reason for this is that CM, by merging cliques, creates
larger mapping tables that EP is not equipped to handle.



use of the available computing resources, since a single
message passing will not be able to occupy the GPU.
Merging neighboring small cliques, found in the S-S-S
pattern, can help to increase the average size of sep-
arators and cliques. Clique merging also reduces the
total number of nodes in the junction tree, which in
turn reduces the invocation overhead.

We use two parameters to determine which cliques
should be merged–one is τs, the threshold for separa-
tors’ potential table size and the other is τµ, the thresh-
old for the size of the index mapping table. These pa-
rameters are set manually in this paper, however in
a companion paper [21] this parameter optimization
process is automated by means of machine learning.

In the experiments, we used both arithmetic paral-
lelism and element-wise parallelism. This experiment
presents how much extra speedup can be obtained by
using clique merging and arithmetic parallelism. The
experimental results can be found in Table 1, in the
rows showing the GPU execution times for both sum-
propagation and max-propagation. In junction trees
Pigs, Munin2, Munin3 and Munin4, a considerable
fraction of cliques (and consequently, separators) are
small, in other words the S-S-S pattern is common.
By merging cliques, we can significantly increase the
average separators’ and cliques’ potential size and thus
provide more parallelism.

Comparing GPU EP + AP with GPU EP + AP +
CM, the speedup for these junction trees ranged from
10% to 36% when clique merging is used. However,
in junction trees Mildew, Water, Barley and Diabetes,
clique merging does not help much since they mainly
consist of large cliques to start with.

Another set of experiments were performed with junc-
tion trees that represent an electrical power system
ADAPT [16–18]. These junction trees contain many
small cliques, due to their underlying BNs being rel-
atively sparsely connected.6 The experimental results
are shown in Figure 5. Using clique merging, the GPU
execution times are shortened by 30%-50% for these
BNs compared to not using clique merging.

6.5 Performance Comparison: CPU

As a baseline, we implemented a sequential program
on an Intel Core 2 Quad CPU with 8MB cache and
a 2.5GHz clock. The execution time of the program
is comparable to that of GeNie/SMILE, a widely used
C++ software package for BN inference.7 We do not
directly use GeNie/SMILE as the baseline here, be-
cause we do not know the implementation details of

6http://works.bepress.com/ole_mengshoel/
7http://genie.sis.pitt.edu/

GeNie/SMILE.

In Table 1, the bottom six rows give the execution
time comparison for our CPU/GPU hybrid versus a
traditional CPU implementation. The CPU/GPU hy-
brid uses arithmetic parallelism, element-wise paral-
lelism and clique merging. The obtained speedup for
sum-propagation ranges from 1.82x to 11.94x, with an
arithmetic average of 5.44x and a geometric average of
4.42.

The speedup for max-propagation is similar to, but dif-
ferent from sum-propagation in non-trivial ways. The
performance is an overall effect of many factors such
as parallelism, memory latency, kernel invocation over-
head, etc. Those factors, in turn, are closely correlated
with the underlying structures of the junction trees.
The speedup for max-propagation ranges from 1.64x
to 10.99x, with an arithmetic average of 5.51x and a
geometric average of 4.61x.

6.6 Performance Comparison: Previous GPU

We now compare the GPU EP + AP + CM tech-
nique introduced in this paper with our previous GPU
EP approach [22]. From results in Table 1, compared
with the GPU EP approach [22], the arithmetic av-
erage cross platform speedup increases from 3.38x (or
338%) to 5.44x (or 544%) for sum-propagation. For
max-propagation8 the speedup increases from 3.22x
(or 322%) to 5.51x (or 551%).

7 CONCLUSION AND FUTURE
WORK

In this paper, we identified small separators as bottle-
necks for parallel computing in junction trees and de-
veloped a novel two-dimensional parallel approach for
belief propagation over junction trees. We enhanced
these two dimensions of parallelism by careful clique
merging in order to make better use of the parallel
computing resources of a given platform.

In experiments with a CUDA implementation on an
NVIDIA GeForce GTX460 GPU, we explored how the
performance of our approach varies with different junc-
tion trees from applications and how clique merging
can improve the performance for junction trees that
contains many small cliques. For sum-propagation, the
average speedup is 5.44x and the maximum speedup
is 11.94x. The average speedup for max-propagation
is 5.51x while the maximum speedup is 10.99x.

In the future, we would like to see research on parame-
ter optimization for both clique merging and message

8We implemented max-propagation based on the ap-
proach developed previously [22].



passing. It would be useful to automatically change
the merging parameters for different junction trees
based on the size distribution of the cliques and sep-
arators. In addition, we also want to automatically
change the kernel running parameters for each single
message passing according to the size of a message. In
fact, we have already made progress along these lines,
taking a machine learning approach [21].
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