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ABSTRACT

The junction tree approach, with applications in artificial in-
telligence, computer vision, machine learning, and statistics,
is often used for computing posterior distributions in prob-
abilistic graphical models. One of the key challenges associ-
ated with junction trees is computational, and several paral-
lel computing technologies - including many-core processors
- have been investigated to meet this challenge. Many-core
processors (including GPUs) are now programmable, unfor-
tunately their complexities make it hard to manually tune
their parameters in order to optimize software performance.
In this paper, we investigate a machine learning approach
to minimize the execution time of parallel junction tree al-
gorithms implemented on a GPU. By carefully allocating a
GPU’s threads to different parallel computing opportunities
in a junction tree, and treating this thread allocation prob-
lem as a machine learning problem, we find in experiments
that regression - specifically support vector regression - can
substantially outperform manual optimization.

Categories and Subject Descriptors

I.2.m [Computing Methodologies]: ARTIFICIAL IN-
TELLIGENCEMiscellaneous

General Terms

Algorithm
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1. INTRODUCTION
Parallel processing is becoming increasingly important in

all areas of computing, including in knowledge discovery and
machine learning. This is to a large extent due to recent
developments in hardware, and in particular a key difference
between Moore’s law and clock frequency of CPUs. Moore’s
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law, which states that the number of transistors that can be
placed on an integrated circuit will increase exponentially, is
as of 2013 still going strong. However, the clock frequency of
CPUs has stalled, due to physical limits on heat dissipation
in integrated circuits. As a consequence, computers are now
multi-core (CPUs) or many-core (GPUs), and algorithms
that take advantage of this fact will be at an advantage.
The importance of parallel, and also distributed, computing
in data mining is further increased due to Big Data; the
size of the data sets available for analytical processing has
recently been increasing drastically.

In this paper, we discuss parallel computing for belief
propagation in junction trees. Belief propagation (BP) over
junction tree can be used to compute posterior marginals in
Bayesian networks (BNs) [9]. However, belief propagation is
computationally hard, and the computational difficulty in-
creases dramatically with the density of the BN, the number
of states of each network node and the BN treewidth, which
is upper bounded by the generated junction tree [12].

This computational issue may hinder the application of
BNs in cases where real-time inference is required. Paral-
lelization of Bayesian network computation is a feasible way
of addressing this computational issue [8, 13, 17, 16, 7, 10,
6, 11, 2]. These parallel BP algorithms are implemented on
various state of the art parallel computing platforms. How-
ever, due to the complexity of these modern platforms, the
junction tree algorithm, and the way they interact with each
other, it is not trivial to make parallel BP algorithms work
efficiently on these platforms.

Many-core computers including GPUs, which are built
around an array of processors running many threads of ex-
ecution in parallel, are among the most popular platforms.
However, it is non-trivial to optimize GPU programs. The
challenges with GPU optimization for parallel BP includes:

• Junction tree clique and separator sizes vary signifi-
cantly, resulting in unbalanced workload.

• The junction tree algorithm and a GPU platform have
distinctive sets of parameters. Mismatch between al-
gorithm and platform parameters can result in poor
performance.

• The relationship between the input workload and the
output performance metrics is generally unknown.

• In the two-dimensional parallel BP algorithm (see Sec-
tion 3), allocation of threads to each parallel dimension
requires great care.



In this paper, we focus on minimizing compute time of
node level parallel BP on many core system, in particular
GPUs, using system performance modeling. We expand on
research using GPU to implement node level parallelism of
belief propagation [18][6]. Our work is done on top of a
parallel BP algorithm [18]. Our contribution in this work
includes

• We investigate another dimension of parallelism, arith-
metic parallelism, and integrate it with element-wise
parallelism [18].

• We use statistical models for GPU parameter opti-
mization, resulting in an average cross platform speedup
of 10.70x (arithmetic average) or 8.68x (geometric av-
erage) as opposed to that of 3.43x (arithmetic average)
or 2.44x (geometric average) obtained previously [18]

• We propose new metrics “squared deviance” and “miss
rate” to measure the quality of statistical models for
our problem.

This work is relevant to data mining and machine learning
in two distinct ways. First, we investigate parallel computa-
tion using probabilistic graphical models, in particular junc-
tion trees [1], which are applied in many data ming contexts,
including Expectation Maximization. Second, in order to
solve the central problem of thread allocation for parallel
junction tree computation, we take a machine learning ap-
proach.
Our paper is organized as follows: In Section 2, we briefly

review previous research and formulate the problem we are
going to solve. In Section 3, we describe the two-dimensional
parallel belief propagation algorithm, where GPU parame-
ter optimization dicussed in Section 4 is key to good perfor-
mance. In Section 5, we describe our approach of using sta-
tistical models for system performance prediction and use it
for GPU parameter optimization. Experimental results are
discussed in Section 6. We conclude in Section 7.

2. BACKGROUND

2.1 Belief Propagation in Junction Tree
A BN is a compact representation of a joint distribution

over a set of random variables X . A BN is structured as
a directed acyclic graph (DAG) whose vertices are the ran-
dom variables and the directed edges represent dependency
relationship among the random variables. The evidence in
a Bayesian network consists of instantiated variables.
The junction tree algorithm propagates beliefs (or poste-

riors) over a derived graph called a junction tree. A junction
tree is generated from a BN by means of moralization and
triangulation [9]. Each vertex Ci of the junction tree con-
tains a subset of the random variables that forms a clique
in the moralized and triangulated BN, denoted by Xi ⊆ X .
Associated with each vertex of the junction tree there is a
potential table φXi

. With the above notations, a junction
tree can be defined as J = (T,Φ), where T represents a tree
and Φ represents all the potential tables associated with this
tree. Assuming Ci and Cj are adjacent, a separator Sij is
induced on a connecting edge. The variables contained in
Sij are defined to be Xi ∩ Xj .
The computation of belief propagation can be measured

by treewidth, which is defined to be the minimal size of the

largest set in junction tree minus one. Considering a junc-
tion tree with a treewidth tw, the amount of computation is
lowered bounded by O(exp(c ∗ tw)) where c is a constant.

Belief propagation is invoked when we get new evidence
e for a set of variables E ⊆ X . We need to update the
potential tables Φ to reflect this new information. To do
this, belief propagation over the junction tree is used, this
is a two-phase procedure: evidence collection and evidence
distribution. For the evidence collection phase, messages are
collected from the leaf vertices all the way up to a designated
root vertex. For the evidence distribution phase, messages
are distributed from the root vertex to the leaf vertices. A
recursive algorithm of collecting and distributing evidence is
shown in Algorithm 1 and 2. In the following sections, we
are going to focus on parallelizing each message passing in
Algorithm 1 and 2.

Algorithm 1 Collect Evidence(J, Ci)

for each child of Ci do
Message Passing(Ci, Collect Evidence(J ,child))

end for
return(Ci)

Algorithm 2 Distribute Evidence(J, Ci)

for each child of Ci do
Message Passing(Ci, child)
Distribute Evidence(J , child)

end for

2.2 Graphics Processing Units (GPU)
GPUs are designed for compute-intensive, highly parallel

computations. In GPUs, more transistors are devoted to
data processing rather than data caching and flow control.
GPUs are especially well-suited to problems that can be ex-
pressed as data-parallel computations where data elements
are mapped to parallel processing threads. GPUs are mainly
used as accelerators for compute-intensive parts of an appli-
cation, and therefore attached to a host CPU that performs
control-dominant computations.

The GPU is programmed using the CUDA programming
framework [14]. An application is organized into a sequential
host program that is run on a CPU, and one or more parallel
GPU kernels that are run on a GPU.

In GPUs, threads launched are partitioned into thread
blocks. There is a limit on the number of threads per block,
since all threads of a block are expected to reside on the
same processor core and must share the limited memory
resources of that core. On current GPUs, a thread block may
contain up to 1024 threads [14]. For a GPU to run efficiently
and effectively, the concurrency provided by the platform
should match the parallel opportunities in the application.
The challenge in our work, detailed in Section 3, is that we
have two dimensions of parallelism and therefore we need
to allocate threads in each block to the two dimensions of
parallel opportunities. A poor split may result in waste of
computing resources and low efficiency.



3. TWO-DIMENSIONALPARALLELBELIEF

PROPAGATION
We parallelize the atomic operation of belief propagation–

message passing for junction trees. The advantage of doing
so is that this node level parallelism can be embedded in dif-
ferent belief propagation algorithms unobtrusively, without
any change of those algorithms.
Associated with each junction tree vertex Ci and the con-

tained set of variables Xi, there is a potential table φXi
con-

taining non-negative real numbers that are proportional to
the joint distribution of Xi. If each variable can take sj

states, the size of the potential table is |φXi
| =

∏|Xi|
j=1 sj ,

where |Xi| is the cardinality of Xi.
Message passing from vertex Ci to an adjacent vertex Ck,

with separator Sik, involves two steps:

1. Reduction. The potential table φSik
of the separator

is updated to φ∗
Sik

by reducing the potential table φXi
:

φ
∗
Sik

=
∑

Xi/Sik

φXi
. (1)

2. Scattering. The potential table of Ck is updated using
both the old and new table of Sik:

φ
∗
Xk

= φXk

φ∗
Sik

φSik

. (2)

We define 0
0
= 0 in this case, that is, if the denominator

in (2) is zero, then we simply set the corresponding φ∗
Xk

to zeros.

A close look at Equation (1) and (2) reveals two dimen-
sions of parallelism opportunity in a message passing. The
first dimension of parallelism is the separator potential ta-
ble (SPT) element-wise parallelism. The second dimension
of parallelism is the arithmetic parallelism.
Element-Wise Parallelism: An index mapping table

µX ,S stores the index mappings from φX to φS [5]. We create
|φSik

| mapping tables. In each mapping table µXi,φSik
(j) we

store the indices of the elements of φXi
mapping to the j-th

separator table element. Mathematically, µXi,φSik
(j) = {r ∈

[0, |φXi
| − 1] : φXi

(r) is mapped to φSik
(j)}.

With the index mapping table, element-wise parallelism
can be obtained by assigning a specific group of threads
to handle the computation related to a specific separator
potential table.
Arithmetic Parallelism: Arithmetic parallelism needs

to be explored in different ways for reduction and scattering,
and also integrated with element-wise parallelism, as we will
discuss now.
For reduction, given a certain fixed element j, Equation

(1) is essentially a summation over all the clique potential
table (CPT) φXi

elements indicated by the corresponding
mapping table µXi,φSik

(j). The number of sums is |µXi,φSik
(j)|.

We compute the summation in parallel by using an existing
approach [4]. The summation is done in several iterations.
In each iteration, the numbers are divided into two groups
and the corresponding two numbers in each group are added
in parallel.
For scattering, note that (2) updates the elements of φXk

independently despite that φSik
and φ∗

Sik
are re-used to up-

date different elements. Therefore, we can compute each
multiplication in (2) with a single thread.

Given the two dimensions of parallelism, our parallel mes-
sage passing approach is illustrated in Figure 1. Denote
µXi[m] to be the m-th element in table µXi

and φSik
[n] the

n-th element in table φSik
. If the size of mapping table

µXi,Sik
is integer power of 2 (assuming |µXi,Sik

| = 2d), the
parallel reduction algorithm can be written as in Algorithm
3. If µXi,Sik

is not integer power of 2, we can use techniques
such as zero-padding to make it integer power of 2. Algo-
rithm 3 integrates the two dimensions of parallelism for the
reduction step - the element-wise parallelism determined by
|φSik

| and the arithmetic parallelism determined by the size
of mapping table |µXi,Sik

|. The scattering step is shown in
Algorithm 4.

Algorithm 3 Reduction(φXi
, φSik

, µXi,Sik
)

Require: µXi,Sik
= 2d

Ensure: φXi

for m = 1 to |φSik
| in parallel do

for n = 1 to d do
for k = 0 to 2d−n − 1 in parallel do

φXi
[µXi,Sik(m)[k]] = φXi

[µXi,Sik(m)[k]] +

φXi
[µXi,Sik(m)[k + 2d−n]]

end for
end for
φSik

[m] = φXi
[µXi,Sik(m)[0]]

end for

Algorithm 4 Scattering(φXk
, φSik

, µXk,Sik
)

for m = 1 to |φXk
| in parallel do

φXk
[m] =

φ∗

Sik

φSik

φXk
[m]

end for

4. PARAMETEROPTIMIZATIONFORPAR-

ALLEL MESSAGE PASSING
Belief propagation is essentially a sequence of message

passings {mi}
2M−2
i=1 over the edges of a junction tree, where

M is the number of nodes in the junction tree. Each message
passing has a reduction step and a scattering step. The par-
allel algorithms for reduction (Algorithm 3) and scattering
(Algorithm 4) assume infinite threads available for parallel
computing. However, a parallel computing platform such as
a GPU has only limited number of threads available.

GPU message passing is repeatly called by the CPU. Each
time the GPU is called, the thread block size as well as the
thread allocation can be set from the CPU side. Therefore,
when implementing Algorithm 3 and Algorithm 4 on a GPU,
a programmer faces the problem of how to set thread block
size and allocate the GPU parallel threads to the two di-
mensions of parallelism, i.e., we need to find a sequence of
GPU run-time parameters for each message passing.

4.1 Junction Tree and GPU Parameters
Intrinsic Junction Tree Parameters: Consider a mes-

sage passing from Ci to Ck through a separator S. From the
computational perspective, the input cliques and separators
can be characterized by a set of Intrinsic Junction Tree Pa-
rameter Pintr = {|φXi

|, |φXk
|, |φS |}, where |φXi

|, |φXk
|, |φS |

represent the size of potential tables of Ci, Ck, and S respec-
tively.



Figure 1: Two parallelism opportunities in a junc-
tion tree: element-wise and arithmetic parallelism.
Arithmetic parallelism (tree structure at the bot-
tom) is added on top of the element-wise parallelism
(look up table at the top).
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GPU Parameters: Before invoking a GPU kernel func-
tion for message passing, two question should be resolved on
the CPU side: (1) What should thread-block size be? (2) In
each thread block, how should threads be divided between
element-wise and arithmetic parallelism? To efficiently com-
pute the message passing, we need to carefully choose the
set of GPU parameters: Pgpu = {Kr, Ks, pra, pre, psa, pse},
where Kr and Ks are the total threads of one thread block
for reduction and scattering respectively; pra and psa are the
number of threads used for arithmetic parallelism in reduc-
tion and scattering respectively; and pre and pse are the num-
ber of threads used for element-wise parallelism used by each
thread block in reduction and scattering.

4.2 GPU Optimization Examples
Thread allocation optimization is very important for par-

allel message passing in junction tree. Due to the variability
of cliques and separators involved in message passing, the
performance surfaces have greatly varying shapes.

Figure 1 suggests if a mapping table is large, it is better
to assign more threads to the arithmetic parallelism; if a
separator table is large, it would be wise to assign more
threads to the element-wise parallelism.

Figure 2 shows three examples of different performance
surfaces with respect to GPU parameters pre and Kr. For
these examples, we get several intuitions about choosing
GPU parameters: 1) The search space is so diverse that
using the same set of parameters for all message passings
can seldom achieve optimal performance. Good parameters
for one message passing could work inefficiently for another.
2) For a given message passing, optimal GPU parameters
can result in huge improvement over a poor choice of GPU
parameters (in some cases, more than 20x difference).

4.3 GPU Optimization
The metrics for measuring system performance vary. In

our work, we use the execution time for belief propagation
to all the cliques in junction tree as our metric. Since belief
propagation over a junction tree is a sequence of message
passings, in our node level parallel BP algorithm, minimiz-
ing the total BP execution time can be broken down to a
sequence of tasks, minimizing the execution time for each
message passing.

It requires N = 2(M − 1) message passings to complete
belief propagation over a junction tree J with M cliques.
Let fn : Pintr × Pgpu → R be the execution time for one
message passing. The total BP time is

f(J,P1
gpu, . . . ,P

N
gpu) =

N
∑

n=1

fn(P
n
intr,P

n
gpu), (3)

where Pn
intr and P

n
gpu are the parameters of the n-th message

passing.
Thus, the GPU optimization problem can be modeled as:

min
P1gpu,...,PNgpu

N
∑

n=1

fn(P
n
intr,P

n
gpu),

s.t. :prne ∗ prna ≤ K
n
r , ∀ n

p
sn
e ∗ psna ≤ K

n
s , ∀ n

(4)

Unfortunately, traditional optimization techniques can not
be applied to this optimization problem since an analytical
form of fn(·) is usually not available due to the complexity



Figure 2: Examples of how GPU execution time (y-
axis) varies with different GPU parameters, specif-
ically the thread block size (TBS) and number of
arithmetic threads (x-axis).

Figure 3: Statistical model of many-core system per-
formance.
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of the hardware platform. Fortunately, statistical learning
can provide approximations for fn(·), as we discuss next.

5. MATHEMATICAL MODELS FOR PAR-

ALLEL MESSAGE PASSING

5.1 Theoretical Model for Message Passing
Before we proceed to the black-box modeling approach

with pre-execution parameters and post-execution perfor-
mance, as our first attempt to characterizes the relationship
between the message passing workload, GPU parameters
and the output performance (execution time), we develop
a simple mathematical model.

For simplicity, assume that the GPU takes a constant time
τa and τm for the add and multiplication operations respec-
tively. We ignore memory access time, device set up time,
etc. Suppose the GPU can accommodate Nb thread blocks
to run simultaneously. Consider a message passing from Ci

to Ck using GPU parameter psa, p
s
e, p

r
a and pra.

Define g(φ, p) =
⌈

|φ|
p

⌉

. The time for reduction is

Tr =

⌈

1

Nb
g(φS , p

r
e)

⌉

g(φXi
, p

r
a)⌊(log2 p

r
a + 1)⌋τa (5)

the time for scattering is

Ts =

⌈

1

Nb
g(φS , p

s
e)

⌉

g(φXj
, p

s
a)τa (6)

The total message passing time between Ci and Ck is given
by T = Tr + Ts. Due to this decomposition of message
passing time into reduction time and scattering time, we
can optimize the GPU parameters related to reduction and
scattering separately. For reduction, we have:

minpre,p
r
a
Tr

s.t. : pre ∗ p
r
a ≤ Kr

(7)

and for scattering we get:

minpre,p
r
a
Ts

s.t. : pse ∗ p
s
a ≤ Ks

(8)

It is analytically and numerically hard to optimize (7) and
(8) due to the irregular form of both the objective and con-
straint functions. In addition, the overly simplified assump-
tions make them not practically useful for the purpose of
parameter selection. Consequently, we turn to a regression
approach as discussed below.

5.2 Regression Models for Message Passing
In this subsection, we develop statistical models for mes-

sage passing. The models used are Polynomial Regression
and Support Vector Regression (SVR). Essentially, we want



to establish a statistical relationship between the GPU con-
figuration parameters and the performance as illustrated in
Figure 3.
Polynomial Regression: For the polynomial model, in or-

der to get better insight about how the thread allocation
affects the GPU execution time, we use the Lasso method
to shrink the model and compare the resulting model with
(7) and (8). A polynomial Lasso has the form

β̂
Lasso =argmin

β

N
∑

i=1

(

yi − β0 −

p
∑

j=1

Polyj(xi)

)2

s.t.

p
∑

j=1

|βj | ≤ t,

where Polyj(x) is a polynomial function of the feature vector
x. The Lasso in the equivalent Lagrangian form is

β̂
Lasso = argmin

β

N
∑

i=1

(

yi − β0 −

p
∑

j=1

Polyj(xi)

)2

+λ

p
∑

j=1

|βj |,

(9)
where λ is the Lagrangian multiplier.
Support Vector Regression (SVR): A second regression

model we use is support vector regression [3]. In SVR,
the input is first mapped onto a high-dimensional feature
space using some fixed (nonlinear) mapping, and then a lin-
ear model is constructed in this feature space. The linear
model (in the feature space) f(x, ω) is given by

f(x, ω) =

m
∑

j=1

ωjgj(x) + b, (10)

where gj(x), j = 1, . . . ,m, denotes a set of nonlinear trans-
formations, and b is the bias term. The loss function of SVR
is called ǫ-insensitive loss function defined as

Lω(y, f(x, ω)) =

{

0 if |y − f(x, ω)| ≤ ǫ

|y − f(x, ω)| − ǫ otherwise

(11)
SVR performs linear regression in the high-dimensional

feature space using ǫ-insensitive loss and, at the same time,
tries to reduce model complexity by minimizing ‖ω‖2. Thus
SVR is formulated as minimization of the following function:

min
1

2
‖ω‖2 + C

n
∑

i=1

(ξi + ξ
∗
i )

s.t.







yi − f(x, ω) ≤ ǫ+ ξ∗i
f(x, ω)− yi ≤ ǫ+ ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, . . . , n

5.3 Features for Regression Models
The features we collected for regression model training are

shown in Table 1. There are two possible ways that statis-
tical modeling can help us with run-time GPU parameter
selection: 1) We can directly approximate the function

(K∗
, p

∗
a) = arg min

K,pa
T (K, pa, |φS |, |φX |), (12)

where T : N × N × N × N → R is the GPU execution time
as a function of K, pa, |φS | and |φX |. Practically, the num-
ber of possible values K and pa is finite, therefore, we can
model (12) as a classification problem. Or 2) we can alterna-
tively take an indirect approach by first training a regression

Feature Description
|φS | Size of separator potential table
|φX | Size of clique potential table
K Number of threads of thread block
pa Threads for arithmetic parallelism

Table 1: Features used in regression models.

model for GPU execution time and then search the regres-
sion model to obtain the best run-time GPU parameters. In
this paper, we use the regression method.

5.4 Metrics for Regression Model Quality
Since the trained model is used to optimize GPU param-

eters, we want to find a regression model whose minimum
point is the same as or close to that of the real GPU perfor-
mance surface. Residual squared sum (RSS) is often used to
measure the quality of a regression model’s fit to the train-
ing data. However, RSS is not a direct metric for the quality
of a regression model in our thread allocation optimization
problem. In other words, small RSS does not necessarily
guarantee a good model.

Our goal is to find optimal estimated parameters K∗ and
p∗a for reduction and scattering with given |φS | and |φX |.
Thus, we propose to use the squared deviance (SD) from
the real optimal value as a metric for model training quality,
e.g.,

SDr =
∑

|φS |,|φX |

(Tr(|φS |, |φX |, K̂∗
, p̂

∗
a)− T

∗
r )

2
,

SDs =
∑

|φS |,|φX |

(Ts(|φS |, |φX |, K̂∗
, p̂

∗
a)− T

∗
s )

2
,

where Tr(·)/Ts(·) is the measured GPU reduction/scattering
time with respect to junction tree parameters |φS |, |φX | and
GPU parameters K and p and

T
∗ = min

K,p
T (|φS |, |φX |,K, p). (13)

K̂∗ and p̂∗a are the optimal parameters obtained from the
statistical model with given |φS | and |φX |.

Aside from the squared deviance from the optimal value,
we also use the miss rate (MR) as a measurement of model
quality. The miss rate is defined as

MR =

∑

|φS |,|φX | 1(K̂
∗ 6= K∗ or p̂∗a 6= p∗a)

N
, (14)

where 1(·) is the indicator function, K∗ and p∗a are the real
optimal GPU parameters for a given |φS | and |φX |, and
N is the total number of message passings in the training
set. Practically, we exhaustively try all the small number of
possible GPU configurations on GPUs to find K∗ and p∗a.

6. EXPERIMENTS
In this section, we address the following questions:

• How accurately can a statistical model emulate GPU
performance?

• How much GPU execution time can be saved as a
result of using statistical model-based parameter op-
timization compared to manual parameter optimiza-
tion?



NVIDIA Geforce GTX 460
# of Processing cores 336

Shared Memory 48K per block
Global Memory 785MB

Memory Bandwidth 90 GB/sec peak
Intel Core 2 Quad CPU
# of cores 4

Processor Clock 2.5GHz
Cache 8MB

Memory 9 GB

Table 2: Experimental Platforms: GPU and CPU

Step Method RSS SD MR

Reduce
Lasso(λ = 0) 12.3e5 20.84 12.73%
Lasso(λ = 1se) 14.9e5 11.3e3 23.62%
SVR 13.6e5 1.78 18.58%

Scatter
Lasso(λ = 0) 1.31e3 0.92 1.84%
Lasso(λ = 1se) 1.57e3 0.46 2.01%
SVR 2.69e3 0.72 2.18%

Table 3: Residual Squared Sum (RSS), Squared De-
viance (SD) and Miss Rate (MR) of polynomial and
SVR model for GPU reduction and scattering exe-
cution time

6.1 Experimental Data and Platforms
Our implementation is tested on a number of BNs1 from

different problem domains, with varying structures and state
spaces. In our experiments, we compile a BN into a junction
tree offline and then run belief propagation over the junction
tree.
As a baseline, we implement a sequential junction tree

program on an Intel CPU, whose execution time is compa-
rable to that of the SMILE [15], a widely used C++ software
package for BNs inference. As a second baseline, we use the
SMILE junction tree algorithm. Detailed information for
the CPU and GPU platforms is in Table 2. We have per-
formed sanity checks on the parallel junction tree algorithm
to ensure the correctness of our implementation.

6.2 Regression Results
We use both polynomial-lasso regression and support vec-

tor regression to fit the data. For the polynomial model, the
terms we include in the model are |φS |, |φX |, K, K2, pe, p

2
e,

and all the interaction terms of the above-mentioned terms.
We set the Lagrangian multiplier λ in (9) to be λmin, which
is the value of λ that gives minimum mean cross-validated
error, and λ1se, which is the largest value of λ that gives
the mean cross-validated error within 1 standard error of
minimum.
For SVR, we use a radial basis kernel

g(x) = e
−γ‖x−v‖2

, (15)

where the kernel bandwidth γ is chosen to be

γ =
2N

∑N
i=1(xi − x̄)2

. (16)

Other parameters for SVR training are

1http://bndg.cs.aau.dk/html/bayesian_networks.html
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Figure 4: Search space for statistical models (lasso
and SVR) versus real GPU execution time with
|φX | = 219, 520 and |φS | = 14 and varying GPU param-
eters, degree of arithmetic parallelism pa and thread
block size K.
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Figure 5: Search space for statistical models (lasso
and SVR) versus real GPU execution time with
|φX | = 784, 000 and |φS | = 24, 500 and varying GPU
parameters, degree of arithmetic parallelism pa and
thread block size K.
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Figure 6: Search space for statistical models (lasso
and SVR) versus real GPU execution time with
|φX | = 32, 000 and |φS | = 320 and varying GPU param-
eters, degree of arithmetic parallelism pa and thread
block size K.



Pigs Water Munin2 Munin3 Munin4 Mildew Barley Diabetes

Data Statistics
# of JT nodes 368 20 860 904 872 28 36 337
Ave. CPT size 1,972 173,297 5,653 3,443 16,444 341,651 512,044 32443
Ave. SPT size 339 713 533 2,099 9,273 26,065 39,318 1845

Manual
0-threshold [ms] 39.29 29.97 205.8 57.65 146.64 44.16 103.38 58.30
1-threshold [ms] 26.06 18.21 86.4 48.17 104.44 34.56 90.18 48.63

Regression
SVR [ms] 13.70 9.47 43.73 35.18 67.15 17.84 45.96 33.98
Lasso (λ = 0) [ms] 19.8 14.48 72.28 59.01 101.41 23.85 58.63 62.32
Lasso (λ = 1se)[ms] 131.8 49.13 151.71 167.8 387.54 51.72 136.41 110.72

Previous
GPU time [ms] 75 52 125 104 342 53 106 94
CPU time [ms] 51 120 210 137 473 355 974 420
SMILE [ms] 130 160 140 120 430 280 780 240

Speedup SVR/CPU Speedup 3.72x 12.68x 4.80x 3.89x 7.04x 19.90x 21.19x 12.36x

Table 4: The GPU execution time (in milliseconds) for different GPU parameter optimization methods, using
different junction trees (Pigs, Water, ...) with very different clique potential table (CPT) and separator
potential table (SPT) characteristics. The table shows junction tree information (Data Statistics); varying
GPU optimization methods (Manual Optimization: 0-threshold and 1-threshold versus Regression based
Optimization: SVR and lasso); Previous results [18] and Speedup (current SVR versus previous CPU [18]).

Figure 7: GPU execution times for different parame-
ter optimization methods both manual (0-threshold
and 1-threshold) and regression (lasso and SVR).
Optimization using SVR is best in all cases.
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0−threshold GPU parameters

1−thresold GPU parameters

GPU parameters with lasso model (λ = 1SE)

GPU parameters with lasso model (λ = 0)

GPU parameters with SVR

• The weight for slack terms: C = 10

• The ǫ in insensitive loss function: ǫ = 0.001.

In Figure 4, 5 and 6, we plot three examples of statistical
models emulating measured GPU execution time Tr for the
reduction step. In each figure, |φX | and |φS | are fixed and
the GPU parameters K and pa change. These three exam-
ples correspond to the three examples in Figure 2. In Figure
4, both SVR and lasso approximate the GPU time nicely.
However, in Figure 5, neither SVR nor lasso approximate
the GPU time well, because of an abrupt drop of GPU time
when pa increases. However, a closer look shows that the
minimum points of both the SVR and lasso models are lo-
cated not far from the minimum point of the measured GPU
time. In Figure 6, lasso approximates the GPU time better
than SVR, but both statistical models’ minimum points are
close to that of the real GPU execution time surface.
Table 3 shows the residual sum of squares (RSS), the

squared deviance (SD) from the optimal value, and the miss
rate (MR) of models. From the table, we see that GPU
execution time for reduction is harder to emulate than scat-
tering. This suggests that reduction is likely to be the bottle-

neck of parallel message passing. Also from the table we see
that even though SVR does not have the lowest miss rate,
its squared deviance is the smallest for reduction. That is to
say, even though SVR might have missed some optimal pa-
rameters, its parameter choices are not much worse than the
optimal. Thus we expect SVR to perform the best in thread
allocation, which is illustrated experimentally in Table 4.

6.3 Manual versus Regression-BasedGPUPa-
rameter Optimization

In this section we compare different GPU parameter set-
tings and show that regression-based GPU parameter opti-
mization can achieve much better performance than (exten-
sive) manual parameter optimization. We use 0-threshold
and 1-threshold parameter selection scheme, suitable for man-
ual optimization, as benchmarks. In the 0-threshold param-
eter setting, where there is no threshold on the mapping
table size, we set K = 256 and qa = 16 for all the message
passings throughout belief propagation. The 0-threshold
parameter setting is perhaps the most straightforward and
widely used GPU parameter selection scheme. A program-
mer just sets a group of reasonable GPU parameters which
do not change at run time.

In the 1-threshold parameter selection with threshold t1 =
90, we still keep K = 256, but we set pa in the following way:

pa =

{

4 if|µXi,Sik(n)| ≤ 90
128 if|µXi,Sik(n)| > 90

, (17)

where µX is the mapping table size. The rationale behind
this 1-threshold parameter optimization is that in reduc-
tion/scattering cases where there is a long mapping table
(see Figure 1), there are many opportunities for arithmetic
parallelism and therefore we should assign many threads
(in (17), pa = 128). In cases where the mapping table is
“short”, many threads should be assigned to element-wise
parallelism, leaving “few” to arithmetic parallelism (in 17,
pa = 4). In (17), t1 = 90 is chosen as a reasonable threshold
to differentiate short and long mapping tables.

In experiments, we used the SVR and polynomial-lasso
models to select GPU parameter for each BP message pass-
ing. Results are summarized in Table 4 and Figure 7. On



average over all data sets, we get a speedup of 10.70x (arith-
metic average) or 8.68x (geometric average) as compared to
that of 3.43x (arithmetic average) or 2.44x (geometric av-
erage) achieved previously only using the element-wise par-
allelism [18]. We also compare the parallel junction tree
algorithm with SMILE, the improvement is still significant
as shown in Table 4.
We highlight several points in Table 4: 1) Across the

columns, we see that parallelism opportunity determines the
GPU performance. The GPU in general performs well for
data sets that have big cliques (which means more arithmetic
parallelism) or big separators (which means more element-
wise parallelism). For the data-sets that have neither big
cliques nor big separators, such as “Munin2” and “Munin3”,
the GPU speedup is smaller.
2)Across the different statistical models, we see that SVR

is best for all the data sets we have, which coincide with our
observation for squared deviation from optimal value and
miss rate in Table 3. Lasso(λ = 0) is comparable to the
1-threshold parameter optimization; Lasso(λ = 1se), with a
severe punishment on model complexity, performs the worst
of all. The difference between the best and worst statistical
model parameter settings can be as large as 5-7x.

7. CONCLUSION AND FUTUREWORK
In this paper, we discuss a two-dimensional parallel al-

gorithm for belief propagation over junction trees, and im-
plement the algorithm on a GPU. Due to the great variety
in clique and separator sizes in junction trees from applica-
tions, the parallel opportunity for both dimensions of paral-
lelism varies. Since the GPU performs best when the con-
currency provided by the GPU matches the parallel oppor-
tunity in the algorithm, it is necessary to carefully optimize
the thread allocation for both dimensions of parallelism as
well as for thread blocks. Experiments show a large dif-
ference in GPU performance given different thread alloca-
tions. Therefore, we use statistical models to approximate
the parameter space, for the purpose of searching for opti-
mal parameters. Among the models we used, SVR performs
best, and outperforms manual GPU optimization. We show
that our approach is an effective way to improve the GPU
performance when seeking for fast junction tree belief prop-
agation.
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