
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

September, 2010

Probabilistic Model-Based Diagnosis: An
Electrical Power System Case Study
Ole J Mengshoel, Carnegie Mellon University
Mark Chavira, University of California - Los Angeles
Keith Cascio, University of California - Los Angeles
Adnan Darwiche, University of California - Los Angeles
Scott Poll, NASA Ames Research Center, et al.

Available at: https://works.bepress.com/ole_mengshoel/4/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/4/

874 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 5, SEPTEMBER 2010

Probabilistic Model-Based Diagnosis: An
Electrical Power System Case Study

Ole J. Mengshoel, Member, IEEE, Mark Chavira, Keith Cascio, Scott Poll,
Adnan Darwiche, and Serdar Uckun, Member, IEEE

Abstract—We present in this paper a case study of the proba-
bilistic approach to model-based diagnosis. Here, the diagnosed
system is a real-world electrical power system (EPS), i.e., the
Advanced Diagnostic and Prognostic Testbed (ADAPT) located at
the NASA Ames Research Center. Our probabilistic approach is
formally well founded and based on Bayesian networks (BNs) and
arithmetic circuits (ACs). We pay special attention to meeting two
of the main challenges often associated with real-world application
of model-based diagnosis technologies: model development and
real-time reasoning. To address the challenge of model develop-
ment, we develop a systematic approach to representing EPSs
as BNs, supported by an easy-to-use specification language. To
address the real-time reasoning challenge, we compile BNs into
ACs. AC evaluation (ACE) supports real-time diagnosis by being
predictable, fast, and exact. In experiments with the ADAPT BN,
which contains 503 discrete nodes and 579 edges and produces
accurate results, the time taken to compute the most probable
explanation using ACs has a mean of 0.2625 ms and a standard
deviation of 0.2028 ms. In comparative experiments, we found
that, while the variable elimination and join tree propagation
algorithms also perform very well in the ADAPT setting, ACE was
an order of magnitude or more faster.

Index Terms—Aerospace, arithmetic circuits (ACs), Bayesian
networks (BNs), domain modeling, electrical power systems
(EPSs), knowledge engineering, model-based diagnosis, real-time
systems, uncertainty.

I. INTRODUCTION

IN THIS paper, we apply probabilistic model-based diagno-
sis techniques to a real-world electrical power system (EPS),

i.e., the Advanced Diagnostic and Prognostic Testbed (ADAPT)
[1]. In this application, a Bayesian network (BN) model [2]
of the ADAPT EPS plays a central role. The ADAPT BN
explicitly represents the health of the sensors and subsystem
components and is autogenerated from a high-level system

Manuscript received April 26, 2008. Date of publication July 19, 2010; date
of current version August 18, 2010. This paper was recommended by Guest
Editor G. Provan.

O. J. Mengshoel is with Carnegie Mellon University, Silicon Valley, NASA
Research Park, Moffett Field, CA 94305 USA, and also with the Intelligent
Systems Division, NASA Ames Research Center, Moffett Field, CA 94035
USA (e-mail: Ole.Mengshoel@sv.cmu.edu).

M. Chavira is with Google, Santa Monica, CA 90401 USA (e-mail:
chavira@cs.ucla.edu).

K. Cascio and A. Darwiche are with the Department of Com-
puter Science, University of California, Los Angeles, CA 90095 USA
(e-mail: keith@cs.ucla.edu; darwiche@cs.ucla.edu).

S. Poll is with the Intelligent Systems Division, NASA Ames Research
Center, Moffett Field, CA 94035 USA (e-mail: Scott.Poll@nasa.gov).

S. Uckun is with the Embedded Reasoning Area, Palo Alto Research Center,
Palo Alto, CA 94304 USA (e-mail: Serdar.Uckun@parc.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2010.2052037

model of the ADAPT EPS. This BN is then compiled, offline,
into an arithmetic circuit (AC) that is then evaluated online. We
believe that this ADAPT case study clearly demonstrates how
ACs offer a scalable inference technique with potential for real-
time evaluation in aircraft and spacecraft.

In several ways, this work is different from previous diag-
nosis efforts that utilize BNs, including EPS diagnosis [3], [4].
A first contribution is our expression of EPS components and
structure, using a novel high-level language, coupled with auto-
generation of BNs from models expressed in this language. This
approach supports the iterative development of probabilistic
diagnostic models for large EPSs, including diagnostic system
models that would be extremely tedious to hand-construct, even
for BN experts. The benefit of this approach to developers less
familiar with BNs appears to be even greater.

As a second contribution, we highlight our offline compila-
tion of BNs to ACs [5], [6], which are then used for online
diagnosis. It is important to achieve real-time performance in
many system health monitoring applications, e.g., in aerospace
[7]–[10], and at the same time, the problem of diagnosis in BNs
is NP-hard or worse [11]–[13]. An AC, which typically is large
but has a simple and exact semantics, supports real-time diag-
nosis by providing fast and predictable inference times. These
three benefits—fast, predictable, but exact—are very important,
given the real-time requirements of aircraft and spacecraft
avionics [8]–[10]. In experiments, we have successfully shown
here that AC evaluation (ACE) provides high-quality diagnostic
results on ADAPT scenarios. In addition, we have shown that
performance is substantially better than alternative probabilistic
inference algorithms, specifically variable elimination (VE) and
join tree propagation (JTP).

EPSs are of crucial importance in aerospace, as well as
in numerous other application [1], [14]. Our results in this
paper provide an argument for the feasibility of probabilistic
model-based diagnosis of complex EPSs. One of our main
contributions is the integration of different techniques, both
existing and novel, in order to address a real-world problem,
thereby obtaining an approach that scales up to handle real-
world challenges in probabilistic model-based diagnosis. Build-
ing on the approach discussed here, we have developed BNs
that achieved the best overall scores in the Industrial Track of
the 2009 DX Challenge Competition [15]. In addition, we have
demonstrated scalability for BNs representing 24 distinct EPSs,
where the largest BN had 1018 nodes and 1194 edges [16].

The rest of this paper is structured as follows. We discuss
EPSs in aerospace, the ADAPT testbed, and diagnostic chal-
lenges in Section II. We then briefly introduce fundamentals of

1083-4427/$26.00 © 2010 IEEE

MENGSHOEL et al.: PROBABILISTIC MODEL-BASED DIAGNOSIS 875

Fig. 1. Schematic of the ADAPT testbed, showing one of three power storage parts (for Battery 1, top) and one of two load banks (Load bank 1, bottom).
Detailed information about loads is given in Table II.

BNs and ACs in Section III. Using ADAPT as a case study, we
discuss the high-level specification language (Section IV), BN
modeling and autogeneration (Section V and Section VI, res-
pectively), and compilation to ACs (Section VII). Finally, we
report on experimental results in Section VIII, both on real-
world and synthetic data, before concluding in Section IX.

II. EPSs

We consider the importance of EPSs in aerospace, describe
an EPS testbed that is the subject of this case study, and discuss
diagnostic challenges associated with EPSs.

A. Challenges in Aerospace and at NASA

The essential role that EPSs play in aerospace vehicles is
well known [1], [14]. The EPS may be thought of as the
circulatory system of an aerospace vehicle. In the human body,
the circulatory system delivers oxygen and removes carbon
dioxide. Similarly, the EPS delivers energy to subsystems in
order to power required vehicle functions, such as life support,
propulsion, communications, guidance, navigation, and control.

Loss of electrical power to these and similar subsystems can
have severe repercussions for the vehicle, personnel, or mission.

Unfortunately, EPSs have been implicated in several
aerospace vehicle incidents, accidents, and mishaps. In one ac-
cident, the left power conversion and distribution unit (PCDU)
on a Boeing 717 failed, resulting in the loss of the left AC
and DC buses. The most likely cause was determined to be
the failure of a transient suppression diode, which allowed AC
current to contaminate the DC circuits of the PCDU. In another
incident involving the PCDU of a Boeing 717, a tantalum
capacitor and a permanent-magnet generator input transformer
failed, resulting in smoke in the cabin and an emergency land-
ing and evacuation (NTSB report ATL04IA085). The Electric
propulsion Space EXperiment (ESEX) mission, which was
launched and operated in early 1999, prematurely ended when
the spacecraft experienced a catastrophic battery failure. The
failure was most likely the result of electrolyte leakage, which
caused a short circuit to the battery case, resulting in a breach
of the battery case, entry of superheated gas into the flight unit,
and eventual venting into space [17]. On January 14, 2005, an
Intelsat-operated communications satellite suffered a total loss
after a sudden and unexpected EPS anomaly. The failure of

876 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 5, SEPTEMBER 2010

TABLE I
DIFFERENT EPS PARTS, ALONG WITH THEIR MODES AND THE

CORRESPONDING STATES OF THE HEALTH NODE FOR THE PART

Intelsat 804’s high-voltage power system was likely the result of
a high-current event in the battery circuitry triggered by an elec-
trostatic discharge (see http://sat-nd.com/failures/index.html/).
A battery failure also occurred on the Mars Global Surveyor,
which last communicated with earth on November 2, 2006. A
software error oriented the spacecraft to an angle that exposed
it to too much sunlight. This caused the battery to overheat
and ultimately led to the depletion of both batteries (see
http://mpfwww.jpl.nasa.gov/mgs/newsroom/20070413a.html).

These are just a few examples of the faults that can arise
in EPSs. Given the prevalence and importance of EPSs, it
is vital to develop effective health management approaches,
including diagnostic techniques, for operation in aerospace
vehicles.

B. ADAPT

We now turn to ADAPT (see also http://ti.arc.nasa.gov/adapt/
and [1]). ADAPT, which has capabilities for power generation,
power storage, and power distribution, is a fully operational
EPS that is representative of such systems in aircraft and space-
craft. Fig. 1 presents a schematic with a representative battery
and load bank from ADAPT. ADAPT is configured to achieve
fault tolerance and contains three batteries and two load banks.
One battery can provide power to two load banks. However,
two batteries may not power the same load banks simultane-
ously. In Fig. 1, e.g., for Battery 1 to power Load bank 1,
relay EY141 is closed. For Battery 1 to power Load bank 2,
on the other hand, relay EY144 is closed. Relays EY141 and
EY144 cannot be both closed at the same time.

Different types of components and sensors used in ADAPT
are presented in Table I. Relays, which are commanded to
close and open to control power, have prefix EY (in Fig. 1)
and health modes as indicated in the table. A position sensor,
which is also presented in Table I, reports on the status of a
relay. As concrete examples, consider in Fig. 1 relay EY170
that controls power to load L1A; it also has a position (or
touch) sensor ESH170. Our probabilistic diagnostic application

TABLE II
LOADS AND THEIR SENSORS (WHERE APPLICABLE) FOR LOAD

BANK 1 OF THE ADAPT ELECTRICAL POWER SYSTEM

works on real-world data from ADAPT. In our application,
each of EY170 and ESH170 are represented by random vari-
ables, including random variables representing health state, as
shown in Table I. For example, EY170’s health random vari-
able has states {healthy, stuckOpen, stuckClosed}. Upstream
of relay EY170 is a current sensor IT167; the states of its
health variable are {healthy, readCurrentLo, readCurrentHi},
as shown in the table. Further information on modeling of
EPS components and structure is provided in Sections V
and VI.

There are two load banks in ADAPT, and each has an AC
part and a DC part. Load bank 2 is very similar to Load bank 1;
the loads are just plugged into different locations. There is
no ambiguity as to which “power outlet” a load is “plugged
into.” At this time, there are mostly AC loads in ADAPT (see
Table II). Currently there are two DC loads, one for each load
bank. To convert DC power from the batteries into AC power
used by the AC loads, ADAPT has two inverters, one per load
bank. A failed inverter breaks power transmission to the AC
loads; see the stuckOpen failure state in Table I.

C. Diagnostic Challenges

There are several diagnostic challenges associated with EPSs
including ADAPT. First, they often have a large number of dis-
tinct modes due to mode-inducing components, such as relays,
circuit breakers, and loads. If an EPS has m such components
and we conservatively assume two discrete states for each, there
are potentially 2m modes in the EPS. Second, while much
EPS behavior is deterministic, there is both sensor noise and
system state uncertainty in EPSs. Sensor noise is due to the
imperfections of sensing, whereas system state uncertainty is
due to failures of EPS components and sensors. Third, the mode
switching behavior of EPSs often induces transients in system
response and the corresponding sensor measurements, which
may lead to false alarms if simple threshold-based monitoring is
used. Fourth, the time evolution of faults can have a wide range
of time scales, depending on the fault mechanism; switch faults
will very quickly manifest, whereas degradation in a power
source could take place over days or weeks. Our use of BNs
and ACs, as discussed in this paper, is motivated by the need to
construct EPS diagnostic models that capture both deterministic
and uncertain behaviors when many modes are present.

MENGSHOEL et al.: PROBABILISTIC MODEL-BASED DIAGNOSIS 877

III. BNs AND ACs

We now briefly present the underlying formalisms of our
probabilistic model-based reasoning approach: BNs and ACs.

A. BNs

BNs represent multivariate probability distributions and are
used for reasoning and learning under uncertainty [2]. Proba-
bility theory and graph theory form the basis of BNs: Roughly
speaking, random variables are represented as nodes in a di-
rected acyclic graph (DAG), whereas conditional dependencies
are represented as graph edges. A BN, whose graph structure
often reflects a domain’s causal structure, is a compact repre-
sentation of a joint probability table if its graph is relatively
sparse. Both discrete and continuous random variables can be
represented in BNs; our main emphasis in this paper is on BNs
with discrete random variables. Each discrete random variable
(or node) X has a finite number of states {x1, . . . , xm} and is
parameterized by a conditional probability table (CPT).

Let X be the BN nodes, E ⊂ X be the evidence nodes,
and e be the evidence. Different probabilistic queries can
now be formulated; they all assume that all nodes in E are
clamped to values e. Computation of most probable explana-
tion (MPE) amounts to finding an MPE over the remaining
nodes R = X − E or MPE(e). Computation of marginals (or
beliefs) amounts to inferring the posterior probabilities over
one or more query nodes Q ⊆ R, specifically BEL(Q,e),
where Q ∈ Q. Marginals are used to compute most likely
values (MLVs) simply by picking, in BEL(Q,e), a most likely
state. Computation of the maximum a posteriori probability
(MAP) generalizes MPE computation and finds a most prob-
able instantiation over nodes Q ⊆ R, i.e., MAP(Q,e). MAP
can be approximated by MPE and MLV, and we will denote
this using MAPMPE(Q,e) and MAPMLV(Q,e), respectively.
MAPMPE(Q,e) is the result of disregarding the nodes in R
not in Q, and MAPMLV(Q,e) is the result of aggregating
MLV(Q,e) of all Q ∈ Q. These two approximations are of
interest because of the greater computational complexity of
MAP [13], compared with MPE and marginals [11], [12].

Different BN inference algorithms can be used to perform
the preceding computations. We distinguish between exact and
inexact algorithms and focus, in this paper, on exact algorithms,
which include JTP [18]–[20], conditioning [21], [22], VE [23],
[24], and ACE [5], [6]. In resource-bounded systems, including
real-time avionics systems, there is a strong need to align the
resource consumption of diagnostic computation with resource
bounds [7], [8]. The compilation approach—including JTP and
ACE—is attractive in resource-bounded systems. In this paper,
we emphasize compilation into ACs, which we present next.

B. ACs

ACs, as discussed in [5] and [25], are used here to perform
probabilistic inference. The compilation from BNs to ACs is
based on the following connection between BNs and multi-
linear functions (MLFs). With each BN, we associate a corre-
sponding MLF that computes the probability of evidence. For

example, the BN A → C ← B, where A and B are Boolean
and C has three values, induces the following MLF:

λa1λb1λc1θa1θb1θc1|a1,b1 + λa1λb1λc2θa1θb1θc2|a1,b1 + · · ·
+λa2λb2λc2θa2θb2θc2|a2,b2 + λa2λb2λc3θa2θb2θc3|a2,b2 .

The terms in the MLF are in one-to-one correspondence
with the rows of the network’s joint distribution. Assume that
all indicator variables λx have value 1 and all parameter
variables θx|u have value Pr(x|u). Each term will then be
a product of probabilities, which evaluates to the probability
of the corresponding row from the joint. The MLF will add
all probabilities from the joint for a sum of 1.0. To compute
the probability Pr(e) of evidence e, we exclude certain terms
from the sum. This is accomplished by carefully setting certain
indicators to 0, instead of 1, according to the evidence.

Unfortunately, the network MLF has exponential size. How-
ever, if we can factor the MLF into something small enough
to fit within memory, then we can compute Pr(e) in time that
is linear in the size of the factorization. The factorization will
take the form of an AC, which is a rooted DAG, where an
internal node represents the sum or product of its children, and
a leaf represents a constant or variable. In this context, those
variables will be indicator and parameter variables. We refer
to this process of producing an AC from a BN as compiling
the network. While a BN is more compact than an AC, there
are, in fact, several advantages associated with using an AC for
probabilistic inference, as we will shortly discuss.

Once we have an AC for a network, we can compute Pr(e)
for given evidence e by assigning appropriate values to leaves
and then computing a value for each internal node in bottom–up
fashion. The value for the root is then the answer to the
query. We can also compute answers to many other queries
(a posterior marginal for each network variable, a posterior
marginal for each network family, etc.) by performing a second
downward pass [5] analogous to the outward pass of the join
tree algorithm. Hence, many queries can simultaneously be
computed in time linear in the size of the AC. MPE(e) may
be computed in a similar manner by using maximization nodes,
instead of addition nodes in the AC. Another main point is
that the upward and downward passes may then be repeated
for as many evidence sets as desired, without recompiling.
Performing inference using an AC is therefore divided into two
phases: 1) an offline phase, which compiles the network into an
AC and is run once, and 2) an online phase, which answers
many queries each time it is invoked and may be invoked
multiple times.

We close this section by noting the close relationship be-
tween the JTP algorithm [18], [19] and ACs since the data
structures involved in this algorithm embed an AC in a very
precise sense [26]. Other compilation algorithms have been
developed based on tabular elimination [25], weighted model
counting [27], and ADD elimination [6]. These algorithms can
have an exponential advantage over join tree by exploiting
structure in the parameters of the BN [28].

878 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 5, SEPTEMBER 2010

TABLE III
SYNTAX OF OUR NOVEL SPECIFICATION LANGUAGE

IV. HIGH-LEVEL MODEL

Our approach to probabilistic model-based diagnosis in-
volves four stages. In the first stage, we describe the EPS
using a high-level modeling language. In the second stage,
we apply a program to automatically convert the high-level
specification into a BN. Putting the EPS model into the form
of a BN allows us to leverage a large body of existing work
on inference techniques. In the third stage, we compile the BN
into an AC. This stage represents the application of a specific
technique (ACs) for performing inference in BNs, which, in the
resource-bounded real-time context, has significant advantages
over other techniques [7], [8]. All stages up to this point have
taken place offline, before the EPS is put into actual use. The
fourth stage involves applying algorithms to the AC to perform
inference online, when the EPS is in the field. By this time,
as much computational effort as possible has been performed
offline, leaving much less computation to be performed online.
In this and the next four sections, we provide more detail on
each stage, beginning in this section with the novel high-level
specification language.

The syntax of our high-level specification language is given
in Table III. A specification is a list of statements. (Here, 〈name〉
is an identifier, and 〈p〉 is a probability.) Each statement defines
a component, which can either be a source (battery), a basic
component, a sensor, or a sink (load). For brevity, we do not
describe here some statements defining more complicated sen-
sors. The general idea is that power flows from sources through
basic components to sinks, monitored by sensors, and various
failures can occur at each component. For each component, we
define its name, its type (e.g., source, load, breaker, relay,
sensorCurrent, sensorVoltage), the probability that the
component will fail,1 and a set of neighboring components. For
a source, the set of neighbors is empty; for a basic component
or a sink, we list all neighbors that lie between the component
and a source of electricity; for a sensor, we list only the com-
ponent to which the sensor is attached. These sets of neighbors
serve to define the topology of an EPS.

Fig. 2 depicts a very simple example of an EPS, which is also
described in Table IV by means of our specification language.
The third line, e.g., defines a current sensor curSens with
failure probability 0.0003 and attached to component wire1
(which happens to be a wire defined in the second line). The
fifth line defines a touch (or position) sensor touchSens with
failure probability 0.0002 and attached to the relay rly.

1As described, all failures for a given component have equal probability, but
the syntax can easily be extended to assign differing probabilities to different
kinds of failures.

Fig. 2. Small EPS; it is described using our specification language in Table IV.

TABLE IV
SMALL EPS, SHOWN IN FIG. 2, DESCRIBED

USING OUR SPECIFICATION LANGUAGE

Using our specification language, the ADAPT EPS is
described using statements for the following components:
3 sources (batteries), 20 sinks (loads), 16 wires (we only need to
describe a wire if it has a sensor attached or if we want to model
failures in wires), 2 inverters, 9 circuit breakers, 25 relays,
17 current and load sensors, 16 voltage sensors, 33 position
(touch) sensors, and 6 more advanced sensors (these advanced
sensors are not described here for the sake of brevity).

The main purpose of the high-level specification language is
to make developing an EPS model easy and less error prone.
One can specify a model by listing which components exist
in the system and, for each, its type, failure probability, and
neighbors. All of this information can often directly be ob-
tained from schematics and hardware manuals. Consequently,
the modeling task at the specification language level does not
require guesswork or any knowledge of BNs or ACs.

Components differ from each other in some ways that are not
explicitly represented in the specification language, because the
information can be inferred from the component’s type. For ex-
ample, some component types, such as a circuit breaker, accept
a command to open or close, whereas other, such as a wire, do
not. Similarly, different components may suffer different types
of failures, as presented in Table I. For example, a wire can
only fail in a stuck-open state, whereas a circuit breaker can
be stuck open or stuck closed. This information is added during
the BN autogeneration stage (see Section VI), reflecting our BN
modeling approach, which is what we discuss next.

V. MODELING EPSs

A main contribution in this work is our systematic modeling
of EPSs using BNs. BNs provide a probabilistic semantics
for our high-level specification language, and in addition, they
support efficient inference including compilation into ACs. We
partition the set of BN nodes X into subsets H , E, C, P , and
R as given here.

1) Health nodes (H), where H = HC ∪ HS and HC ∩
HS =∅. Here, HC (component health nodes) represents
the health of the EPS components, and HS (sensor health
nodes) represents the health of the EPS sensors.

MENGSHOEL et al.: PROBABILISTIC MODEL-BASED DIAGNOSIS 879

TABLE V
(LEFT) BN AND (RIGHT) MPE COMPUTATION USING THE NETWORK FOR THE SMALL EPS SPECIFIED IN TABLE IV. IN THE BN, WE SHOW BOTH THE

NODE NAMES (Health_batt, Health_ld, . . .) AND THE NOTATION (Ch, Cd, . . .) USED TO DESCRIBE THE AUTOGENERATION ALGORITHM

2) Evidence nodes (E), where E = EC ∪ ES and EC ∩
ES = ∅. Here, EC (command nodes) represents the
commands to the EPS, whereas ES (sensor reading
nodes) represents sensor readings from the EPS.

3) Connection nodes (C), where C = CR ∪ CK and
CR ∩ CK = ∅. Here, CR (source connection nodes)
represents connection to a source (battery) in an EPS;
CK (sink connection nodes) represents connection to a
sink (load) in an EPS.

4) Presence nodes (P), where P = P C ∪ P V and P C ∩
P V = ∅. Here, P V (voltage presence nodes) represents
voltage, similar to water pressure, provided by a source
(battery) in an EPS. P C (current propagation or presence
nodes) represents the flow, similar to water flow, of elec-
trical current from a source (battery) to a sink (load) in an
EPS. In our case, there is the presence of voltage iff there
is a closed connection to one or more batteries; therefore,
one may work with either CR or P V .

5) Remaining EPS nodes (R) are nodes that are not health,
evidence, connection, or presence nodes. If X is the set
of all BN nodes, then R = X − H − E − C − P .

The preceding node partitioning allows us to state different
probabilistic queries of interest, discuss our EPS modeling
approach using BNs (both the topology and the individual
nodes associated with different EPS components), and clearly
present the experimental protocol.

In Section III, we discussed, given query variables Q ⊆ X
and evidence e, three probabilistic queries MAP(Q,e),
MAPMPE(Q,e), and MAPMLV(Q,e). By introducing the pre-
ceding partitioning, we can put Q = HC , Q=HS , or Q=H
and obtain a total of nine different diagnostics queries. As an
example, Q = HS is of interest in sensor validation, where
the main focus is on qualifying and disqualifying sensors [29],
e.g., voltage sensors, current sensors, fuel sensors, or altitude
sensors. In the rest of this paper, we emphasize Q = H and
particularly MAPMPE(H,e).

A key contribution in this work is our modeling of EPSs
using BNs. An EPS presents two different but closely related
problems, i.e., a voltage differential problem and a current
flow problem. For current to flow, there must be a voltage

differential across the battery terminals. In addition, the EPS
circuit needs to be closed, which typically happens when an
EPS load is turned on and all other relays between the load
and a battery are also closed. This bidirectional voltage–current
propagation problem is different from and more complicated
than the unidirectional flow problem posed by digital circuits
implementing Boolean logic. Such digital electronic circuits
have extensively been studied in the model-based diagnosis and
BN literature [2].

Table V provides a simple example of our EPS modeling
approach. This BN was autogenerated, as discussed
in Section VI, from the specification in Table IV.
Here, HC = {Health_batt,Health_ld}, and HS =
{Health_curSens,Health_voltSens,Health_touchSens};
EC ={Command_relay}, and ES = {Sensor_curSens,
Sensor_voltSens, Sensor_touchSens}. The topology of
the ADAPT BN, which currently contains more than 500 nodes,
is analogous to this BN’s topology. A key point in this
example is how the integration of voltage presence
nodes (P V = {V oltage_batt, V oltage_wire1, V oltage_rly,
V oltage_wire2}), sink connection nodes (CK =
{ToSink_wire1, T oSink_rly, ToSink_wire2, T oSink_ld}),
and the current flow node (P C = {Current_wire1}) helps
solve the problems of voltage presence and current flow
previously identified. Many nodes, including current flow
nodes, can be pruned (and indeed have been here), because
they are leaf nodes and not involved in sensors. Another
key point is how sensors, e.g., the voltage sensor (nodes
Health_voltSens and Sensor_voltSens) and the current
sensor (nodes Health_curSens and Sensor_curSens), are
integrated into the overall BN topology.

We now consider inference, as illustrated in Table V.
Suppose that e = {Command_rly = cmdClose, Sensor_
curSens = readCurrentLo, Sensor_voltSens = read
V oltageHi, Sensor_touchSens = readClosed}. This gives
MAPMPE(H,e) = {Health_batt = healthy, Health_ld =
healthy,Health_curSens = stuckCurrentLo,Health_
voltSens = healthy}. In words, if the command and sensor
readings, except for Sensor_curSens = readCurrentLo,
suggest that power is supplied to the load, then the MPE

880 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 5, SEPTEMBER 2010

diagnosis is that all components and sensors are healthy,
except for the current sensor, where Health_curSens =
stuckCurrentLo. It is reassuring that there is agreement be-
tween the MPE diagnosis and common sense in this case.

While our modeling approach can be used when manually
constructing BNs for EPSs, it is even more powerful when
automated, and we now turn to how we have formalized it in
an autogeneration algorithm.

VI. AUTOGENERATION OF BN

In this section, we discuss how a BN is autogenerated from
a high-level specification model. This is the second stage in
our approach to probabilistic model-based diagnosis. The con-
version runs in a loop, which processes one component from
the specification in each iteration. Such a sequential order is
guaranteed to exist under the assumption that the underlying
EPS can be described using a DAG. There is a clear mapping
from a high-level specification to a DAG: In each component
statement (see Table III), the first 〈name〉 represents a node, and
the 〈name〉+ part represents its parents (assuming this is not a
source statement in the specification, which is trivial since it is
a root node in the DAG). Under the assumption that there exists
such a DAG, there exists a sequential high-level specification
since it is well known from graph theory that any DAG can be
topologically (or sequentially) sorted.

The autogeneration algorithm can now be summarized as
follows: We iterate over the components in the specification
and, for each, generate a set of BN nodes and a set of BN
edges. Each time the algorithm creates a BN node for a
component, it places the node into the appropriate set among
HC , HS , EC , ES , CR, CK , P C , P V , and R, as we illus-
trate here.

The processing of a sensor is somewhat different from the
processing of other components, so we separately treat sen-
sors, after first discussing other components. As an example,
Fig. 3(a) depicts the part of a BN corresponding to a relay C.
For the component C, the autogeneration algorithm generates
six nodes in the BN.

1) A component health node Ch ∈ HC , with values
{healthy, stuckOpen, stuckClosed}, indicates C’s
health state. Ch has a CPT set according to C’s failure
probability, as defined in the high-level specification.

2) A command node Cm ∈ EC , with values {cmdOpen,
cmdClose}, indicates the command being sent to the
relay. This value will always be known prior to inference
since it is set according to the command being issued
to the relay. Therefore, probabilities in this CPT are not
important; Cm has a uniform CPT.

3) A remaining node Cd ∈ R, with values {open, closed},
indicates whether C is currently closed. If Ch = healthy,
then Cd indicates closed iff Cm = cmdClose. Other-
wise, if Ch is stuckOpen (stuckClosed), then Cd in-
dicates open (closed).

4) A source connection node Cr ∈ CR, with values {open,
closed}, indicates whether there is a closed path from
C to a battery (source). Cr = closed iff Cd = closed ∧

Fig. 3. Part of the BN corresponding to (a) a relay and (b) a current sensor.

∨N [Nr = closed], where N iterates over all of C’s up-
stream neighbors.2

5) A sink connection node Ck ∈ CK , with values {open,
closed}, indicates whether there is a closed path from
C to a load (sink). Ck = closed iff Cd = closed ∧
∨N [Nk = closed], where N iterates over all of C’s
downstream neighbors.

6) A current presence node Cc ∈ P C , with values
{currentLo, currentHi}, indicates whether the current
is flowing through C. Cc = currentHi iff Cr = closed
and Ck = closed.

For Cr and Ck, the disjunction is cascaded to prevent the
CPT from becoming too large. This same template applies to
all nonsensor components with a few minor modifications. For
example, a source can set Cr to be equivalent to Cd; a sink
can set Ck to be equivalent to Cd; a wire, which does not
accept commands, will always set Cm to cmdClosed (or omit
Cm from the model); and different component types may have
different types of failures.

Fig. 3(b) depicts the part of the BN corresponding to a current
sensor S, which is attached to a node such as Cc of a component
C. The autogeneration algorithm creates two nodes in the BN
corresponding to S.

1) A sensor health node Sh ∈ HS , with values {healthy,
stuckCurrentLo, stuckCurrentHi}, indicates S’s
health state. Sh has a CPT set according to S’s failure
probability, as defined in the high-level specification.

2) A sensor reading node Ss ∈ ES , with values
{readCurrentLo, readCurrentHi}, indicates S’s
two-state discretized sensor reading. If Sh = healthy,
then Ss indicates closed iff Cc = currentHi. Otherwise,
if Sh is stuckCurrentLo (stuckCurrentHi), then Ss

indicates readCurrentLo (readCurrentHi).
This same template applies to all sensor components (except

some more complicated sensors, which are beyond the scope
of this work) with a few minor modifications. For example,
different sensors are attached to different nodes in C: current
sensors are attached to Cc, voltage sensors are attached to Cr,
and touch sensors are attached to Cd.

After the BN generation step previously discussed, there
is a BN pruning step. Pruning takes place based on

2A neighbor of C is upstream of C if it is located between C and a source in
the high-level specification. A neighbor of C is downstream of C if it is located
between C and a sink in the high-level specification.

MENGSHOEL et al.: PROBABILISTIC MODEL-BASED DIAGNOSIS 881

information about query nodes (HC and HS), as well as
about evidence nodes (EC and ES). A common pruning
technique involves removing leaf nodes that are not part of
the evidence (EC ∪ ES) or the query (HC , HS , or HC ∪
HS) [30]. In Table V, some of the nodes have been pruned,
compared to Fig. 3(a). Specifically, nodes corresponding to
Cr, Ck, and Cc are pruned in Table V. In other words,
for the relay shown in Table V, we have the following cor-
respondence with the nonpruned nodes in Fig. 3(a): Ch =
Health_rly, Cm = Command_rly, and Cd = Closed_rly.
How can we determine to prune Cr, Ck, and Cc [referring
to Fig. 3(a)] but not prune Ss = Sensor_curSens and Sh =
Health_curSens (referring to Fig. 3(b) and Table V)? Here,
Ss = Sensor_curSens is a variable for which we assert ev-
idence, whereas Sh = Health_curSens is a query variable.
Evidence and query variables are never pruned. We only prune
nonevidence nonquery variables that are leaves or that become
leaves as a result of other pruning. Consequently, all of C’s
nodes are pruned, except the following: Ch = Health_rly,
which is a query variable; Cm = Command_rly, which is an
evidence variable; and Cd = Closed_rly, which is neither, but
cannot be pruned because it has a descendent that is an evidence
variable, i.e., the touch sensor variable Sensor_touchSens.

A few assumptions have been made in our BN-generation
approach. First, the approach assumes that a model can be ex-
pressed as a DAG since BNs are restricted to DAGs. Second, we
do not model dynamic behavior (as induced, e.g., by capacitors
or inductors) in the BN at this stage. Third, continuous sensor
values are currently discretized into a small (ranging from two
to four) number of states. However, the number of states could
relatively easily be increased, or one could use soft evidence.

Our work is similar to existing work on constructing layered
BNs with Noisy-MAX CPTs [31], [32]. For example, our
component models are layered with a small number of layers,
as illustrated in Fig. 3. The justification for our and similar
research is the following. Even though existing WYSIWYG
BN modeling tools, such as GENIE, HUGIN, and SAMIAM, are
user friendly and intuitive to use, it still takes much effort and
expertise to create BNs with hundreds or thousands of nodes.
By using our approach, as discussed in Sections IV and V,
the effort and level of expertise required to develop large-scale
BNs are substantially reduced. While similar in spirit, there are
also some differences between our and related research [31],
[32]. For example, our autogenerated BNs do not have a fixed
number of layers. Instead, the number of layers is determined
by how component models are combined according to the
structure of the system (see Table V).

VII. COMPILATION TO AC

We now very briefly summarize the compilation of BNs
to ACs. Compilation is the third stage in our approach to
probabilistic model-based diagnosis. Prior to compilation, we
modify the BN’s CPTs to store pointers to AC nodes rather than
numbers. For example, if 0.1 is stored in a CPT slot, then this
number would be replaced with a pointer to a single AC node
(sink) labeled with 0.1. In addition, prior to compilation, for
each BN variable, we add a new table over just that variable

representing the values of that variable. For example, variable
X with values 0 and 1 would generate a table over X , where the
first slot contains a pointer to an AC node (sink) labeled with
λ0 and the second slot contains a pointer to an AC node (sink)
labeled with λ1.

After these two preprocessing steps, we run a slightly mod-
ified version of standard VE [24], [33]. The only difference
occurs when the standard version wishes to add or multiply two
numbers. In each of these situations, the standard algorithm will
identify two slots A and B in tables, add (multiply) the two
numbers residing there, and store the result back into some slot
C of some table. When the modified algorithm looks into A and
B, it finds pointers to AC nodes α and β rather than numbers.
Instead of performing the arithmetic operation, the modified
algorithm creates a new AC node γ labeled with “+” or “∗,”
makes α and β children of γ, and stores a pointer to γ into C.
Upon completion, standard VE yields a single table containing
a single slot containing a number. The modified algorithm will
be the same, except that, rather than a number, we will have a
pointer to an AC node, which is the root of the compiled AC.

By exploiting local structure, this modified VE algorithm can
yield an AC that is much smaller than exponential in treewidth.
If one pays attention to how the CPTs of the BN representing
EPSs are autogenerated, as described in Section VI, it is easy
to see that many of these CPTs will be small and deterministic.
AC compilation has been shown to perform well on many such
BNs [6], [28], and the ADAPT BN is no exception.

VIII. EXPERIMENTAL RESULTS

We now discuss probabilistic inference experiments based on
an ADAPT BN with 503 discrete nodes and 579 edges; related
experiments can be found elsewhere [15], [16]. Probabilistic
inference is the fourth and final stage in our probabilistic model-
based diagnosis approach, and the only one that needs to be
performed online. In the ADAPT BN, the number of states per
node ranges from 2 to 4 with an average of 2.23 and a median
of 2. Experimental data are divided into two sets: real-world
data from ADAPT and synthetic data automatically generated
from the ADAPT BN. For ACE, we used the ACE system
to compile an ADAPT BN into an AC and to evaluate that
AC (see http://reasoning.cs.ucla.edu/ace/). The timing measure-
ments reported here were made on a personal computer with an
Intel 4 1.83-GHz processor, 1-GB random access memory, and
Windows XP.

A. Experiments using EPS Data

The purpose of the experiment with real-world data was to
characterize the diagnostic quality of the ADAPT BN.

1) Design: For experimentation using real-world data, EPS
scenarios were generated using the ADAPT EPS at NASA
Ames (see https://dashlink.arc.nasa.gov/). These scenarios,
which are summarized in Table VI, cover component failures,
sensor failures, and both component and sensor failures. Each
scenario contains one, two, or three faults. In order to stress-test
our probabilistic reasoner, we did not restrict inserted faults to
discrete faults only. We also inserted continuous faults, specif-
ically faults of the form “ stuck at x,” “noise StdDev = x,” or

882 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 5, SEPTEMBER 2010

TABLE VI
DIAGNOSTIC RESULTS FOR DIFFERENT FAULT SCENARIOS (WITH IDS 304, 305, . . .)

FOR THE ELECTRICAL POWER SYSTEM TESTBED ADAPT

“drift slope = x,” with x ∈ R. Since our probabilistic models
do not contain continuous random variables, experiments with
continuous faults cannot be exactly diagnosed, but they are still
of great interest.

In each scenario, ADAPT’s initial state was given as follows:
Circuit breakers were commanded closed; the corresponding
command variables in EC were clamped to cmdClose in
evidence e. Relays were commanded open; the corresponding
relay variables in EC were clamped to cmdOpen in e. In this
initial state, all health nodes HE are deemed healthy when
computing MAP(HE), MAPMPE(HE), or MAPMLV(HE).
Continuous sensor readings were discretized before being used
for clamping the corresponding discrete random variables EC

in our ADAPT model. To keep the experimental protocol con-
sistent across scenarios, all inserted faults were persisted until
the end of the experiments. Diagnostic queries MAPMPE(HE),
for which results are presented in Table VI, were taken toward
the end of each scenario.

2) Results: The results of the experiments with real-world
data from ADAPT are summarized in Table VI. Each sce-
nario is presented in one or more rows of the table, along
with the faults inserted and the diagnostic results computed
for queries MAPMPE(HE ,e). Since HE contains 128 vari-
ables, reflecting the health status of 128 EPS components and
sensors, we only show the variables found to be nonhealthy
in Table VI.

3) Discussion: We see in Table VI that the different diag-
nostic queries correctly diagnose a majority of these component
and sensor failure scenarios. In fact, there is an exact match in
10 of the 16 scenarios. Even in cases where there is no exact
agreement, the diagnosis is either partly matching or at least
reasonable, as we will see in the following.

We now discuss in more detail experiments for which an
exact match was not obtained. In Experiment 441 in Table VI,
both EY160 and ST515 were failed. However, since EY160 is
upstream of and controls the power to ST515, the nonperfor-
mance of ST515 is consistent with the single-fault diagnosis
computed by ACE and in fact has a greater probability than
the double faults actually inserted. In other words, the ST515
failure is masked by the EY160 failure.

Experiments 442 and 443 have continuous faults inserted
that are currently beyond the scope of our discrete probabilistic
model. In Experiment 442, there are no sensors on the affected
load, making it difficult to detect whether 1) the relay has failed
open, thus turning off the load, or 2) the relay feedback sensor
has failed open. (Estimating how current varies for varying
loads is beyond the scope of our discrete model.) So, if the relay
failed open and turned off the attached load, there would be
a drop in current being drawn from the battery, because there
are fewer loads. However, we are not discretizing the current
nodes in this way, sometimes making it difficult to distinguish
between relay failure and relay position sensor failure.

In Experiment 443, two of the three faulty components were
correctly isolated in spite of continuous faults being inserted.
The one fault not caught was inserted in ST516, which is a
fan on Load bank 2, which was not commanded on during this
experiment. In other words, the fact that ST516 was neither
on nor commanded to be on made the abnormally low sensor
reading of −10 r/min harder to detect. Another issue was the
discretization in the BN, where the faulty sensor reading of −10
is binned with the correct sensor reading of 0.

In Experiment 445, two of the three faulty components
were correctly isolated, and the only difficulty was due to the
continuous fault inserted.

MENGSHOEL et al.: PROBABILISTIC MODEL-BASED DIAGNOSIS 883

In Experiment 450, two faults were inserted. When the in-
verter failed, all downstream power was disrupted. Thus, E165,
E167, ST165, LT500, and IT167 go to low values. However,
ST515, which should also have gone to a low value (because
the fan no longer has power and therefore is not spinning), was
stuck reading that its nominal value was around 600, which
leads to the partly correct diagnosis stuckMid; the diagnosis
Health_inv1 = stuckOpen is correct.

In Experiment 452, the light sensor LT500 falls from ≈43
to ≈32 toward the end of the experiment. This lower value
of ≈32 strongly suggests that only two bulbs are on or, in
other words, that one bulb out of the three bulbs present had
failed. Temperature sensor TE500 started falling, indicating
that the bulb associated with that sensor was off. Then, TE501
went to 0, whereas the light sensor reading remained the same,
indicating that sensor TE501 was likely also faulty. At the time
of the diagnosis, we have the following evidence: TE500 reads
high (however, its derivative is negative indicating that the bulb
is off, but that is not in the discrete model); TE501 reads low;
TE502 reads high; and LT500’s sensor reading indicates that
two bulbs are lit. Thus, based on the evidence provided to our
model, it concludes a single fault of stuckDisabled for Bulb 1.
This diagnosis of Health_load170_bulb1 = stuckDisabled
is a direct result of the TE501 and LT500 readings. However,
what was inserted was two faults, for Bulb 0 and TE501. This
highlights two issues. First, the discretization does not perfectly
capture the signature of a bulb being off. Here, the bulb is still
warm from having previously been on, leading the TE500 value
to be above the threshold defined for on. The second issue is that
temporal aspects are not captured by taking one time slice near
the end of the run; in this case, there are temporal clues that
point toward the correct diagnosis.

We note that there are several different but related phenom-
ena underlying the mismatches in Table VI. First, and reflecting
the challenging nature of the fault scenarios that can be created
using ADAPT, continuous faults (as inserted in experiments
441, 442, 443, 445, 448, and 450) are simply beyond the scope
of our currently discrete probabilistic model. Second, there is
no guarantee that the inserted faults are part of a unique MPE
for the given evidence for EE . There may be multiple MPEs,
or alternatively, m faults may have been inserted, but one or
more explanations with m − 1 faults or less turn out to be more
probable. For example, three faults may have been inserted into
ADAPT, but there is an explanation with two or one fault that
has a higher or equal posterior probability. Experiment 441 is a
good example of this effect. Third, there are faults that could
have been detected had more fine-grained discretizations of
random variables been used. Experiments 442 and 452 provide
an example of this since the failure of the temperature sensor
TE501 was quite dramatic and indicative of a sensor failure
rather than only a failure in the light bulb TE500. A fourth
phenomenon is that there might be too few, improperly placed,
or inadequate sensors to distinguish between different faults.
Many of the mismatches in these experiments could have been
detected had more appropriate sensing been used; a detailed
discussion of sensing issues is beyond the scope of this paper.

In summary, we have observed strong performance for
our probabilistic model in these controlled experiments with

TABLE VII
RESULTS FOR DIFFERENT INFERENCE ALGORITHMS (VE, ACE, AND CTP)

WHEN COMPUTING MPES AND MARGINALS USING SYNTHETIC

DATA GENERATED FROM THE ADAPT BN

ADAPT. We also note that a richer way of presenting diagnostic
results would be helpful but nontrivial to provide. Specifically,
it would be useful to have access to all nonzero explanations
and their probabilities, not just the MPE but explanations
with lower probabilities. These experimental results also mo-
tivate several other future research directions, as discussed
in Section IX.

B. Experiments Using Simulated Data

The goal of the experiment with synthetic data was to under-
stand the performance of ACE versus alternative algorithms,
particularly VE and JTP, in the ADAPT setting.

1) Design: In order to better understand the performance of
ACE, we performed comparative experiments with VE and JTP.
Simulated data were created by a program that 1) generated
a set of failure scenarios according to the probabilities of the
ADAPT BN’s health nodes HE and 2) generated evidence
by doing stochastic simulation for each failure scenario. These
evidence sets were then used as evidence in the three differ-
ent inference systems, and inference was performed, as pre-
sented here.

2) Results: Results from the experiments are summarized in
Table VII. Both MPEs and marginals were computed for 200
simulated evidence sets generated from the ADAPT BN.

3) Discussion: The main points, which are in line with
previous results on a smaller version of the ADAPT BN [34],
are as follows: On average, ACE is over 76 times faster than
VE when computing MPEs (see Table VII). In addition, ACE
can compute all marginals, supporting the probabilistic queries
BEL(H,e) (where H ∈ HE) and MAPMLV (HE ,e), using
just slightly more than twice the time used for computing MPEs
or MAPMPE (HE ,e). In other words, ACE computes proba-
bilities over 500 random variables more than 33 times faster
than VE computes probabilities for a single random variable.
The third inference system JTP can compute all marginals
in a manner similar to ACE. This overcomes VE’s limitation
of computing probabilities for only one random variable at
a time. Compared to ACE, however, JTP is over 14 times
slower. Finally, the standard deviation is substantially smaller
for ACE than for VE and JTP. The fast and predictable inference
times of ACE are both very important factors for EPS health
management in the real-time setting of aerospace.

Parametric structure can also be exploited by VE and JTP
algorithms using more sophisticated representations of factors
[35, Ch. 13]. However, the overhead associated with these
techniques tends to outweigh the savings, unless the parametric
structure is very excessive. The main benefit of using ACs is

884 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 5, SEPTEMBER 2010

that the overhead is pushed into the compilation phase and is
factored out from the run-time process. This particular issue is
discussed in some theoretical detail in [35], and there are also
experimental results that illustrate this point.3

That said, it is clear that our approach produces, for ADAPT,
a BN that all three systems (ACE, JTP, and VE) perform
well on. This illustrates that the ADAPT BN was carefully
constructed, using our novel modeling approach and autogen-
eration algorithm, in a manner that supports efficient inference
using three quite different exact inference algorithms.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have discussed an EPS application of the
probabilistic approach to model-based diagnosis. Specifically,
we have discussed the use of BNs and ACs to perform diagnosis
in EPSs in aircraft and spacecraft. We have emphasized two
important issues that arise when developing diagnostic applica-
tions in this area, i.e., the challenges of modeling and real-time
reasoning. The modeling challenge concerns how to model a
real-world EPS by means of BNs. To address this challenge,
we have developed a systematic way of representing EPSs as
BNs, supported by an easy-to-use specification language and
an autogeneration algorithm. The second challenge, that of real-
time reasoning, is associated with the embedding of algorithms
that solve computationally hard problems, including diagnostic
reasoning, into hard real-time systems [7], [8]. To address this
challenge, we compiled BNs into ACs.

While compilation of BNs to ACs is well established [6],
[25]–[28], this paper further extends the reach of the technology
by introducing a high-level EPS specification languages from
which BNs are autogenerated, and showing that the combined
approach gives strong experimental results on ADAPT, which
is a real-world EPS.

Future directions of work include the following: First, im-
proved modeling of and reasoning with continuous behavior,
using soft evidence, highly discretized, and/or continuous ran-
dom variables, along with representation using ACs for pur-
poses of compilation, would be of great interest. A second area
of interest is improved modeling of dynamic, transient, and cas-
cading faults, along with their integration into the compilation
approach. Third, it would be very useful to extend the high-level
specification language and further investigate sensing issues,
including the questions of optimal sensor placement, as well as
the number and types of sensors needed to distinguish between
different faults.

ACKNOWLEDGMENT

This material is based, in part, on work supported by NASA
under Award NCC2-1426 and Award NNA07BB97C as well as
NSF awards CCF0937044 and ECCS0931978. This work was
performed while S. Uckun was at NASA. The authors would
like to thank A. Patterson-Hine and D. Maclise (NASA ARC)
for their central roles in the development of the ADAPT testbed,
and D. Garcia and D. Nishikawa (NASA ARC) for generating
the ADAPT data for many of our experiments.

3(See http://www.ics.uci.edu/~csp/uai2006/tutorials#AdnanDarwiche).

REFERENCES

[1] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee,
O. J. Mengshoel, C. Neukom, D. Nishikawa, J. Ossenfort, A. Sweet,
S. Yentus, I. Roychoudhury, M. Daigle, G. Biswas, and X. Koutsoukos,
“Advanced diagnostics and prognostics testbed,” in Proc. 18th Int. Work-
shop DX, Nashville, TN, 2007, pp. 178–185.

[2] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[3] C.-F. Chien, S.-L. Chen, and Y.-S. Lin, “Using Bayesian network for fault
location on distribution feeder,” IEEE Trans. Power Del., vol. 17, no. 3,
pp. 785–793, Jul. 2002.

[4] Z. Yongli, H. Limin, and L. Jinling, “Bayesian network-based approach
for power system fault diagnosis,” IEEE Trans. Power Del., vol. 21, no. 2,
pp. 634–639, Apr. 2006.

[5] A. Darwiche, “A differential approach to inference in Bayesian networks,”
J. ACM, vol. 50, no. 3, pp. 280–305, 2003.

[6] M. Chavira and A. Darwiche, “Compiling Bayesian networks using
variable elimination,” in Proc. 20th IJCAI, Hyderabad, India, 2007,
pp. 2443–2449.

[7] D. Musliner, J. Hendler, A. K. Agrawala, E. Durfee, J. K. Strosnider, and
C. J. Paul, “The challenges of real-time AI,” Computer, vol. 28, no. 1,
pp. 58–66, Jan. 1995.

[8] O. J. Mengshoel, “Designing resource-bounded reasoners using Bayesian
networks: System health monitoring and diagnosis,” in Proc. 18th Int.
Workshop DX, Nashville, TN, 2007, pp. 330–337.

[9] S. Singh, A. Kodali, K. Choi, K. R. Pattipati, S. M. Namburu, S. C. Sean,
D. V. Prokhorov, and L. Qiao, “Dynamic multiple fault diagnosis: Math-
ematical formulations and solution techniques,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 39, no. 1, pp. 160–176, Jan. 2009.

[10] S. Ruan, Y. Zhou, F. Yu, K. R. Pattipati, P. Willett, and A. Patterson-Hine,
“Dynamic multiple-fault diagnosis with imperfect tests,” IEEE Trans. Syst.,
Man, Cybern. A, Syst., Humans, vol. 39, no. 6, pp. 1224–1236, Nov. 2009.

[11] F. G. Cooper, “The computational complexity of probabilistic inference
using Bayesian belief networks,” Artif. Intell., vol. 42, no. 2/3, pp. 393–
405, Mar. 1990.

[12] E. Shimony, “Finding MAPs for belief networks is NP-hard,” Artif. Intell.,
vol. 68, no. 2, pp. 399–410, Aug. 1994.

[13] J. D. Park and A. Darwiche, “Complexity results and approximation
strategies for MAP explanations,” J. Artif. Intell. Res., vol. 21, no. 1,
pp. 101–133, Jan. 2004.

[14] R. M. Button and A. Chicatelli, “Electrical power system health manage-
ment,” in Proc. 1st Int. Forum Integr. Syst. Health Eng. Manage. Aerosp.,
Napa, CA, 2005.

[15] B. W. Ricks and O. J. Mengshoel, “The diagnostic challenge competition:
Probabilistic techniques for fault diagnosis in electrical power systems,”
in Proc. 20th Int. Workshop DX, Stockholm, Sweden, 2009.

[16] O. J. Mengshoel, S. Poll, and T. Kurtoglu, “Developing large-scale
Bayesian networks by composition: Fault diagnosis of electrical power
systems in aircraft and spacecraft,” in Proc. IJCAI SAS—Reasoning and
Integration Challenges, 2009, pp. 59–66.

[17] D. R. Bromaghim, J. R. Leduc, R. M. Salasovich, G. G. Spanjers,
J. M. Fife, M. J. Dulligan, J. H. Schilling, D. C. White, and L. K. Johnson,
“Review of the electric propulsion space experiment (ESEX) program,”
J. Propuls. Power, vol. 18, no. 4, pp. 723–730, 2002.

[18] S. Lauritzen and D. J. Spiegelhalter, “Local computations with probabil-
ities on graphical structures and their application to expert systems (with
discussion),” J. R. Stat. Soc. Ser. B, vol. 50, no. 2, pp. 157–224, 1988.

[19] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, “Bayesian updating in
causal probabilistic networks by local computations,” SIAM J. Comput.,
vol. 4, pp. 269–282, 1990.

[20] P. P. Shenoy, “A valuation-based language for expert systems,” Int. J.
Approx. Reason., vol. 5, no. 3, pp. 383–411, Sep. 1989.

[21] J. Pearl, “A constraint—Propagation approach to probabilistic reasoning,”
in Uncertainty in Artificial Intelligence, L. N. Kanal and J. F. Lemmer, Eds.
Amsterdam, The Netherlands: Elsevier, 1986, pp. 357–369.

[22] A. Darwiche, “Recursive conditioning,” Artif. Intell., vol. 126, no. 1/2,
pp. 5–41, Feb. 2001.

[23] Z. Li and B. D’Ambrosio, “Efficient inference in Bayes nets as a com-
binatorial optimization problem,” Int. J. Approx. Reason., vol. 11, no. 1,
pp. 55–81, Jul. 1994.

[24] N. L. Zhang and D. Poole, “Exploiting causal independence in Bayesian
network inference,” J. Artif. Intell. Res., vol. 5, no. 1, pp. 301–328,
Aug. 1996.

[25] A. Darwiche, “A differential approach to inference in Bayesian networks,”
in Proc. 16th Conf. UAI, 2000, pp. 123–132.

[26] J. D. Park and A. Darwiche, “A differential semantics for jointree algo-
rithms,” Artif. Intell., vol. 156, no. 2, pp. 197–216, Jul. 2004.

MENGSHOEL et al.: PROBABILISTIC MODEL-BASED DIAGNOSIS 885

[27] A. Darwiche, “A logical approach to factoring belief networks,” in
Proc. 8th Int. Conf. Principles Knowl. Representation Reason., 2002,
pp. 409–420.

[28] M. Chavira and A. Darwiche, “Compiling Bayesian networks with local
structure,” in Proc. 19th IJCAI, 2005, pp. 1306–1312.

[29] O. J. Mengshoel, A. Darwiche, and S. Uckun, “Sensor validation using
Bayesian networks,” in Proc. 9th iSAIRAS, 2008.

[30] R. D. Shachter, “Evaluating influence diagrams,” Oper. Res., vol. 34,
no. 6, pp. 871–882, Nov./Dec. 1986.

[31] P. Kraaijeveld and M. Druzdzel, “GeNIeRate: An interactive generator
of diagnostic Bayesian network models,” in Proc. 16th Int. Workshop
Principles Diagnosis, 2005, pp. 175–180.

[32] K. Przytula, G. Isdale, and T.-S. Lu, “Collaborative development of large
Bayesian networks,” in Proc. IEEE Autotestcon, 2006, pp. 515–522.

[33] R. Dechter, “Bucket elimination: A unifying framework for reasoning,”
Artif. Intell., vol. 113, no. 1/2, pp. 41–85, Sep. 1999.

[34] O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and
S. Uckun, “Diagnosing faults in electrical power systems of spacecraft
and aircraft,” in Proc. 20th IAAI Conf., Chicago, IL, 2008, pp. 1699–1705.

[35] A. Darwiche, Modeling and Reasoning With Bayesian Networks.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

Ole J. Mengshoel (M’09) received the B.S. de-
gree from the Norwegian Institute of Technology,
Trondheim, Norway, in 1989, and the Ph.D. degree
from the University of Illinois, Urbana, in 1999, both
in computer science.

He is currently a Senior Systems Scientist with
Carnegie Mellon University (CMU), Silicon Valley,
CA, and affiliated with the Intelligent Systems Di-
vision, National Aeronautics and Space Administra-
tion (NASA) Ames Research Center, Moffett Field,
CA. Prior to joining CMU, he was a Senior Scientist

and Research Area Lead with USRA/RIACS and a Research Scientist with the
Decision Sciences Group, Rockwell Scientific, and Knowledge-Based Systems,
SINTEF, Norway. At NASA, he has a leadership role in the Diagnostics and
Prognostics Group, Intelligent Systems Division, where his current research
focuses on reasoning, machine learning, diagnosis, prognosis, and decision
support under uncertainty—often using Bayesian networks—with aerospace
applications of interest to NASA. He has published more than 35 papers and
papers in journals, conference proceedings, and workshops. He is the holder of
four U.S. patents.

Dr. Mengshoel is a member of the Association for the Advancement of
Artificial Intelligence and the Association for Computer Machinery. He has
served as a Reviewer and on program committees numerous times.

Mark Chavira received the B.S. degree from
Loyola Marymount University, Los Angeles, in
1995, the M.S. degree in computer science from
Stanford University, Stanford, CA, in 2001, and the
Ph.D. degree in computer science from the Univer-
sity of California, Los Angeles, in 2007.

During his Ph.D. work, he specialized in the exact
probabilistic inference subfield of artificial intelli-
gence. Since 2007, he has been a Software Engi-
neer with Google, Santa Monica, CA. At Google,
he leads a team that applies probabilistic inference

to create automated methods of understanding text. From 1995 to 2007, he
was a Software Engineer with the Raytheon Systems Company, where he
developed avionics operating system software and researched automatically
routing unmanned aerial vehicles. His current research interests include logical
and probabilistic inference.

Keith Cascio received the B.S. degree (summa cum
laude) in computer science from Duke University,
Durham, NC, in 2001.

Since 2002, he has been the Lead Developer of the
Automated Reasoning Group, Department of Com-
puter Science, University of California, Los Angeles,
contributing to the SamIam system for modeling and
reasoning with Bayesian networks.

Mr. Cascio is a member of Phi Beta Kappa.

Scott Poll received the B.S.E. degree in aerospace
engineering from the University of Michigan, Ann
Arbor, in 1994 and the M.S. degree in aeronautical
engineering from the California Institute of Technol-
ogy, Pasadena, in 1995.

He is currently a Research Engineer with the
Intelligent Systems Division, National Aeronautics
and Space Administration (NASA) Ames Research
Center, Moffett Field, CA, where he is the Deputy
Lead for the Diagnostics and Prognostics Group,
Intelligent Systems Division. He is co-leading the

evolution of a laboratory designed to enable the development, maturation, and
benchmarking of diagnostic, prognostic, and decision technologies for system
health management applications. He was previously the Associate Principal
Investigator for Prognostics in the Integrated Vehicle Health Management
Project in NASA’s Aviation Safety Program.

Adnan Darwiche received the B.S. degree in civil
engineering from Kuwait University, Kuwait City,
Kuwait, in 1987, the M.S. and Ph.D. degrees in com-
puter science from Stanford University, Palo Alto,
CA, in 1989 and 1993, respectively.

He is currently a Professor and Chairman of
the Department of Computer Science, University of
California, Los Angeles (UCLA). Prior to joining
UCLA in 1999, he was a Senior Scientist and Man-
ager of the Department of Diagnostics and Modeling,
Rockwell Science Center. He directs the automated

reasoning group at UCLA, which is responsible for releasing some high-profile
reasoning systems, including the Rsat satisfiability solver, the SamIam system
for modeling and reasoning with Bayesian networks, and the c2d knowledge
compiler. He is the Editor in Chief for the Journal of Artificial Intelligence
Research. His research interests are symbolic and probabilistic reasoning and
their applications to real-world problems.

Prof. Darwiche is a Fellow of the Association for the Advancement of
Artificial Intelligence.

Serdar Uckun (S’89–M’95) was born in Izmir,
Turkey. He received the M.D. degree in medicine
from Ege University, Izmir, Turkey, the M.S. degree
in biomedical engineering from Bogazici University,
Istanbul, Turkey, the Ph.D. degree in biomedical en-
gineering from Vanderbilt University, Nashville, TN,
and the Postdoctoral Studies in computer science
from Stanford University, Palo Alto, CA.

From 2004 to 2008, he served as Lead of the
Discovery and Systems Health (DaSH) Technical
Area, NASA Ames Research Center. Previously, he

was the Director of the Research Institute for Advanced Computer Science
(RIACS), from 2002 to 2004, the Director of Advanced Technology at Blue
Pumpkin Software from 2000 to 2002, and the Assistant Director and Manager
of the Intelligent Systems Department, Rockwell Science Center, Palo Alto
Laboratory, from 1994 to 2000. He is currently the Manager of the Embedded
Reasoning Area, Palo Alto Research Center, Palo Alto. He also serves as
the President of the Prognostics and Health Management Society, which is
a nonprofit educational and professional organization. He is an Associate
Editor for the International Journal on Prognostics and Health Management.
Previously, he has served as Associate Editor for the Journal of Artificial
Intelligence in Medicine and on the Editorial Board of Critical Reviews in
Biomedical Engineering. He is the holder of 12 U.S. patents on aerospace and
enterprise systems technologies.

Dr. Uckun is a member of the Association for the Advancement of Artificial
Intelligence, American Institute of Aeronautics and Astronautics, and Tau Beta
Pi. He was the recipient of the NASA Exceptional Service Medal in 2006.
Recently, he served as the General Chair of the 2008 International Conference
on PHM.

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	September, 2010

	Probabilistic Model-Based Diagnosis: An Electrical Power System Case Study
	untitled

