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Abstract

The expectation maximization (EM) algo-
rithm is a popular algorithm for parame-
ter estimation in models with hidden vari-
ables. However, the algorithm has several
non-trivial limitations, a significant one be-
ing variation in eventual solutions found,
due to convergence to local optima. Several
techniques have been proposed to allay this
problem, for example initializing EM from
multiple random starting points and select-
ing the highest likelihood out of all runs.
In this work, we a) show that this method
can be very expensive computationally for
difficult Bayesian networks, and b) in re-
sponse we propose an age-layered EM ap-
proach (ALEM) that efficiently discards less
promising runs well before convergence. Our
experiments show a significant reduction in
the number of iterations, typically two- to
four-fold, with minimal or no reduction in
solution quality, indicating the potential for
ALEM to streamline parameter estimation in
Bayesian networks.

1 Introduction

The expectation maximization (EM) algorithm
[Dempster et al., 1977, McLachlan & Krishnan, 2008]
is one of the most established ways to perform param-
eter estimation with incomplete or hidden data (e.g.,
[Rabiner, 1989, Bauer et al., 1997]). The basic idea of
the algorithm is to alternate between an expectation
(E) step, wherein the algorithm uses current parame-
ter estimates to generate a complete data likelihood,
and a maximization (M) step, in which the parame-
ters are modified with the goal of maximizing the data
likelihood. These steps repeat until convergence. The
algorithm and its variants and special cases are preva-
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lent in machine learning, as one can view training al-
gorithms as optimizers, where the overall aim is to es-
timate a set of parameters while maximizing a ‘score’,
most often the data likelihood, on training data.

Despite its successful and widespread use, the EM al-
gorithm has at least one severe limitation: it has a
strong tendency to gravitate towards the locally op-
timal solution, depending primarily on the initializa-
tion of the algorithm. This phenomenon can in turn
lead to other issues, for example poor generalization
to unseen test data, and is especially exacerbated in
parameter estimation for difficult Bayesian networks,
where we attempt to estimate parameters for a joint
distribution with many conditional dependencies. An-
other limitation is that the EM algorithm can be very
time-consuming, due to its slow convergence speed, in
terms of the number of iterations undergone.

In this work, we focus on speeding up the EM algo-
rithm for difficult Bayesian networks with no or mini-
mal degradation in solution quality.

• We present and analyze our approach, age lay-
ered EM (ALEM) (Section 3), where we incorpo-
rate an age-layered population structure heuristic
in an attempt to reduce the average number of
iterations in a multiple starting point EM setup.

• We highlight the local optima and slow conver-
gence problems for a multiple starting points
EM strategy for select difficult Bayesian networks
(Section 4.2). Our experiments with these net-
works show that the main problem is the slow
convergence of the EM algorithm rather than the
log-likelihood shortfall of the local optima.

• We demonstrate ALEM’s ability to significantly
reduce the average number of iterations (Section
4.3), typically two- to four-fold, and for larger
sample sizes the wall-clock time as well by the
same magnitude.

2 Related Work

Several approaches have attempted to mitigate the lo-
cal optima problem in the EM algorithm. One can
use an upper bound on the eventual log likelihood of



Age-Layered Expectation Maximization for Parameter Learning in Bayesian Networks

a run at termination as a criterion for early dismissal
of a run [Zhang et al., 2008]. Alternatively, the train-
ing data can be perturbed, rather than the hypothe-
sis, to generate new directions for greedy hill-climbing
ascent [Elidan et al., 2002]. The training data is then
annealed back to its original state over time. A genetic
algorithm approach has also been used [Jank, 2006].
Some work has looked at alternative stopping crite-
ria that are less likely to converge to local optima
[McLachlan & Peel, 2000].

A prevalent way to tackle local optima is the mul-
tiple starting point or multiple restart strategy
[Mengshoel et al., 2011, Jacobson & Ycesan, 2004],
wherein we initialize the EM algorithm from N
random starting points. After the N EM runs have
completed, we choose the run that resulted in the
highest data log likelihood. This strategy allows us
to search the parameter space more extensively for
the optimal values, but can be extremely expensive,
considering that we expend a significant amount
of processing cycles on runs that are in no way
guaranteed to be the global optimum or even close to
it. We show this experimentally in Section 4.

The severity of the local optima problem in EM has
been demonstrated [Wang & Zhang, 2006], but the
authors restricted their analysis to a specific type of
Bayesian network, the hierarchical latent class model.
In Section 4, we perform a similar analysis on two net-
works that do not fall into the hierarchical latent class
model, and show that the issue is prevalent in a wider
class of networks but that the main problem is the
variation in average number of iterations needed, and
not so much log likelihoods of the local optima.

Additional work has looked at scaling up EM to very
large datasets, for example incremental and lazy vari-
ants of EM [Thiesson et al., 2001]. Incremental EM
partitions a dataset into blocks, with EM computed
incrementally on these blocks, the main variable being
optimal block size selection [Ng & McLachlan, 2003].
Lazy EM picks a significant subset of the dataset
after a given number of iterations, and then pro-
ceeds with EM using only this subset. The empha-
sis of these techniques is how to scale EM to large
databases, whereas our work focuses not necessarily
on scale but on the orthogonal issue of how to speed
up parameter estimation on difficult Bayesian net-
works. As such, the scalability methods and our ap-
proach can easily be combined. Simulated annealing
[Lavielle & Moulines, 1997] and Tabu search methods
[Nanda et al., 2005] have been incorporated into EM,
but they serve primarily as an alternative to the mul-
tiple starting point strategy with the goal of avoiding
local minima, and often require a re-implementation
of the core algorithm.

Our approach is influenced by the age-layered popu-
lation structure (ALPS) paradigm, originally imple-
mented for genetic algorithms [Hornby, 2006]. ALPS
assigns an age to each individual in the population,
which is then used to sort the individuals into different

age layers, each layer having its own age limit. Com-
petition amongst individuals in the population is re-
stricted to within age layers, and all layers evolve inde-
pendently. This division of the population aims to cre-
ate a more ‘fair’ competition between individuals, as
older individuals in the population compete amongst
themselves and not with substantially younger indi-
viduals. When an individual’s age exceeds upper limit
of its current layer, it is moved up to the next layer
if it can replace a poor performing individual in the
target layer, otherwise it is discarded.

3 Expectation Maximization
Approach

We present and analyze our algorithm which, like
ALPS, relies on an age-layered structure to efficiently
remove underachieving runs early on, along with pseu-
docode for our algorithm.

3.1 ALEM: Age-Layered EM

The EM algorithm with multiple random starting
points (henceforth referred to as ‘traditional’) can be
viewed as a genetic algorithm: each starting point
can be seen as an individual. For the age-layered
paradigm, a natural measure of age would be the num-
ber of iterations an EM run has undergone. With these
basic concepts, we developed ALEM (Figure 1), the
Age-Layered Expectation Maximization algorithm.

In the main procedure of Figure 1, we have a set of
L layers, Γ = {Γ1,Γ2,Γ3, . . . ,ΓL}, and a set of N EM
runs, ρ = {ρ1, ρ2, ρ3, . . . , ρN} where Γi ⊆ ρ. We de-
note the age limit or the maximum number of itera-
tions for the ith layer to be βi, the minimum number of
runs in the ith layer to be Mi (these parameters control
how runs move between layers and will be elaborated
upon shortly), and the set of runs1 in the ith layer to
be Γi. Note that Γ1 ∪ · · · ∪ ΓL = ρ, and Γi ∩ Γj = ∅,
for 1 ≤ i, j ≤ L, i 6= j. The number of iterations
reached by the jth EM run is given by η(ρj) and its
log likelihood is given by LL(ρj).

Each EM run ρj is created by initializing its variables
with randomly generated initial probabilities. We pre-
define the age limit βi for each layer Γi, except for
the last layer, through an exponential relationship be-
tween age limit and layer number: βi = a ·2i−1, where
βi is the age limit for the ith layer, and a is a prede-
termined constant (the age gap). Other relationships
can also be used, but we chose this representation as it
corresponded well empirically with the distribution of
iterations in a multiple starting points strategy (Sec-
tion 4.2). The last layer has no age limit, it is set to the
maximum number of iterations ω that an EM run can
undergo as specified for the EM algorithm: βL = ω.

In ALEM, there are three ways to terminate a run.
First, no run can exceed ω, the maximum num-

1Γi refers to both the layer as well as the set of runs in
that layer.
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ber of iterations for a run. Second, there is a log
likelihood difference tolerance ε (the relative differ-
ence in log likelihood between two successive iter-
ations). These two termination criteria, as shown
in ALEMCheck (Figure 1), are standard conver-
gence criteria used for the traditional EM algorithm
[Zhang et al., 2002, Carson et al., 1999] and are not
specific to ALEM.2 A run that terminates through
these two termination criteria is called an inactive run
and resides in the layer it was last in; all other non-
terminated runs are called active runs. The third way,
which we call culling, is ALEM-specific and amounts
to a run failing the log likelihood comparison test. As
shown in CheckRuns (Figure 1), if the age of an EM
run ρj in layer Γi reaches βi, then we remove it from
layer Γi and try to insert it into the next layer Γi+1.
An attempted insertion works as follows: each layer
has an associated minimum runs parameter, Mi. We
define the minimum run Mi for a layer Γi as the mini-
mum number of runs that need to be in the layer before
ALEM does a log likelihood comparison check. If the
number of active runs in Γi+1 is less than Mi+1, then
we automatically insert the EM run from Γi into Γi+1.
Otherwise, we perform a log likelihood comparison be-
tween the EM run to be shifted up, ρj , and runs, active
or inactive, in Γi+1: if a run with worse log likelihood
is found in Γi+1, then that run is discarded, i.e., it is
completely removed from the age layers, and ρj takes
its place. If both the minimum runs and the log likeli-
hood comparison conditions fail, then ρj is discarded
and we proceed. Discarding only takes place when a
run fails the log likelihood comparison test.

We can intuitively view Mi as a parameter that can
trade off computational efficiency and solution qual-
ity. The lower the value of this parameter for a given
layer Γi, the more likely ALEM is to conduct a log
likelihood check. On the other hand, inserting the run
without a check will mean we do not get a chance to
cull. For simplicity in the rest of this paper we assume
all internal layers have the same minimum runs value
(M2 = M3 · · · = ML−1), except for the first layer Γ1

and the last layer ΓL. In Γ1, new runs are inserted
when the number of active runs in that layer is below
M1, and thus M1 controls the rate at which we intro-
duce these new runs. The last layer can accommodate
all N EM runs, and thus ML = N .

The main assumption is that log likelihood compar-
isons between similarly aged runs are a reliable indi-
cator of comparisons at convergence. Justification for
this assumption is provided in Section 4.2, where we
discuss empirical results on the distribution of log like-
lihoods and iterations. We note a significant difference
in iterations between runs that achieve the highest log
likelihood and runs that do not, which led us to posit
that many runs are unsuccessful because they are ini-
tialized in bad areas of the search space.

2Despite the prevalence of these criteria, it has been
noted [Lindstrom & Bates, 1988] that the difference in suc-
cessive log likelihoods is a measure of lack of progress rather
than convergence.

Algorithm 3.1: ALEM (N,L,M)

procedure CheckRuns(Γi, ρl)
if |Γi+1| < Mi+1

then

{
Γi+1 ← Γi+1 ∪ {ρl}
inserted← true

else



comment: find if there is a worse run

for each ρm ← Γi+1

do


if LL(ρm) < LL(ρl)

then


Γi+1 ← Γi+1 − {ρm}
Discard EM run ρm
Γi+1 ← Γi+1 ∪ {ρl}
inserted← true

if inserted = false
then {Discard EM run ρl

Γi ← Γi − {ρl}

procedure ALEMCheck (N,L,M)
comment: x denotes the number of terminated runs

x← 0
while x ≤ N

do



for i← 1 to L

do



if i = 1 and |Γi| < Mi

then


k ←M1 − |Γ1|
Insert k EM runs
Γ1 ← Γ1 ∪ {ρj , ρj+1 · · · ρk}
Start traditional EM algorithm
for each ρj ← Γ1

do EM(ρj , ε, ω)
for ρl ← Γi

do


If EM run terminated based on ω or ε
if ρl.isTerminated
then x← x+ 1
else if η(ρl) = βi
then CheckRuns(Γi, ρl)

main

Initialize layers with age limit β
for i← 1 to L− 1
do βi ← (a) · 2i−1

Set βL for the top layer
βL ← ω
Initialize layers with minimum runs M
for i← 2 to L− 1
do Mi ← 2

Set M for the bottom-most layer
M1 ← q
Set M for the top layer
ML ← N
Insert EM runs in the bottom-most layer
Γ1 ← {ρ1, ρ2 · · · ρq}
Start traditional EM algorithm on each run
for each ρq ← Γ1

do EM(ρq, ε, ω)
ALEMCheck(Γ, ρ)
Find EM run with max log likelihood
for i← 1 to L
do LL← arg max(Γi)

Figure 1: Pseudocode for ALEM algorithm. The values
for βi, Mi and a can be set depending on the nature of the
Bayesian network. In our experiments, we have set a = 5,
ω = 1000, N = 200, M1 = 5 for the bottom layer, ML = N
for the top layer, Mi = 2 for i < 2 to L−1 and ε = 0.00001
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3.2 Analysis using Poisson Processes

In traditional EM, runs mostly terminate because the
algorithm fails to improve the log likelihood by a pre-
specified amount ε between successive iterations. In
ALEM, a run terminates for the same reason, but in
addition it can also be culled. In this section, we for-
malize this intuition by analyzing ALEM’s rate of con-
vergence as compared to that of traditional EM.

In a shared resource environment (e.g., all processes
running on the same machine), the total time required
to complete a multiple starting points experiment can
be thought of as the product of the number of runs
and the average time taken per run (or upper-bounded
by the maximum time over all runs). If we take into
account the fact that as certain runs terminate, com-
putational resources free up and can be assigned to the
runs that are still iterating, it then becomes a question
of which strategy results in a higher probability of un-
desirable (runs that iterate for too long, runs that will
converge to local optima, etc.) runs terminating early
on. The main condition for ALEM’s successful perfor-
mance is that the probability of a young, poorly per-
forming run turning into an older, strongly performing
run is low, and can be made low by the ALEM param-
eters, i.e., βi and Mi. We model the termination of
runs stochastically by assuming that terminations in
traditional EM and ALEM follow a Poisson process,
motivated by the discrete, independent, and uniformly
distributed nature of the events (terminations) occur-
ring over a continuous time interval. Specifically, let
N(t) be a Poisson process that dictates the number of
terminations in a given time interval, such that

P [(N(t+ τ)−N(t)) = k] =
eλτ (λτ)k

k!
for k = 0, 1, . . . (1)

where k is the number of terminations. We can model
ALEM terminations as the superposition of two inde-
pendent Poisson processes: NEM(t) with Poisson pa-
rameter λEM, which is the process for terminations oc-
curring through standard EM termination, and Ncul(t)
with Poisson parameter λcul which is the culling pro-
cess. The resulting Poisson process NALEM(t) has pa-
rameter λALEM = λEM + λcul [Kingman, 1993].

Lastly, if we let T kALEM be the time taken for ALEM
to reach k terminations, we can can say T kALEM =
X1

ALEM + X2
ALEM + · · · + Xk

ALEM, where each ele-
ment in the sequence Xi

ALEM is an i.i.d. exponen-
tial random variable with density function fALEM(t) =
λALEMe

−λALEMt, t ≥ 0, and is the distribution of run
i terminating before time t. We can similarly define
T kEM for the traditional EM approach and also define
it as a sum of i.i.d. exponential random variables with
λ = λEM. Now let Yk = T kALEM − T kEM. Then,

P [T kALEM < T kEM] = P [Y1 + Y2 + . . . Yk < 0] (2)

noting that Yi, i = 1, . . . , k are i.i.d. random vari-
ables with mean µ = 1

λALEM
− 1

λEM
and variance

σ2 = 1
λ2
ALEM

+ 1
λ2
EM

(addition of independent exponen-

tial random variables). Thus,

µ

σ
=
λEM − λALEM

λALEMλEM

λALEMλEM√
λ2ALEM + λ2EM

=
λEM − λALEM√
λ2ALEM + λ2EM

(3)

Now let T kY = Y1+Y2 . . . Yk, and Zk =
Tk
Y −kµ
σ
√
k

. Then,

P [Y1 + . . . Yk < 0]=P

[
T kY − kµ
σ
√
k

<
−kµ
σ
√
k

]
=P

[
Zk <

λALEM − λEM√
λ2ALEM + λ2EM

√
k

]
(4)

From the central limit theorem, Zk converges in distri-
bution to the normal distribution with µ = 0, σ2 = 1.
Therefore, if λALEM > λEM, i.e., λcul > 0, then Equa-
tion 4 tends to 1 as k → ∞. The analysis gives the
probability of the time taken for ALEM to reach k ter-
minations being less than the time taken for traditional
EM to reach k runs. This probability approaches 1 as
the number of terminations increases.

4 Experiments with Bayesian
Networks

The objectives of the experiments are two-fold: to
compare the average number of iterations undergone
by all runs in traditional EM and in ALEM, and to
analyze the solution quality of ALEM vis-à-vis tradi-
tional EM. In all sets of experiments, we set ω=1000,
and ε = 0.00001, i.e., if the relative difference in log
likelihood between two successive iterations is less than
ε, then we deem the EM run to have converged or ter-
minated and set its status to inactive. We also analyze
the effects of varying the minimum runs parameter on
the average iterations and the solution quality, and
provide wall-clock times comparing the two strategies.

4.1 Datasets & Evaluation

We performed experiments on two Bayesian networks
of different complexities, the Carstarts network, which
contains 18 nodes (random variables), and the Alarm
network, with 37 nodes (random variables).3 The
Carstarts network is based on the various operations
in a car and the more complex Alarm network repre-
sents a real life situation of monitoring a patient in an
intensive care unit.

For each of these networks, we generated N = 200
EM runs by randomly choosing starting points in the
search space, in this case starting conditional proba-
bility distribution values, for each of the random vari-
ables in each run. We then varied two experimental

3http://www.cs.cmu.edu/∼javabayes/Examples/



Saluja, Sundararajan, Mengshoel

parameters, namely the training set size and the num-
ber of hidden variables. Firstly, through a Gibbs sam-
pler, we generated training sets consisting of 100, 250,
500, 1000, 2000, and 4000 samples. For each sample
size, we generated n different hidden variable config-
urations, where n is the number of random variables
in the network, and for each configuration, we chose
m variables to be hidden, where m ranges from 0 to
n − 1. For example, for the Carstarts network, we
had 18 different hidden variable configurations, rang-
ing from 0 hidden variables to 17 hidden variables. In
all our experiments, the EM runs are run in paral-
lel on the same Linux machine, a 2.5 GHz Intel quad
core processor with 8GB RAM. We used the libDAI
graphical models library [Mooij, 2010], which contains
an EM implementation suitable for Bayesian network
parameter estimation.

For our first set of experiments (Section 4.2), we calcu-
lated the average relative likelihood shortfall for each
hidden variable configuration-sample size pair as:

RLSavg =
lavg − l∗

l∗
(5)

where l∗ is the maximum log likelihood from the 200
EM runs and is deemed the global maximum,4 and lavg
is the average log likelihood across all 200 EM runs.
We also computed the average number of iterations un-
dergone by all runs. This exhaustive analysis allowed
us to identify which hidden variable configurations and
sample sizes took a large number of iterations to con-
verge (we term these configurations as ‘problematic’),
as well as the distribution of log likelihood values at
convergence.

For the second set of experiments (Section 4.3), we
focused on the hidden variable configurations from
the first set of experiments that we found problem-
atic, and performed EM parameter estimation through
ALEM on these troublesome hidden variable configu-
rations. We compare average iterations and solution
quality (through Equation 5) between the traditional
and ALEM approaches. The third set of experiments
(Section 4.4) focuses on varying the minimum runs
parameter; we restrict ourselves to the hidden vari-
ables chosen for the second experiment. The fourth
group of experiments (Section 4.5) compares the wall-
clock time between the traditional EM and ALEM,
once again restricted to the problematic hidden vari-
ables.

4.2 Slow Convergence in Traditional EM

In the first set of experiments, we used traditional
EM and went through the 6 sample sizes and the n
different hidden variable configurations (n = 37 for
Alarm, n = 18 for Carstarts) for each of the 200
EM runs. Therefore, the total number of EM runs

4We use for simplicity the term ‘global’ maximum for
the purposes of this paper, although we recognize that the
maximum achieved from multiple starting points is not nec-
essarily the true global maximum.

amounted to 6 × 37 × 200 = 44, 400 for Alarm, and
6× 18× 200 = 21, 600 for Carstarts. For each hidden
variable configuration-sample size pair, we calculated
the average RLS as per Equation 5.

Figures 2 and 3 show the average number of iterations
for the networks as we vary hidden variables and sam-
ple size. We found that RLSavg never exceeds 1%,
which means that on average the log likelihood values
obtained from each of the 200 EM runs was never more
than 1% away from the global maximum. In addition,
the average RLS peaks and average iteration peaks in
the figures tracked each other fairly well. We gener-
ally find that the highest peaks occur with the 100
sample size experiments, although one cannot estab-
lish a trend that a lower sample size leads to a higher
average number of iterations.

We also looked at the runs that eventually reached
the global maximum (successful runs), and calculated
the average iterations for just those runs versus the
average over all runs, and found significant differences
between these two sets of runs. The average number
of iterations for all runs exceeds the average number
of iterations for successful runs by 17.6 iterations in
Carstarts and 5.2 iterations in Alarm, on average. This
thorough analysis allowed us to identify problematic
hidden variable configurations and sample sizes which
were more time-consuming. Therefore, we felt that
focusing on reducing the average number of iterations
would result in the most significant improvement in
terms of the overall time taken to complete the runs
and find the global maximum.

4.3 ALEM: Mitigating Slow Convergence

Our ALEM implementation consisted of seven layers
(L = 7). Based on results from traditional EM (Sec-
tion 4.2), we chose the age gap a to be 5, and so β1 =
5, β2 = 10, β3 = 20, β4 = 40, β5 = 80, β6 = 160,
and β7 = 1000, as the last layer has no age limit per
se and is simply restricted by ω. For layers 2 to 6 we
set Mi = 2, with M1 = 5 and M7 = 200.

For the second set of experiments, we run ALEM on
the hidden variable configurations from Section 4.2
that we found problematic, which were 3, 4, 7, and
16 hidden variables for the Carstarts network, and 7,
13, 19, 28, and 33 hidden variables for the Alarm net-
work. These configurations broadly correspond to the
peaks in Figures 2 and 3. Using ALEM, we did not ex-
actly achieve the global maximum in 4 out of 24 hidden
variable-sample size configurations (6 sample sizes × 4
hidden variable configurations) in Carstarts, although
on average we were within 0.007% of the global max-
imum for the ones we missed. For Alarm, we were
off the global maximum for 12 out of the 30 experi-
ments (6 sample sizes × 5 hidden variable configura-
tions), but the average shortfall for the configurations
where we did not achieve the global maximum was
also 0.007%. However, both of these RLSavg values
are orders of magnitude less than the RLSavg obtained
in the traditional experiments, which were 0.13% and
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Figure 2: Carstarts network: average number of iterations for 200 EM runs, across all hidden variable and sample
size configurations. Notice the peaks at particular hidden variable configurations.
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Figure 3: Alarm network: average number of iterations for 200 EM runs, across all hidden variable and sample
size configurations. Notice the peaks at particular hidden variable configurations.

0.10% for Carstarts and Alarm respectively, indicating
ALEM’s effectiveness even on configurations where the
global maximum was not found.

In no case did the average number of iterations ever
increase with ALEM: mostly there is a significant de-
crease, especially on very hard (i.e., high iterations
in traditional EM) instances. In some cases when
the average number of iterations is already low there
is no change. Table 1 contains the average number
of iterations for the chosen hidden variable config-
urations in the ALEM approach, with the speedup
traditional # iterations
ALEM # iterations in parentheses. On average for

Carstarts the decrease in average iterations is 51.4%
and for Alarm it is 47.8%. The fact that we managed
to reduce the average number of iterations for these
problematic hidden variable configurations so signifi-
cantly yet still achieve the global maximum in most
instances (or very close to it in all instances) demon-

strates to us how expensive the traditional strategy
is. There are clearly some initial points that result
in a very high number of iterations but tend not to
find the global maximum due to the starting position
in the search space. The ALEM approach effectively
culls these iterations, thus saving processing cycles.

4.4 Parameter Variation

We performed a set of experiments where we varied
the minimum runs parameter Mi to see its effects on
the average number of iterations as well as the solution
quality. Figure 4 is a box plot that shows how the av-
erage number of iterations (across the hidden variables
that we tested ALEM for) varies as a function of the
sample size and the minimum runs parameter. One
can see a clear trend: as we reduce the minimum runs,
the average iterations also decreases. In fact, some
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Number of hidden variables
Carstarts Bayesian network Alarm Bayesian network

Sample size 3 4 7 16 7 13 19 28 33

100 15 (2.2) 19 (2.4) 93 (2.6) 59 (3.2) 14 (1.3) 13 (2.0) 27 (2.3) 27 (2.7) 6 (49.5)
250 31 (2.5) 7 (1.1) 9 (1.7) 30 (3.1) 4 (1.0) 16 (1.7) 28 (2.6) 35 (2.4) 6 (14.2)
500 26 (1.7) 20 (2.4) 38 (2.8) 18 (3.1) 4 (1.0) 4 (1.0) 29 (2.3) 26 (2.7) 7 (1.1)
1000 4 (1.0) 24 (2.5) 17 (2.9) 31 (3.2) 4 (1.0) 19 (2.5) 22 (2.6) 31 (2.7) 19 (3.5)
2000 26 (3.0) 22 (3.3) 13 (2.8) 8 (1.1) 10 (2.0) 14 (1.1) 23 (2.9) 19 (2.4) 25 (2.8)
4000 4 (1.0) 9 (1.9) 13 (2.5) 27 (2.7) 14 (1.8) 5 (1.0) 17 (2.2) 19 (2.7) 30 (2.7)

Table 1: Average number of iterations for chosen hidden variable configurations for the ALEM approach, with
speedup = traditional iterations

ALEM iterations in parentheses, for Carstarts & Alarm networks. Highest speedups are in bold.
These results corroborate with the wall-clock time experiments shown in Figure 5.

(a) Carstarts Bayesian network (b) Alarm Bayesian network

Figure 4: Variation in the number of iterations ALEM runs undergo, on average, as a function of the minimum
runs parameter Mi for both networks. The lower Mi is, the fewer iterations undergone. Darker shades of gray
denote lower values of Mi.

(a) Carstarts Bayesian network (b) Alarm Bayesian network

Figure 5: Wall clock time comparison between traditional EM and ALEM. ALEM is, for larger sample sizes,
significantly faster and the variation amongst runs tends to be much smaller. Traditional EM is in dark gray,
ALEM is in light gray.
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Bayesian Minimum Failures RLSavg

network runs(Mi)

Carstarts 1 5 0.009%
Carstarts 2 4 0.007%
Carstarts 3 4 0.001%

Alarm 1 14 0.013%
Alarm 2 12 0.007%
Alarm 3 6 0.006%

Table 2: Minimum runs variation and solution quality:
‘Failures’ is a count of the number of hidden variable-
sample size configurations (out of a total of 24 for each
entry for Carstarts, and 30 for each entry for Alarm)
where we fail to achieve the global maximum as we
vary the minimum runs, and RLSavg of only those ex-
periments that did not achieve the global maximum.

of the average iteration reductions when setting the
parameter to 1 were extremely significant (e.g., 10x
reduction in iterations with no reduction in solution
quality). However, generally the solution quality is
also reduced; as we reduce Mi, there are some hidden
variable-sample size configurations where the global
maximum is not attained. Table 2 provides a count of
the number of such hidden variable-sample size con-
figurations. Each value in the ‘Failures’ column is out
of a total of 24 configurations for Carstarts and 30 for
Alarm (which corresponds to 6 sample size configura-
tions × the number of hidden variable configurations
chosen for the network). We also provide the RLSavg of
only those experiments that did not achieve the global
maximum (the RLS for the others would be 0). As
with average iterations, we can see a consistent varia-
tion of solution quality as we vary Mi to take values
between 1 and 3.

Mi can be adjusted by methods like simulated anneal-
ing where a temperature parameter can be increased
initially to allow less discarding of runs for exploration
of the search space and then gradually decreased to
allow more discarding of EM runs. Future work will
concentrate on a method to tune this parameter.

4.5 Wall Clock Time Comparison

We recorded the time taken by traditional EM and
ALEM when running the EM experiments across all
six sample sizes for the problematic subset of hidden
variables. Figures 5a and 5b show the box plots of
the average time taken for both approaches. From
these graphs we can clearly see a considerable decrease
in time taken by ALEM for the Alarm network. For
Carstarts, similar results are evident, but with sample
sizes 500 and above. The variance in the number of
iterations is also significantly smaller in ALEM. Thus,
we can conclude that a reduction in average iterations,
as reported in Table 1, translates well to a reduction
in wall-clock time, especially for larger sample sizes.

5 Conclusion and Future Work

In this work, we present an age-layered influenced algo-
rithm to mitigate the local optima problem in the EM
algorithm. Specifically, our approach can be seen as
a way to manage multiple EM runs, randomized with
different initial starting points. We have shown that
parameter estimation using EM on difficult Bayesian
networks can be extremely computationally wasteful,
underlying the need for an efficient method to restrict
the overall average number of iterations undertaken
for a given parameter estimation problem instance.
We then show that ALEM manages to significantly
decrease the average number of iterations required on
two difficult Bayesian networks, but at the same still
achieves the global optimum, or gets very close, in all
instances.

Future work will look at robust methods to tune the
minimum runs parameter as well as error bounds on
using ALEM versus traditional EM. We are also in-
trigued by the relationship between the nature of the
stopping criterion used and the convergence of EM,
and will explore this aspect of the work too.
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