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ABSTRACT
Learning conditional probability tables of large Bayesian
Networks (BNs) with hidden nodes using the Expectation
Maximization algorithm is heavily computationally inten-
sive. There are at least two bottlenecks, namely the poten-
tially huge data set size and the requirement for computation
and memory resources. This work applies the distributed
computing framework MapReduce to Bayesian parameter
learning from complete and incomplete data. We formulate
both traditional parameter learning (complete data) and
the classical Expectation Maximization algorithm (incom-
plete data) within the MapReduce framework. Analytically
and experimentally we analyze the speed-up that can be
obtained by means of MapReduce. We present the details
of our Hadoop implementation, report speed-ups versus the
sequential case, and compare various Hadoop configurations
for experiments with Bayesian networks of different sizes and
structures. For Bayesian networks with large junction trees,
we surprisingly find that MapReduce can give a speed-up
compared to the sequential Expectation Maximization algo-
rithm for learning from 20 cases or fewer. The benefit of
MapReduce for learning various Bayesian networks is inves-
tigated on data sets with up to 1,000,000 records.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter Learning; D.1.3 [Programming
Techniques]: Distributed Programming

General Terms
Algorithms, Performance, Experiments
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1. INTRODUCTION
The estimation of parameters in Bayesian Networks (BNs)
can be very compute intensive. The size of the conditional
probability table grows exponentially in the number of par-
ents in the network; as the input data size increases, sequen-
tial learning for large and complex BNs becomes challeng-
ing even in the case of complete data. For learning from
incomplete data, the limiting factor is often the inference
step that must be performed on each instance in the data
set. Running inference requires calculation of the posterior
distribution over all families, i.e. over all instantiations of
variables and their parents.

Expectation Maximization (EM) is an iterative algorithm
that enables learning statistical models from data with miss-
ing values or/and latent variables [4]. EM is a powerful
technique as it guarantees convergence to a local maximum
of the log-likelihood function. Due to its numerical stabil-
ity and ease of implementation, EM has become the algo-
rithm of choice in many areas. It is widely used for Bayesian
clustering [9] in machine learning and computer vision, for
gene clustering, motif finding, and protein identification in
computational biology, for medical imaging, and for word
alignment in machine translation [5]. Most of the listed ap-
plications benefit from representation of data in the form
of graphical probabilistic models, such as hidden Markov
chains or BNs.

This work addresses the application of a MapReduce based
distributed computing framework, Hadoop, to Bayesian pa-
rameter learning from complete and incomplete data. We
implement the traditional Bayesian update and the classical
EM algorithms in Hadoop to speed up parameter learning in
BNs for a wide range of input data sizes. In the MapReduce
EM (MREM) formulation, the inference step is performed
independently for each data record. By running inference in
parallel, we accelerate each iteration of EM, alleviating the
computational cost. We present an analytical framework
for understanding the scalability and achievable speed up of
MREM versus the sequential algorithm. Finally, we test the
performance of map-reduced algorithms on a variety of BNs
for a wide range of data sizes. We find that for complex
networks, our map-reduced implementation outperforms se-



quential learning from data sizes as small as 20 data records.

2. BACKGROUND AND RELATED WORK

2.1 Bayesian Network Parameter Learning
Parameter learning is one of the key issues in BNs, which

are widely used in artificial intelligence, machine learning,
statistics, and bioinformatics [12]. Learning parameters from
complete data is discussed in [13] and [1]. Unfortunately, as
the data size becomes hugh, learning time of traditional se-
quential learning becomes unacceptable. In this paper, we
decompose the Bayesian Update algorithm for learning pa-
rameters from complete data on MapReduce to get speed
up.

One of the ways to speed up parameter estimation in
graphical models focuses on parallelizing the inference step,
which introduces the main computational bottleneck in many
machine learning algorithms. Theoretical analysis of the
parallel implementation of belief propagation and its scaling
limitations appears in [7]. Near linear parallel scaling has
been demonstrated by parallelization of the junction tree
(JT) inference using OpenMP and MPI [11]. The belief
propagation algorithm has been accelerated on GPUs [14]
and CPU-GPGPU heterogenous system [8].

The EM algorithm has been implemented in MapReduce
for a variety of purposes. It has been shown that a family
of machine learning (ML) algorithms that fit the Statistical
Query model (including EM) are embarrassingly parallel and
hence, lend themselves well to the MapReduce paralleliza-
tion on multicore computers [2] . The authors demonstrate
nearly linear speed ups with increasing number of cores for
a variety of ML algorithms. Performance and implemen-
tation issues associated with adapting various types of ML
algorithms to MapReduce have been investigated [6].

Though EM has been implemented on MapReduce for a
variety of tasks, to the best of our knowledge, in previous
work there has been no formulation of the MapReduce al-
gorithm for learning from complete and incomplete data in
BNs.

2.2 MapReduce and Hadoop
MapReduce is a programming framework for distributed

computing on large data sets which was introduced by Google
in 2004. It is an abstraction that allows users to easily create
parallel applications while hiding the details of data distri-
bution, load balancing, and fault tolerance [3].

MapReduce requires decomposition of an algorithm into
map and reduce steps. In the map phase, the input data split
into blocks is processed as a set of input key-value pairs in
parallel by multiple mappers. Each mapper applies to each
assigned datum a user specified map function and produces
as its output a set of intermediate key-value pairs. Then the
values with the same key are grouped together (the sort and
shuffle phase) and passed on to a reducer, which merges the
values belonging to the same key according to a user-defined
reduce function.

Hadoop, an implementation of MapReduce, provides a
framework for distributing the data and user-specified map-
reduce jobs across a large number of cluster nodes or ma-
chines. It is based on the master/slave architecture. The
single master server, referred to as jobtracker, receives a
job assignment from the user, distributes the map and re-
duce tasks to slave nodes (tasktrackers) and monitors their

progress.1 Storage and distribution of data to slave nodes
is handled by the Hadoop Distributed File System(HDFS).
In the following text, a Hadoop node might denote a task-
tracker or jobtracker machine. A map task describes the
work executed by a mapper on one input split. A reduce
task process records with the same intermediate key. A map-
per/reducer might be assigned multiple map/reduce tasks.
In this work, Hadoop is run on the Amazon Elastic Compute
Cloud (EC2) – a web service that provides reconfigurable
compute resources.

3. ALGORITHMS

3.1 Map-Reduced Bayesian Update (MRBU)
In this section, we introduce the BN Learning MapReduce

algorithm for large data sets. Let tuple β = (X,W,Θ) be a
BN, where (X,W) is a directed acyclic graph, with n = |X|
nodes, m = |W| edges, and associated set of conditional
probability distributions Θ = {Pr(X1|ΠX1), · · · ,Pr(Xn|ΠXn)}.
Here, Pr(Xi|ΠXi) is the conditional probability distribution
for Xi ∈ X, also called conditional probability table (CPT).
If Xi is a root node, we define ΠXi = {} and thus Θ contains
the probabilities of the root nodes. In the pseudocode for
MRBU Algorithm 1, we use S = {S1,S2, ...,Sn} to denote
the observation value for each node assignment in a training
sample, φ for its corresponding position in CPT, πxi for the
parent assignments of node Xi, M̄ [xi, πxi ] for counts of all
the child-parents’ combinations, and ci for pseudo counts.

We specify different mappers to count the observed cases
of the positions in the CPT of each node. The Map(key,
value) method emits “1” for each case that occurs in the
training sample. The reducer adds up the counts for each
value in the CPT of each node. The Reduce(key, values)
method emits the sum. The MergeCPT() method uses the
immediate results emitted by the reducer to calculate the
probabilities for all the CPTs. The pseudocount ci is intro-
duced to solve the zero-probability problem.

3.2 Sequential EM (SEM)
In this work, we implement the basic EM algorithm for pa-

rameter learning of BNs with table conditional probability
distributions (CPD). In SEM, given the BN structure, its
junction tree decomposition, and a number of incomplete
data records, we want to determine the probability distri-
bution (BN parameters) that is most likely to produce the
observed data.

SEM is an iterative algorithm that alternates between two
steps. The computation starts with the initial guess of pa-
rameters. In the expectation step, we use the current pa-
rameters to compute the expected sufficient statistics. Given
each data record and each family, we calculate the joint
probability distribution using junction tree propagation as
our inference engine [10]. Estimated probabilities of all data
records are summed up to give the expected sufficient statis-
tics [9]

Mθt [xi, πxi ] =
∑
m

P (xi, πxi |D[m], θt), (1)

where θt represents the parameters at step t, xi is the vari-
able assignment, πxi denotes its parents’ assignment, and

1http://wiki.apache.org/hadoop/ProjectDescription

http://wiki.apache.org/hadoop/ProjectDescription


Algorithm 1 MR Learning from Complete Data

Inputs: β,D//BN and dataset respectively
Outputs: θxi|πxi

//BN parameters
Driver:

Execute Mapper
Execute Reducer
MergeCPT ()

Mapper:
//value : one observation of all the nodes.
//φ : corresponding position in CPT
Method Map(key, value)
S ← value
for each Xi ∈ X do

Π(Xi)← ReadParents(Xi)
for each πXi ∈ Π(Xi) do
φ← getPositionCPT(Xi, πXi ,S)

end for
EMIT(string(“Xi φ”), 1)

end for

Reducer:
//key : the key emitted from mapper
//values : the value emitted from mapper
Method Reduce(key, values)

sum← 0
for each val in values do
sum← sum+ val

end for
EMIT(key, sum)

Method MergeCPT () //Reads all the reducer’s results
for each i← 1, . . . , n

for each xi,πxi ∈ V al(Xi,ΠXi) do
θxi|πxi

← (M̄ [xi, πxi ] + ci)/(
∑

ΠXi
M̄ [xi, πxi ] +

∑
ci)

//ci: pseudo counts
end for

end for

D[m] is the observation m. In the M-step, we treat the es-
timated sufficient statistics as complete data and perform
maximum likelihood estimation to obtain a new estimate of
parameters:

θt+1
x|πx

=
M̄θt [x, πx]

M̄θt [πx]
. (2)

The next E-step is performed with the updated set of pa-
rameters. The steps are repeated until convergence.

3.3 Map-Reduced EM (MREM)
In this work, we decompose the basic EM algorithm using

MapReduce. Since all records in the input data are inde-
pendent of each other for calculation of the expected suffi-
cient statistics, they can be processed in parallel. The input
records can be split between multiple mappers, each running
the E-step. The M-step is performed on the reducers.

E-Step: Each mapper takes as input the BN structure
β, the current estimate of parameters θt, the JT decompo-
sition T of β, and incomplete data D. A mapper runs the
E-step on its input records and accumulates pseudo-counts
M̄ [xi, πxi ] for all child-parents combinations in a hash map.
Once the mapper processes all records assigned to it, it emits

an intermediate key-value pair for each hash map entry. The
emitted key contains state assignments to parents πxi of the
node Xi, whereas the value represents the child variable as-
signment xi appended with the soft counts M̄ [xi, πxi ] for
this entry. This intermediate key makes sure that all vari-
ables with the same parents are grouped and processed in
the same reduce task.

Algorithm 2 MR Learning from Incomplete Data

Inputs:
β, T // BN and JT Structure
θ0 // Initial guess of BN parameters
D // Incomplete data
Outputs: θfinal

Driver:
repeat

Execute Mapper
Execute Reducer
t← t+ 1

until convergence

Mapper:
Method Map(key, value)
s← (s0, s1, . . . sm) //read in one observation
Run JT inference on (β,θ) to compute Pr(X,ΠX |s)
for each i← 1, . . . , n

for each xi,πxi ∈ V al(Xi,ΠXi) do
M̄ [xi, πxi ]← M̄ [xi, πxi ] + Pr(xi, πxi |S)

end for
end for

Method Run()
for each (key, value)
Map(key, value)

end for
for each i← 1, . . . , n

for each xi,πxi ∈ V al(Xi,ΠXi) do
EMIT(string(“πxi”), string(“xi; M̄ [xi, πxi ]”)

end for
end for

Reducer:
Method Reduce(key, values)

sum = 0
HashMap← newHashMap()
for each val in values do
sum← sum+ M̄ [xi, πxi ]
HashMap.put(string(“xi;πxi”), M̄ [xi, πxi ])

end for
for each Entry in HashMap do

key← string(“xi;πxi”)
θt+1
xi|πxi

← M̄ [xi, πxi ]/sum

EMIT(key, θt+1
xi|πxi

)

end for

M-Step: Each reduce method performs the M-step for
families with the same parent assignment: it iterates through
all the values with the same key, parses the value, and fills
a hash map, in which keys correspond to child-parent com-
binations and their states, and values correspond to the soft
counts. Values are summed up to obtain the parent count.
Finally, each reduce function emits an output key-value pair



for each hash map entry. The output key is of the form
xi, πxi ; the output value represents a newly estimated pa-
rameter θt+1

xi|πxi
, i.e. the quotient of the soft and parent

counts.

3.4 Design Choices for MREM
We use hard-coded combiner and optimal resource utiliza-

tion to improve the performance of MREM.
In a naive map-reduced implementation, each mapper emits
a key-value pair per family assignment per processed datum,
while in MREM, a mapper would combine the values associ-
ated with the same key from all the data records assigned to
it before passing intermediate key-values to a reducer. This
hard-coded combiner represents a major optimization as it
dramatically decreases the number of records transmitted to
the reducer.
The MREM combine operation will be effective if the num-
ber of items to be combined is large. Therefore, instead of
relying on Hadoop’s input splitting policy, we split the data
set into chunks whose size depends on the number of map
tasks that can be run in parallel. To ensure that no map-
per remains idle while others are processing large amount
of data, we assign each mapper only one map task which
corresponds to processing one input split.
Figure 1 shows the speed-ups on the top of the bars for naive
implementation and our MREM with respect to the sequen-
tial one.The time axis (vertical) refers to the average time
to complete one EM iteration. The map-reduced algorithms
are run on large EC2 instances with 4 tasktracker nodes;
the sequential version is run on the small EC2 instance.
For a 100K input dataset, the naive implementation gives
∼ 1.4x speed-up over the sequential version; the optimized
one shows over 14x speed-up.
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Figure 1: Total execution times of the sequential, naive and
optimized implementations on ADAPT T1. Sequential code
is run on a small EC2 instance; the map-reduced code is run
on a large EC2 instance with 4 tasktracker nodes.

4. ANALYSIS OF EXECUTION TIME
In this section, we estimate the performance benefit of

the MREM algorithm over its sequential counterpart. We
derive analytical expressions for the runtime of one iteration
of the sequential EM and MREM. Due to space limitations,
we omit some detailed derivations.

4.1 Sequential EM
The E-phase consists of two steps: computing marginals

using belief propagation and calculation of pseudocounts for
all input data records. We will denote the time taken by
these steps for each data record as tbp and tpc respectively.
Hence, the total time to complete this phase for n input
records is TEs = [tbp + tpc]n.
In the M-phase all parameters in the CPT are recalculated
and this requires calculation of parent counts. As the total
time required for this phase is directly proportional to the
number of parameters |θ| of the Bayesian network, we get
TMs = tc1 |θ|.
Since the implementation is sequential, we can add the time
of the two phases to find the total time (Tseq) taken by one
EM iteration,

Tseq = [tbp + tpc]n+ tc1 |θ|. (3)

4.2 MREM
In MREM, the E-phase and the M-phase are done by M

mappers and R reducers present in the compute cluster. Un-
like the sequential EM, at the end of each MREM iteration
the newly computed BN parameters need to be updated in
the HDFS so that every mapper gets these values before the
beginning of the E-phase in the next iteration. Thus, along
with E- and M-phases there is one more step Update BN.

Map phase: According to the implementation of MREM,
each mapper processes at most b n

M
c records from the input

file. As Mappers execute concurrently, the time required to
complete the E-step in MREM is

TEmr = (tbp + tpc)
⌊ n
M

⌋
+ ttrns|θ|, (4)

where ttrns reflects the time to transmit each key-value pair
over the network. We considered this time to be a part of the
E-step. This time is proportional to the size of transmitted
data |θ| for each mapper.

Reduce phase: Mappers emit key-value pairs with keys
as parent assignments “πxi”. Let us define a set Ξ to repre-
sent all possible parent assignments for the network β, i.e.
Ξ = {πxi |πxi ∈ V al(ΠXi)∀Xi ∈ X}. We will denote the
members of the set Ξ as ξj and its cardinality as |Ξ|. Hence,
each mapper can emit at most |Ξ| intermediate keys. All val-
ues associated with every intermediate key ξj for j ∈ [1, |Ξ|]
will generate one reduce task which results in |Ξ| reduce
tasks. So each of the R Reducers in the MapReduce frame-

work will be assigned at most d |Ξ|
R
e reduce tasks.

Each reduce task obtains the parent counts and re-estimates
the parameters θxi|πxi

as mentioned in Section 3.4. Among
all key-value pairs emitted by each mapper, those pairs will
have the same key ξj which correspond to node assignments
associated with the same parent assignment i.e
{(xi, M̄ [xi, πxi ])|πxi = ξj}. We will denote this set as νξj
and note that

|νξ1 |+ |νξ2 |+ |νξ3 |+ ....+ |νξ|Ξ| | = |θ|. (5)

As all the intermediate key-value pairs emitted by all map-
pers are accumulated by the MapReduce library, the max-
imum possible value with the key ξj is Mνξj . Hence, a

reducer with r (r ≤ d |Ξ|
R
e) reduce tasks will take maximum

time to finish if (|νξ1 | + |νξ2 | + .... + |νξr |) is maximum for



it:

TMmr =

r∑
k=1

(M |νξk |th + |νξk |tdiv), r ≤ d|Ξ|
R
e

= (Mth + tdiv)

r∑
k=1

|νξk |. (6)

Update phase: At the end of each iteration, the file in
HDFS containing the CPT is updated with the recently cal-
culated values. If writing one entry to the file takes twrite
time, the total time required to update the entire CPT is
TUmr = twrite|θ|.
Hence, the total time taken by one iteration of MREM,

Tmr = TEmr + TMmr + TUmr

= (tbp + tpc)
⌊ n
M

⌋
+ tprop|θ|

+ (Mth + tdiv)

r∑
k=1

|νξk |+ twrite|θ|. (7)

As equation (5) implies
∑r
k=1 |νξk | ≤ |θ|, we can approxi-

mate Tmr as follows,

Tmr ≈ (tbp + tpc)
⌊ n
M

⌋
+ tc2 |θ|, (8)

where tc2 is a constant for a compute-cluster and captures
the aggregate effect of the last three terms in (7).
From (3) and (8) we compute the speed-up (Ψ) for the
MREM algorithm compared to the sequential EM:

Ψ =
Tseq
Tmr

≈ (tbp + tpc)n+ tc1 |θ|
(tbp + tpc)

⌊
n
M

⌋
+ tc2 |θ|

(9)

From this equation we observe that as n increases, the nu-
merator (Tseq) increases at a higher rate compared to the
denominator (Tmr). At some point Tseq exceeds Tmr, mak-
ing Ψ > 1. For sufficiently large values of n (depends on
network parameters), the following expression holds

(tbp + tpc)
⌊ n
M

⌋
� tc2 |θ|. (10)

In this situation, the MREM algorithm reaches its peak per-
formance with the speedup Ψmax = M . However, from the
expressions of tc1 and tc2 we see the latter is much greater
due to the factor tprop + twrite. Hence, for very small val-
ues of n (n ≈ M), the denominator in (9) will be greater
than the numerator. In this case MREM will be slower than
sequential EM.

5. EXPERIMENTS ON HADOOP AND DIS-
CUSSION

5.1 Experimental Set Up
We experiment with three types of EC2 compute nodes:

small, medium, and large instances.2 We test both imple-
mentations on a number of complex BNs3(see Table 1) that
originate from different problem domains and vary in size
and structure. Comparison between different cluster con-
figurations is performed on several variants of ADAPT - a
BN representation of an electrical power system, based on

2http://aws.amazon.com/ec2/
3Other than ADAPT: http://bndg.cs.aau.dk/html/
bayesian_networks.html

the ADAPT testbed provided by NASA for benchmarking
of system health management applications.4

All algorithms are implemented in Java. In the MREM
analysis, we calculate speed-ups based on per-iteration exe-
cution time, which is measured as the average of the runtime
across 10 iterations of the EM algorithm.

5.2 Correctness Check
First we test the correctness of MREM, by comparing the

results generated by MREM and sequential EM. Both al-
gorithms are executed on the EC2 computers in linux envi-
ronment to estimate the parameters of 3 different ADAPT
networks. We find that after every iteration, the param-
eter estimates of both algorithms are exactly same. This
happens due to the inherent similarity of the two imple-
mentations and thus we conclude that MREM is a correct
implementation of EM.

5.3 MRBU Experimental Results

5.3.1 Varying Bayes Nets and Data Set Sizes
We vary the data set size, using 10K, 50K, 100K, 500K

and 1,000K training samples to train each BN. Figure 1 il-
lustrates the training time of different BNs in a single small
instance. It is obvious that increasing the size of the train-
ing samples leads to increased training time. The training
time of Munin2, Munin3 and Munin4 is growing much faster,
while the training time of Mildew, Barley and Powerplant
is growing much slower. This is because they have different
structures and different number of nodes.

Table 1: Summary of BNs

BayesNet Nodes N Edges E |θ|
Water 32 66 13,484
Mildew 35 46 547,158

Powerplant 46 42 448
Barley 48 84 130,180

Diabetes 413 604 461,069
Link 724 1,125 20,502

Munin2 1,003 1,244 83,920
Munin3 1,044 1,315 85,855
Munin4 1,041 1,397 98,423

ADAPT T1 120 136 1,504
ADAPT P2 493 602 10,913
ADAPT P1 172 224 4,182
ADAPT T2 671 789 13,281

5.3.2 Varying the Number of Hadoop Nodes
For each BN of the same training size, we vary the num-

ber of Hadoop nodes to parallelize the algorithm. Figure 2
shows the changes in the training time when using different
number of Hadoop nodes. This experiment is run in Ama-
zon Elastic MapReduce, and the training data are stored
in Amazon S3. Thus, the performance of the MapReduce
job is affected by some external factors such as the network
bandwidth between the Amazon S3 and Amazon EC2. In
2 (a), the number of training sample is 10K. When increas-
ing the number of Hadoop nodes, the training time does
not always decrease. This is because the training data is
small (no more than 51MB), and the external factors and

4ADAPT: http://works.bepress.com/ole_mengshoel/
29/

http://aws.amazon.com/ec2/
http://bndg.cs.aau.dk/html/bayesian_networks.html
http://bndg.cs.aau.dk/html/bayesian_networks.html
http://works.bepress.com/ole_mengshoel/29/
http://works.bepress.com/ole_mengshoel/29/
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Figure 2: Varying the Bayesian network(Link, Mildew,...) and data set size as well as the number of Small Hadoop nodes.

overheads of Hadoop are more obvious. Figure 2(b) and
Figure 2(c) shows that for large data sets (100K and 1,000K
training samples), increasing the number of Hadoop nodes
significantly reduces the training time. Complexity of the
BN also affects the parallelization speed up. For example,
Munin2, Munin3 and Munin4 have similar speed up in Fig-
ure 2 (b) and Figure 2 (c) because they have very similar
number of nodes and edges. They also have many more
nodes and edges than Barley, Water and Powerplant; thus
they show more significant speed ups with increasing num-
ber of Hadoop nodes.

5.3.3 Varying Hadoop Parameters
The performance of Hadoop is related to its job configu-

rations, e.g. the number of mappers and reducers. We train
the Link BN with 100K training samples using 1, 2, 10, 20,
50 and 100 mappers using a different number of Hadoop
nodes. The result is shown in Figure 3.

When increasing the number of map tasks from 1 to 10,
the average map time and the run time decrease. However,
when the number of map tasks is increased from 20 to 100,
even though the average time taken by map tasks decreases,
the total running time does not decrease, or even increases
a little. This happens because, first, too many mappers lead
to over-splitting of the data, introducing too much over-head
and, second, the average shuffle time also increases. Figure
3 shows that the minimum running time occurs for 10 map
tasks. On a Small instance, two map tasks can be run in
parallel. So the right level of parallelism for maps is around
10 map tasks for the 5 nodes case.

5.4 MREM Experimental Results

5.4.1 Varying Data Set Sizes for MREM
From equations (3) and (8), the runtimes of both the se-

quential and MREM algorithms increase linearly with in-
creasing number of data records but at different rates. In
this section, we compare the sequential EM and MREM for
input records varying from 1 to 1,000K. Both algorithms are
executed on Small Amazon EC2 instances. For MREM, 4
mapper nodes of the same instance have been used so that
the value of M = 4.

As described in Section 4.2, the speed-up (Ψ) achieved by
the MREM in case of small data sets is typically smaller due
to the overhead of MapReduce. For small datasets, we can
estimate the minimum size of input data records, which ex-
hibits beneficial results (i.e Ψ > 1) when using MapReduce.

Figure 4 shows the plots of achieved speed-ups of MREM
relative to the sequential version in semi-logarithmic scale.
Markers denote the experimental data, while continuous lines
represent the hyperbolic fit to the data. For all BNs, the
curves are well described by a rational function in n, i.e.
can be written in the form of (9):

Ψ ≈ (tbp + tpc)n+ tc1 |θ|
(tbp + tpc)

⌊
n
M

⌋
+ tc2 |θ|

=
An+B

Cn+D

The best fit is achieved for small ADAPT BNs that also
get up to 4x speed-ups (linear with the number of com-
pute resources). This behavior is consistent with our math-
ematical analysis of Ψ and confirms that the input data-
size required to gain sufficient performance improvement
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Figure 3: Run time, average Map, Shuffle and Reduce time
in 5 Hadoop Small nodes.

(Ψ ≈ Ψmax ) depends on the BN to a great extent.
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Figure 4: Speed up of MREM relative to sequential EM for
data set sizes ranging from n = 1 to n = 1, 000K. MREM
is run on Small EC2 instances with 4 mapper nodes.

The cross-over point for which the sequential runtime ex-
ceeds the runtime on Hadoop also depends on the type
and size of network. We observe that for networks with
the largest CPTs (ADAPT P2 and ADAPT T2), running
Hadoop starts giving improvements for data sizes with less
than 200 records. This result is expected since for complex
networks, the cluster start-up overhead quickly becomes neg-
ligible compared to the runtime of JT inference. In this case,
distributing workload across multiple nodes pays off even for

small training sets. Yet, for ADAPT T1 the cross-over point
is shifted to 2.8K data records - a point at which inference
runtime in sequential code becomes comparable to the clus-
ter set-up time. The cross-over points for the three ADAPT
networks run on the Amazon EC2 Small instance with four
mapper nodes are shown in Table 2.

Table 2: Data size at which MREM (run on Small instance
with 4 nodes) completes in the same time as sequential EM

BayesNet |θ| Total CPT Size Records

ADAPT T1 1,504 1,690 2.8K
ADAPT P2 10,913 32,805 160
ADAPT T2 13,281 36,396 130

Water 13,484 3,465,948 20
Munin3 85,855 3,113,174 10
Munin2 83,920 4,861,824 5

Figure 4 also shows that for Munin2, having the largest
total JT size, Ψ never reaches Ψmax = 4. This reminds
us of the limitations of the distributed computing instance
we are using. For a big JT, the heap memory allocated to
the Java Virtual Machines is almost exhausted which re-
quires garbage collection to process more records. Conse-
quently, much longer time is required to complete iterations
of MREM for very large JTs with sufficiently high data sizes.
Using Medium or Large instances would help to counteract
this effect as they have more memory available to be allo-
cated as heap space.

5.4.2 Effect of Instance Types
We investigate which instance type suits best our appli-

cation among the Small, Medium and Large instances. We
used three cluster configurations with the same cost per hour
as Small : 16 small compute nodes, Medium: 8 medium
compute nodes and Large: 4 large compute nodes. On
these Hadoop clusters we perform the experiments for three
ADAPT networks with two different dataset sizes (10K and
100K records). Figure 5 shows that for almost all cases the
performance is better for Medium instances compared to the
corresponding Small and Large instances.

5.4.3 Performance on Large Data Sets
To test the performance of MREM on very large input

data, we chose the ADAPT T1 network with an incomplete
data set having 1,000,000 records. In order to deal with
big data, we used bigger Hadoop clusters up to 10 compute
nodes of large instance type. Moreover, to compare the per-
formance across different Hadoop clusters, we executed the
same experiment on five more cluster configurations as fol-
lows: 5 Large instances, 10 Medium instances, 5 Medium
instances, 10 Small Instances and 5 Small instances.

From Figure 6 we see that one iteration of MREM, which
involved processing of 1,000K input records, was finished in
only 8 minutes when 10 Large and Medium compute nodes
were used. Given cost considerations, our recommendation
here is to use medium instances.

6. CONCLUSION
MapReduce is commonly used to distribute computation

for vast amounts of data. In this paper, we have applied the
framework to BN parameter learning from complete and in-
complete data. Running sequential EM to learn the param-
eters of the ADAPT T2 network from 100,000 data records



Figure 5: Performance on Small, Medium and Large in-
stances with the same cost for three different Bayesian Net-
works and two training data-set sizes.
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Figure 6: Performance on Small, Medium and Large in-
stances for ADAPT T1 network with n=1,000K.

takes around 2 hours 30 minutes per iteration. But using
our MREM implementation for the same task, on an Ama-
zon EC2 cluster with 5 Large compute nodes, takes only 15
minutes for each iteration.
Moreover, we found that the benefit of using MapReduce
depends not only on the size of the input data (as is well
known) but also on the size and structure of the network. We
have shown that for BNs with large junction trees, MapRe-
duce can give speed-up compared to the sequential EM for
learning from 20 cases or fewer. More generally, this work
improves the understanding of how to optimize the use of
MapReduce and Hadoop when applied to the important task
of BN parameter learning.
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