
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

June, 2009

The Diagnostic Challenge Competition:
Probabilistic Techniques for Fault Diagnosis in
Electrical Power Systems
Brian W. Ricks, University of Texas at Dallas
Ole J. Mengshoel, Carnegie Mellon University

Available at: https://works.bepress.com/ole_mengshoel/29/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/29/

The Diagnostic Challenge Competition: Probabilistic Techniques for Fault
Diagnosis in Electrical Power Systems

Brian W. Ricks*, **. Ole J. Mengshoel***

*University of Texas at Dallas, Dallas, TX 75080 USA
**USRP, NASA Ames Research Center, Moffett Field,

CA 80523 USA (e-mail: bwr031000@utdallas.edu).
***Carnegie Mellon University, NASA Ames Research Center,

Moffett Field, CA 80523 USA
(e-mail: Ole.J.Mengshoel@nasa.gov).

Abstract: Reliable systems health management is an important research area of NASA. A health management system that can
accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and
future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic
approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the
ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power
Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results
with over 96% accuracy and < 1 second mean diagnostic time.

1. INTRODUCTION

From physical electrical systems to computer networks, the
need to quickly and accurately diagnose faults in a system is
an important part of the puzzle of keeping systems healthy
and operating smoothly.

Here are two examples of shortfalls in systems health
management. They showcase just a couple of the vastly
many negative outcomes that can arise with systems that have
inadequate or no health management system.

In December of 1999, the Mars Polar Lander, a NASA Mars
exploration vehicle, descended into the Martian atmosphere,
never to be heard from again. The leading theory on the loss
states possible misinterpretation of sensor noise received by
the lander's on-board software. It is believed that the descent
engines were shut down during leg deployment, while the
lander was still about 40 meters above the surface, causing it
to crash. Had the Mars Polar Lander been equipped with a
better health management system that had not generated these
false positives, it is very possible that the lander would have
been able to carry out its mission.

In December of 2004, the F-22 Raptor suffered its first crash,
after a brief interruption in the electrical power system on
board caused sensors that monitor the plane's pitch, roll and
yaw to stop working. The pilot did not know this until right
at take-off, and by that time it was too late. A health
management system on board could have detected the fault
and taken corrective action by alerting the pilot of the issue
before take-off.

In this paper, we discuss the ProDiagnose algorithm, which
is designed to accurately and quickly diagnose faults such as
the ones mentioned in the two examples above. ProDiagnose
diagnoses different types of faults for sensors and
components. It can determine if a sensor is stuck or offset. It
can also determine if a component has failed, or if a

component is operating in a mode that it is not supposed to be
in.

ProDiagnose processes all incoming environment data
(observations from a system being diagnosed), and acts as a
gateway to a probabilistic inference engine. The inference
engine analyzes the observations given to it by ProDiagnose,
and computes diagnoses. ProDiagnose uses the Arithmetic
Circuit Evaluator, or ACE. ACE uses arithmetic circuits
(ACs), which are compiled from Bayesian network models
(Chavira & Darwiche 2007; Darwiche 2003). The primary
advantage to using ACs is speed, which is key in resource-
bounded systems such as aircraft and spacecraft (Mengshoel
2007).

To demonstrate ProDiagnose in action, we have developed
two probabilistic models of Electrical Power Systems (EPS)
for diagnosis. Both of these models were based on the
ADAPT testbed (Poll et al. 2007) at NASA Ames Research
Center <http://ti.arc.nasa.gov/project/adapt-diagnostics/>, a
physical EPS that behaves similar to EPSs found on board
NASA spacecraft. These probabilistic models are discrete
and static Bayesian networks. The ADAPT testbed also was
used in the DX 09 Diagnostic Challenge Competition <http://
www.dx-competition.org/>, in which ProDiagnose competed
and achieved the highest scores.

In this paper, we describe the ProDiagnose Algorithm, and
DX 09 Competition results of ProDiagnose. We also
describe each probabilistic model of ADAPT in depth.

2. OVERVIEW

ProDiagnose uses a probabilistic modeling system for
diagnosis, called a Bayesian network, or belief network
(Lauritzen & Spiegelhalter 1988; Pearl 1988). A Bayesian
network is a directed acyclic graph (DAG), combined with an
associated set of conditional probability tables (CPTs). Each
vertex of the graph represents a discrete random variable.

Each random variable has a CPT of size that is dependent on
the number of parent vertices, and the number of discrete
states that these vertices contain. The directed edges
typically represent the causal dependencies between
variables. By denoting, or clamping, as evidence specific
observations (to a state) with 100% probability for certain
random variables, it is possible to compute the marginal
probability of all other vertices in the graph very quickly.
The marginal probabilities can then be used to diagnose the
system itself.

Arithmetic circuits are a fast way to evaluate Bayesian
networks. An arithmetic circuit derives marginal
probabilities by addition and multiplication operations
(Chavira & Darwiche 2007; Darwiche 2003). During each
ProDiagnose call to ACE, the partial derivatives of this AC
are computed with respect to each discrete random variable.
ProDiagnose queries the arithmetic circuit to return the
marginal probabilities in constant time.

2.1 Notations and Definitions

Figure 1: The ProDiagnose Architecture. Two types of diagnosis-
related messages can be received, commands, C(t) and sensor
readings, S(t) (or sensor data). Commands can be received any time,
whereas sensor data comes in at specific times, according to the
sample cycle. Diagnosis, D(t), is sent after each sample cycle
completes.

Before discussing the algorithms, we introduce notation and
definitions, see also Figure 1.

PM (Probabilistic Model): The probabilistic model represents the
system that ProDiagnose will diagnose. The probabilistic model
that ProDiagnose uses is an Arithmetic Circuit compiled from a
Bayesian Network.

e (evidence): e represent the evidence that is used in the diagnosis
process. Evidence comes from commands and sensor readings.

A random variable in the network is referred to as a node, and a
group of nodes forms a component, which represents a physical
object that we are modeling. Each node in the network is described
as follows:

C (Command Set): A Command node C ∈ C represents a command
given to a component. A command is clamped to the node as
evidence.

D (Delta Set): A Delta node D ∈ D represents the difference (delta)
between the current sensor reading S(t) and its previous reading S(t -
1). Its value represents either a negative delta, zero (no) delta, or a
positive delta. Note that D is not the same as D(t) in Figure 1.

A (Attribute): An Attribute A ∈ A represents a subset of nodes that
describe various attributes of a component. These attributes could
be voltage V and current I for an electrical device. A usually
depends on A' ∈ A upstream, where A' ≠ A.

CL (Closed): A Closed node CL ∈ CL represents a generalized state
of operation for the component.

S (Sensor Set): A Sensor node S ∈ S represents the current reading
of a sensor. This reading is a discretized real value, which
represents a range for real-valued sensors, or the actual state of 0 or
1 for a boolean position sensor. The discretized sensor reading is
clamped as evidence in the network.

ST (Stuck Set): A Stuck node ST ∈ ST represents the stuck state of a
sensor. A sensor becomes stuck when its reading is the same over a
period of time, regardless of what the underlying process state is.

H (Health Set): A Health node H ∈ H represents the current health
state of a component. The set of states of a node H is partitioned
into normal and abnormal states. Abnormal states indicate a fault in
the component.

CH (Change Set): A Change node CH ∈ CH represents overall
trends in sensor readings. They are good for detecting small
changes in sensor readings over a period of time. This change is
clamped as evidence, but it also depends on H, as certain states of
health for relevant components can play a role in how the change
nodes affect the rest of the network.

Base_Component: A base_component of a node represents its
physical component or device in the real world. base_components
are used as a common link for lookups of various nodes that all
share a base_component. For example, a physical sensor will have
an H and S node associated with it, and may have D and ST nodes
also.

The following is a list of all ProDiagnose parameters and
their purpose:

Sample Cycle, SC: The amount of time, measured in milliseconds,
between sample readings.

Command Epsilon, EP: A global threshold for determining if a
given command should be clamped as evidence immediately or
queued in regard to the time stamp of the last sensor set. This is
discussed in more detail in the Command Data section.

Diagnosis Delay, DD: A global value, measured in sample cycles,
that gives the delay to start diagnosis output. Diagnosis delay is
used at the beginning of environment monitoring. This variable is
useful to filter out transients and other normal behavior that may
appear abnormal and thus have false positive diagnoses associated
with them.

Command Offset, CO: A global value, measured in sample cycles,
that gives the delay to output diagnosis when a command is
received. This variable is useful for situations in which n sample
cycles after a command have some transients for sensors that are
slower to update than others. For these situations, false diagnosis
output will be generated regardless of whether the command is
queued or not. For most sensors, CO = 2 is usually enough to
prevent this kind of behavior.

Sensor Stuck Delay, SSD: A value, measured in sample cycles, that
gives, for a sensor S with a reading that is the same, a maximum
number of sample cycles to wait before setting that sensor to a stuck
state.

ProDiagnose is designed to handle two main types of faults:
sensor faults and physical component faults. Each type has a

Env ironment Pro-
Diagnose

Probabilistic Model
(PM)

Inf erence
Engine

Diagnosis
D(t)

C(t)

S(t)

EP, DD,
CO, ...

set of faults, depending on the probabilistic model being
diagnosed.

3. PRODIAGNOSE ALGORITHM

The ProDiagnose algorithm can be broken down into two
stages: The pre-processing and diagnosing stages. The pre-
processing stage initializes ProDiagnose to a state in which it
can start accepting data from an environment. The
diagnosing stage analyzes each message S(t) or C(t) when
they come in and outputs diagnosis of abnormal health (H)
states according to the sample cycle.

3.1 Pre-Processing Stage

1 Algorithm ProDiagnose(EP, DD, CO)
2 Begin:
3 initialize_DA(EP, DD, CO, Init_Params : PDB)
4
5 Send_Message(Message : M = DA_Ready)
6
7 do
8 Begin:
9 receive Message : M from environment
10
11 Process_Message(M, EP, DD, CO)
12 loop until M = Terminate
13 End

The pre-processing stage sets up ProDiagnose, including
parameters and all data structures that will be used during
diagnosing.

H nodes are used on the output side, and C, D, S, ST, CH are
for input. On the input side, commands (C) and sensor (S)
readings are given to ProDiagnose. D and ST node values are
derived from their respective component's S node sensor
reading (before discretization), and a CH node's value is
derived from an S node assigned to it.

3.2 Diagnosis Stage

The diagnosis stage is executed each time data from the
environment is received. The first course of action is to
determine the data type of the incoming message.
ProDiagnose evaluates the PM and computes diagnoses only
when sensor data is received.

1 Algorithm Process_Message(Message : M, EP, DD, CO)
2 Begin:
3 if M = Scenario_Status : Terminate then Exit
4
5 if M = C(t) : (Command : C_Command, Value : V)
6 Begin:
7 C ← get_node(C_Command)
8 ti ← C.timestamp
9 tj ← S(t - 1).timestamp + SC
10 if tj - ti < EP
11 command_queue ← C
12 else
13 C.command ← Discretize_For_PM(V)
14 End if
15
16 if M = S(t)
17 Begin:
18 for each S(t) : (Sensor : S_Sens, Value : V) ε S(t)
19 Begin:
20 S ← get_node(S_Sens)
21 S.value ← Discretize_For_PM(V)
22
23 if D ε Base_Component(S)
24 D.value ← Discretize_For_PM(Calc_Delta(D))
25
26 if ST ε Base_Component(S)
27 ST.value ← Discretize_For_PM(Calc_Stuck(ST))
28 End for
29
30 for each CH

31 CH.value ← Calc_Change(CH)
32
33 End if
34
35 Calculate_Marginals(PM)
36
37 Output_Diagnosis(H, DD, CO)
38
39 Update_Command_Queue(command_queue)
40 End

Scenario_Status (Line 3): This datatype is a constant
specifying any status updates that arrive to ProDiagnose as
message M. If M is the constant specifying termination, then
ProDiagnose frees up its resources and exits gracefully.

C(t) (Line 5): This datatype is a tuple, (C_Command, V), in
which C_Command is a command given, and V is the value
of the command. ProDiagnose first fetches the appropriate C
node (line 7). It then checks the timestamp of the command.
If the command C(ti) has come in too close to S(tj), where j >
i and tj - ti < EP, then we queue the command (line 11).
Otherwise we update the C node with the new command.
ProDiagnose will queue commands to make sure that a
command does not update before the sensor readings reflect
the state change of the command. Not doing this can often
result in false positives (usually the component that we are
commanding coming back as stuck) due to the sensor
readings not immediately reflecting how the new command
affects the rest of the network. The worst case scenario is
that the commanded component is believed to be healthy,
which sets off many false positives of other components.
Keeping these commands queued for one sample set usually
prevents this from happening.

S(t) (Line 16): This datatype is a set, {(S_Sens, V) | S_Sens ∈
S}, in which S_Sens is a sensor, and V is the value for the
sensor. Each sample has a key/value pair for every sensor in
the network. The keys map to an S node, and the values (V)
represent the current sensor reading for the respective S node.
For each S node, its new sensor reading is discretized (Line
21) and value updated to the new reading. During each
iteration ProDiagnose also looks for any D or ST nodes that
share the same base_component as the S node in the network.
These operations consist of simple lookups using the
base_component for the sensor.

If a D or ST node is found for a specific base_component,
then its value is updated using the current sensor value (lines
24, 27). This value is further discretized for clamping as
evidence in the network.

After all S nodes are processed, ProDiagnose updates the
values of any CH nodes that may be present in the Bayesian
network. Since CH nodes can be bound to any sensor in the
Bayesian network, a reference to the bound S node is stored
in the CH node. Because of this, we can iterate through the
CH nodes after all S nodes are updated, as opposed to doing
CH node lookups for each S node (though it is worth
mentioning that CH nodes can be treated similar to D and ST
nodes). The CH node's value is then updated using the bound
S node's value as a base (and discretized like the rest of the
nodes). At this point all our input nodes are ready for
clamping to the network and evaluation of the network itself.

1 Algorithm Discretize_For_PM(Value : V, Thresholds : TH)
2 Begin:

3 A ← NEGATIVE_INFINITY
5
6 for each N ε TH
7 Begin:
8 B ← N
9 if V ≥ A and V < B
10 return TH.Index(N)
11 else
12 Begin:
13 A ← B
14 End else
15 End for
16
17 return TH.Index(TH.size + 1)
18 End

The Discretize_For_PM method takes the current sensor
value and returns an index value that is used in network
nodes as states (clamped evidence). This index is the index
value between two thresholds. A threshold has TH.size + 1
different Index values (line 6) that are possible, starting at 0,
where TH.size is defined as the number of thresholds N in
the set TH. The discretized value is Index(N) for which V is
[A, B) (lines 9, 10), or Index(TH.size + 1) if V is above all
thresholds (line 17). For example, a sample sensor has three
discrete states in the PM: low, mid and high, which
correspond to index values 0, 1 and 2 respectively. Two
sample thresholds are given: 50 and 100. Any sensor reading
below 50 is given an index of 0, [50, 100) is given an index
of 1, and above 100 is given index 2.

Now we describe the algorithms we have not discussed
already, which we refer to as dynamic processing for the
Bayesian network:

Figure 2: The Bayesian network representation of a fan or pump.
Fans and pumps utilize delta D and stuck ST nodes. If the
base_component is a sensor, then H depends on S and ST, as a
faulty or stuck sensor would indicate an abnormal health state. If the
component is a physical device, then H depends on CL, as a device
that has malfunctioned would indicate an abnormal health state.

1 Algorithm Calc_Delta(D)
2 Begin:
3 I ← Sensor_Average(Base_Component(D).S)
4 Iprev ← Sensor_Average(Base_Component(ST).S(t-1))
5 D.value ← I – Iprev

6
7 return D
8 End

1 Algorithm Sensor_Average(S)
2 Begin:
3 Sum ← 0
4 P ← 0
5
6 for each S ε {S(t), ..., S(t – p)}
7 Begin:
8 Sum ← Sum + S.value
9 P ← P + 1
10 End for
11
12 return A / P

The Calc_Delta method returns the difference between the
current and previous averaged sensor values of the delta D
node's base_component (line 3, 4: Calc_Delta, Figure 2).
The average is defined as the summation of any contiguous
subsequence of sensor readings (lines 6, 8: Sensor_Average)
from the current S(t) sample cycle to S(t – p), divided by p
(line 12: Sensor_Average), where p is defined as the position
in the sample timeline.

1 Algorithm Calc_Stuck(ST, Counter : I, Sensitivity : K)
2 Begin:
3 current_value ← Base_Component(ST).S.value
4 previous_value ← Base_Component(ST).S(t-1).value
5 J ← current_value – previous_value
6
7 if J = 0 and I ≥ K
8 return 0
9 else if J ≠ 0
10 I ← 0
11 else
12 I ← I + 1
13
14 return J
15 End

The Calc_Stuck method analyses a component's sensor
values for readings that are repeatedly identical, defined if J =
0, by subtracting the current S(t) and previous S(t - 1) values
of the ST nodes' base_component sensor (line 5, Figure 2).
Each time J = 0 a counter I is incremented. If this pattern
continues past a given sensitivity threshold K so I ≥ K (line
7), the ST node is considered stuck. The pattern is broken if J
≠ 0 during a sample cycle (line 5), at which point I is reset to
0 (line 9). A stuck node ST has three discretized states, 0, 1,
and 2, where 1 represents stuck, and 0, 2 represent non-stuck
states.

Figure 3 The Bayesian Network Representation of a bound sensor
(source sensor) S to a change node CH. CH influences the Attribute
node A in this figure, and depends on H.

1 Algorithm Calc_Change(CH, CUSUM : U)
2 Begin:
3 S ← CH.Bound_Sensor
4 I ← Sensor_Average(S)
5 Uprev ← U
6 U ← (S.value – I) + Uprev

7
8 if U < CH.Lower_Threshold
9 return 0
10 else if U > CH.Upper_Threshold
11 return 2
12
13 return 1
14 End

The Calc_Change method calculates a continuous CUSUM,
or cumulative sum, which is used to detect slight changes, or
trends, in a sensor reading over time. The current CUSUM U
is calculated by taking the current sensor reading S from the
CH nodes' bound sensor (Figure 3) and subtracting it from an
averaged sensor reading I (lines 4, 6), in the same way as for
D nodes (see Sensor_Average algorithm). This difference is
then added to the previous CUSUM, and updated as the new
current CUSUM U (line 6). Very slight changes that form a
trend will over time will cause the CUSUM to consistently

S

ST

D

AA

A

A

CL

H
H

Evidence
Health State

Rest
of
BN

S

ST
CH

A

H

Evidence
Health State

Rest
of
BN

increase or decrease. If this change accumulates to the point
where the CUSUM's value to drop below a lower threshold
(line 8) or above an upper threshold (line 10), the index of the
CH node will change in the PM to 0 or 2, respectively.

1 Algorithm Calculate_Marginals(PM)
2 Begin:
3 for each Node : N ε {S,C,D,ST,CH}
4 e ← fetch_current_evidence(PM, N)
5
6 for each H ε H
7 H.state ← argmax(P(H | E = e))
8
9 return H
10 End

In the Calculate_Marginals method, ProDiagnose clamps as
evidence all of the input nodes (lines 3, 4). Our probabilistic
models will always have S nodes, but not necessarily C, D,
ST, or CH nodes. ProDiagnose then calculates the marginals,
P(H | E = e), for all H (lines 6, 7). The output from the
inference engine gives the DA the states of H. For each H ∈
H, ProDiagnose takes the most likely value for that node and
assigns it as the new health state (line 7).

1 Algorithm Output_Diagnosis(H, DD, CO)
2 Begin:
3 Candidate Set : CS
4
5 if first execution of Algorithm
6 dd ← DD
7 if received C(t) within last sample cycle
8 co ← CO
9
10 if dd = 0 and co = 0
11 Begin:
12 for each H ε H
13 Begin:
14 if H.state = abnormal
15 CS ← H
16 End for
17 End if
18
19 if dd > 0
20 dd ← dd – 1
21 if co > 0
22 co ← co - 1
23
24 return CS
25 End

If the diagnosis delay has reached 0, dd = 0 (initially set
during the first iteration of this algorithm), and there is no
current command offset, co = 0 (line 10), ProDiagnose will
output a four-tuple (t, CS, DS, IS) as D(t) (Figure 1) if any
abnormal health states are detected. t is the current time, CS
is a candidate set, DS is a boolean detection signal, and IS is
a boolean isolation signal. A candidate set CS is a set
containing zero or more candidates. DS and IS are simply:
DS = IS = (|CS| > 0). If CS is non-empty, we have CS = {C1,
..., Cn}, where n ≥ 1, with each candidate C in CS consisting
of two-tuples like this: C = {(H1, a1), ..., (Hm, am)}, for m ≥ 1.
For ProDiagnose, a health node Hi is included in a candidate
C, along with a most likely state ai, if and only if that state is
abnormal. ProDiagnose always outputs exactly one (Hi, ai)
tuple per candidate, and thus candidate weights do not play a
role (and have for simplicity been kept out of the discussion
above). If dd > 0, then it decrements by 1 (line 20). This
also happens with co > 0 (line 22). co will be set to its
original value CO each time ProDiagnose receives a
command within the last sample cycle of S(t).
1 Algorithm Update_Command_Queue(command_queue)
2 Begin:
3 for each C ε command_queue
4 Begin:
5 C ← get_node(C_Command)

6 ti ← C.timestamp
7 tj+ 1 ← S(t).timestamp + SC
8
9 if tj + 1 - ti < EP
10 keep command in queue
11 else
12 Begin:
13 pop command from queue
14 C ← V
15 End else
16 End for
17 End

The last step taken by ProDiagnose after diagnosis output is
updating the command queue, pulling any commands C(ti)
whose timestamp is considered to be out of range of the next
sample timestamp S(tj + 1) according to the command epsilon,
tj + 1 - ti < EP (lines 8, 9).

4. MODELS

Figure 4: The ADAPT Tier 2 EPS. ADAPT Tier 1 is a subset of Tier 2.

BATT

te

te

te

CB R

R

e

ish

e

it
esh

esh
R

esh

e

it
ish

INV

e

st
ish

e

it

xt

ish

R

esh

R

esh

FAN

R

esh

FAN

R

esh

LGT

R

esh

PMP

R

esh

LGT

e

it

st

esh

LGT
LGT
LGT te

te

te

lt

R

esh

DC

R

esh

R

esh

e

it
ish

INV

e

st
ish

e

it

xt

ish

R

esh

LGT

R

esh

FAN

R

esh

LGT

R

R

esh

FAN

e

it

R

esh

R

esh

R

esh

PMP

R

esh

LGT
LGT
LGT te

te

te

lt

DC

BATT

te

te

CB R

e

ish

e

it
esh

esh
R

esh

BATT

te

te

CB R

e

ish

e

it
esh

esh
R

esh

ee
Battery
Cabinet

120V AC >>>

120V AC >>>

24V DC >>>

24V DC >>>

Lo
ad

 B
an

k 1
Lo

ad
 B

an
k 2

ADAPT Tier 2 EPS

Legend

BATT = Battery
CB = Circuit Breaker
R = Relay
INV = Inverter
FAN = Fan
PMP = Pump
LGT = Light Bulb
DC = Resistor

CB CB

CB CB

CB

CB

R

R

ft

te

ft

te

st

4.1 ADAPT Tier 1

The ADAPT Tier 1 Bayesian network models a subset of the
ADAPT testbed. This EPS consists of the inclusive path
from the second (middle) battery, the bottom DC → AC
inverter, and the bottom large fan in Load Bank 2 (Poll et al.
2007, see Figure 4). The Bayesian network model consists of
133 nodes, 149 edges, and a minimum and maximum domain
cardinality of 2 and 6, respectively. A breakdown of node
quantity for sensors is referenced in Table 1 below.

ADAPT EPS Bayesian
Network

Quantity per
EPS

Quantity per
Sensor

Name Symbol Description Tier 1 Tier 2 Nodes Evidence
Nodes

DC Current
Sensor it Measures DC current in

amps 2 7 3 2

AC Current
Sensor it Measures AC current in

amps 1 2 3 2

DC Voltage
Sensor e Measures DC voltage in

volts 4 12 3 2

AC Voltage
Sensor e Measures AC voltage in

volts 2 4 3 2

Circuit Breaker
Position Sensor ish Senses whether a circuit

breaker is opened or closed 3 9 2 1

Relay Position
Sensor esh Senses whether a relay is

opened or closed 3 24 2 1

Temperature
Sensor te

Measures temperature in
Fahrenheit of batteries,
battery cabinet, and light
bulbs

2 15 3 2

Speed
Transmitter st Measures RPM of the large

fans 1 2 5 3

Phase Angle
Transducer xt

Measures the phase shift in
degrees between the sine
waves of AC current and
voltage

1 2 6 2

AC Frequency
Transmitter st Measures the AC frequency

in Hertz 1 2 3 2

Flow
Transmitter ft

Measures the flow rate in
gallons per hour through a
pump

0 2 5 3

Light Sensor lt Measures the intensity in
millivolts of incoming light 0 2 3 2

TOTAL 20 83 41 24

Table 1: ADAPT EPS sensors, with their quantity in the ADAPT Tier
1 and Tier 2 EPS. Also shown is the number of nodes in the
Bayesian network representation of the sensors, and which quantity
of those nodes are evidence nodes.

4.2 ADAPT Tier 2

The ADAPT Tier 2 Bayesian network models the full
ADAPT testbed (Figure 4). This Bayesian network
represents an EPS that is similar to EPSs found aboard
NASA spacecraft and aircraft (Mengshoel et al. 2008).
ADAPT Tier 2 consists of 3 batteries connected in parallel
through 2 DC → AC inverters to 2 load banks (Poll et al.
2007, see Figure 4). The Bayesian network model consists of
601 nodes, 681 edges, a minimum domain cardinality of 2,
and a maximum domain cardinality of 6. Reference Table 1
for a breakdown of node quantity for sensors.

4.3 Bayesian Network Representation

ProDiagnose currently employs two different static Bayesian
network models, corresponding to ADAPT Tier 1 and Tier 2,

respectively. Both Bayesian networks have two types of
parts: components and sensors. A component models a
physical device in the EPS, such as a fan, circuit breaker,
relay, or light bulb. A sensor models a physical sensor in the
EPS. Sensors can take measurements of components or
wires. ADAPT e and it sensors are wire sensors. Figure 2
models a physical component (left side) and its sensor (right
side). Figure 3 models a wire sensor (though most wire
sensors do not have CH nodes associated with them). These
structures are combined with attribute A nodes to form a
complete Bayesian Network model of the EPS.

Associated with each node in a Bayesian network model is a
Conditional Probability Table (CPT). The CPT gives the
conditional probability that a specific node will be in a
specific state given the state values of its parent nodes.

H

healthy 0.85

offsetToZero 0.02

offsetToLow, offsetToMid, or offsetToHigh 0.04

stuck 0.01

Table 2: The CPT for a health node H. This CPT represents the
health of a fan sensor.

S

H A zero low mid high

healthy

zero 0.997 0.001 0.001 0.001

low 0.001 0.997 0.001 0.001

mid 0.001 0.001 0.997 0.001

high 0.001 0.001 0.001 0.997

offsetToZero zero, low, mid, or high 0.997 0.001 0.001 0.001

offsetToLow zero, low, mid, or high 0.001 0.997 0.001 0.001

offsetToMid zero, low, mid, or high 0.001 0.001 0.997 0.001

offsetToHigh zero, low, mid, or high 0.001 0.001 0.001 0.997

stuck zero, low, mid, or high 0.25 0.25 0.25 0.25

Table 3: The CPT for a sensor node S. This CPT represents a fan
sensor. Sensor readings are after discretization clamped to S nodes.

A health node H gives the health state of a component or
sensor in the Bayesian network. Most H nodes follow the
same type of CPT pattern as Table 2. Sensor S nodes
represent sensors, and are evidence nodes in the Bayesian
network. Sensor readings are clamped to S nodes as
evidence. Evidence nodes are the way in which ProDiagnose
inputs information to the Bayesian network.

ST

H negDelta zeroDelta posDelta

healthy, offsetToZero, offsetToLow,
offsetToMid, or offsetToHigh 0.499 0.002 0.499

stuck 0.001 0.998 0.001

Table 4: The CPT for a stuck node ST. Stuck nodes tend to have the
same CPT pattern. This CPT represents the stuck state of a fan
sensor.

Stuck nodes ST are used to make a stuck state more probable
within the same part's health H node. The two ST states
negDelta and posDelta refer to a negative or positive change,
respectively, in the sensor S node's sensor reading. The
zeroDelta state represents a stuck state. After the SSD has
been reached, this state will be clamped in the ST node.
When an ST node is clamped to zeroDelta, the H node's state

has a very high probability (99.8%, Table 4) of being stuck,
and since the ST node is directly connected to it, it yields
great influence over the most likely value of the H node (we
have equal conditional probabilities for the stuck state in the
S node, Table 3, to make sure that the S node itself cannot
yield any considerable influence on the H node being stuck).

Figure 5: The marginal distributions for health H nodes
health_fan_component and health_fan_sensor as well as the
actual_fan_speed attribute A node (same representation as in Figure
2). The actual_fan_speed A node represents the actual state of the
fan's blades.

In Figure 5 we see the most likely values for the health H
nodes of a fan component and sensor, based on the evidence
shown (Figure 5). The rest of the Bayesian network also
influences these outcomes. Notice how the actual_fan_speed
A node agrees with the evidence of the S node.

Figure 6: The marginal distributions for health H nodes
health_fan_component and health_fan_sensor as well as the
actual_fan_speed attribute A node, when the fan sensor's evidence
(sensor reading - state) is changed to low.

Suppose now that the sensor readings for the same fan sensor
dip downward so that the discretized state for the sensor S
node is now low (Figure 6). Assuming the evidence clamped
to the rest of the Bayesian network is the same as in Figure 5,
we see that the most likely value for the sensor's health is
now offsetToLow, based on the marginal distribution for that
node (Figure 6). However, there is still enough evidence to
suggest that the sensor's health could be healthy, but with a
lower probability. Therefore, we say that the sensor's health
is offsetToLow. A similar logic applies to the fan
component's health state as being healthy.

Figure 7: The marginal distributions for health H nodes
health_fan_component and health_fan_sensor as well as the
actual_fan_speed attribute A node, when the stuck ST node is
clamped to the stuck state.

Now we show what happens when ProDiagnose determines
that a sensor is stuck. In Figure 7, the stuck ST node is
clamped to zeroDelta, the Bayesian network name for a stuck
state. Again assuming the evidence in the rest of the Bayesian
network is the same as in Figures 5 and 6, we see that the
most likely value for the sensor's health is stuck, with high
probability, based on the marginal distribution (Figure 7).

5. EXPERIMENTAL RESULTS

ProDiagnose competed in both the ADAPT Tier 1 and Tier 2
Industrial Track of the DXC 09 Competition under the name
ProADAPT 1. The competition results are based on multiple
metrics, which we will now briefly summarize. A false
positive refers to detecting a fault when a fault is not present.
A false negative refers to not detecting a fault when a fault is
present. Classification errors refer to the number of
misdiagnoses made during an entire scenario run. Detection
accuracy is the percentage of correct fault detections when
taking into account the total percentage of false positives and
false negatives. Mean time to detect refers to the time
elapsed between specific fault injection and first detection of
a fault. Mean time to isolate is similar to the mean detection
time, except that an isolation refers to identification of the
correct fault. Mean CPU Time is a measure of CPU
resources used by ProDiagnose, and Mean Peak RAM Usage
measures the maximum amount of memory needed by
ProDiagnose.

5.1 Tier 1

The Tier 1 competition consisted of 62 scenarios, either
nominal (no fault) or single fault, with no commands
(Kurtoglu et al. 2009). Each scenario features the ADAPT
Tier 1 system in a fully powered-up state from the beginning.

In Table 5, the ProADAPT DX 09 Competition results are
given alongside the results from two naïve variants of
ProDiagnose, ProDiagnose' and ProDiagnose'', in which
various diagnostic features are disabled. ProDiagnose' is
defined with DD enabled, and EP, CO, SSD disabled.
ProDiagnose'' is defined with DD, EP, CO, and SSD disabled.

1The BN files used for Tier 1 and Tier 2 in this paper are named DXCT1.net
and DXCT2.net respectively. Discretization and other relevant information
is kept in files DXCT1.plog and DXCT2.plog.

S

H

ST

A

D

CL
Rest

of
BN

A

A

A

H

sensor_fan_sensor
evidence = mid

delta_fan_sensor
evidence = zero

stuck_fan_sensor
evidence = negDelta

health_fan_sensor
95.23% - healthy
0.00% - offsetToZero
0.00% - offsetToLow
4.76% - offsetToMid
0.00% - offsetToHigh
0.00% - stuck

actual_fan_speed
0.01% - zero
0.14% - low
99.72% - mid
0.14% - high

health_fan_component
99.66% - healthy
0.00% - failedOff
0.17% - underSpeed
0.17% - overSpeed

S

H

ST

A

D

CL
Rest

of
BN

A

A

A

H

sensor_fan_sensor
evidence = low

delta_fan_sensor
evidence = zero

stuck_fan_sensor
evidence = negDelta

health_fan_sensor
38.13% - healthy
0.03% - offsetToZero
61.71% - offsetToLow
0.06% - offsetToMid
0.06% - offsetToHigh
0.01% - stuck

actual_fan_speed
0.11% - zero
38.59% - low
59.53% - mid
1.78% - high

health_fan_component
61.08% - healthy
0.00% - failedOff
37.10% - underSpeed
1.82% - overSpeed

S

H

ST

A

D

CL
Rest

of
BN

A

A

A

H

sensor_fan_sensor
evidence = low

delta_fan_sensor
evidence = zero

stuck_fan_sensor
evidence = zeroDelta

health_fan_sensor
1.88% - healthy
0.00% - offsetToZero
3.04% - offsetToLow
0.00% - offsetToMid
0.00% - offsetToHigh
95.08% - stuck

actual_fan_speed
0.17% - zero
4.57% - low
92.50% - mid
2.76% - high

health_fan_component
92.84% - healthy
0.00% - failedOff
4.45% - underSpeed
2.71% - overSpeed

ADAPT Tier 1 (Vista x64 / Core2 T6400, Java) ProADAPT

ProDiagnose ProDiagnose ' ProDiagnose''

False Positives 3.33% 3.33% 12.12%

False Negatives 3.12% 15.62% 13.79%

Classification Errors 2 14 15

Detection Accuracy 96.77% 90.32% 87.10%

Mean Time to Detect 1387 ms 139 ms 135 ms

Mean Time to Isolate 4080 ms 306 ms 308 ms

Mean CPU Time 2016 ms 1908 ms 2111 ms

Mean Peak RAM Usage 53 MB 51 MB 52 MB

Table 5: Comparison of the ProDiagnose DA against ProDiagnose'
and ProDiagnose'', for ADAPT Tier 1.

For ADAPT Tier 1, ProDiagnose had very low false
positives/negatives rates, with only 2 classification errors,
and very high detection accuracy (Table 5). Also, for
ProDiagnose' and ProDiagnose'' results, we see very fast
mean detection and isolation times in around 1/10 and 3/10 of
a second, respectively. This is due to SSD being disabled, as
DD, EP and CO don't have much impact on Tier 1.
Disabling DD in ProDiagnose'' only gives us 1 more
classification error. If the fan component fault scenarios
were taken out, the mean detection time would drop to
around 1-2 ms, due to the extra time it takes to accurately
detect changes in the fan's RPM. Mean Peak RAM usage for
Windows is around 52 MB; Linux RAM usage decreases to
<2 MB (Kurtoglu et al. 2009).

5.2 Tier 2

The ADAPT Tier 2 competition consisted of 120 scenarios,
either nominal, single, double or triple fault, with various
relay and circuit breaker open/close commands (Kurtoglu et
al. 2009). The Tier 2 EPS starts in a powered down state, in
that all commandable relays are open. Then various relays
are closed (and some possibly opened again), depending on
the scenario.

ADAPT Tier 2 (Vista x64 / Core2 T6400, Java) ProADAPT

ProDiagnose ProDiagnose ' ProDiagnose''

False Positives 7.32% 48.94% 100.00%

False Negatives 13.92% 13.70% 0.00%

Classification Errors 76 109 146

Detection Accuracy 88.33% 72.50% 0.00%

Mean Time to Detect 5973 ms 8556 ms N/A

Mean Time to Isolate 11988 ms 19569 ms 19569 ms

Mean CPU Time 2922 ms 2819 ms 2888 ms

Mean Peak RAM Usage 65 MB 66 MB 65 MB

Table 6: Comparison of the ProDiagnose DA against ProDiagnose'
and ProDiagnose'', for ADAPT Tier 2.

ProDiagnose again had very low false positives/negatives
rates, and very high detection accuracy (Table 6). Here, it
becomes clear that DD is very important for a low false
positives rate. ProDiagnose'' had a 100% false positives rate
(and almost double the number of classification errors as
ProDiagnose), but enabling DD decreased this rate by about
51% for ProDiagnose'. ADAPT Tier 2 has many transients
when relays are initially closed to power up the inverters.
During this time many sensors give readings that can easily
be mis-interpreted as faulty due to this. DD helps eliminate

this problem by telling ProDiagnose to not make diagnoses
during this time. Our false negatives rate drops for
ProDiagnose' due to many of these scenarios now showing
false positives instead (CO being disabled). ProDiagnose''
thus has a 0% false negative rate.

It may seem that an 11 second mean isolation time is high,
but this is in large part due to stuck faults, as ProDiagnose
waits to ensure with high accuracy that a sensor is indeed
stuck before submitting a diagnosis for it. Faults involving
components such as fans and pumps usually will have high
isolation times also, due to a similar principle of waiting. In
this case, ProDiagnose waits until the component's sensor
readings trip a certain threshold, and the diagnosis is then
made based on other node influences within the Bayesian
network (The delta D node in Figure 2 aids the accuracy of
this process). For most types of faults, ProDiagnose has <1
ms isolation time. RAM usage is for Windows is 65 MB;
Linux usage is < 7 MB (Kurtoglu et al. 2009).

6. CONCLUSION

ProDiagnose is a highly accurate, fast diagnostic algorithm
for probabilistic models. It is characterized by quick
detection and isolation times, with a high degree of accuracy
for detecting faults. ProADAPT's results in the DX 09
Competition backs up these claims. Part of this success was
due to the addition of certain nodes (Delta D, Stuck ST,
Change CH) to an earlier version of the static Bayesian
network for ADAPT (Mengshoel et al. 2008), and using
dynamic processing in ProDiagnose to calculate their states.

REFERENCES
M. Chavira and A. Darwiche (2007). Compiling Bayesian networks using

variable elimination, in Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-07), (Hyderabad,
India), pp. 2443-2449.

A. Darwiche (2003). A differential approach to inference in Bayesian
networks, Journal of the ACM, vol. 50, no. 3, pp. 280-305.

T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van
Gemund and A. Feldman (2009). Towards a Framework for Evaluating
and Comparing Diagnosis Algorithms, in Proceedings of the 20th
International Workshop on Principles of Diagnosis (DX-09),
(Stockholm, SE).

S. Lauritzen and D. J. Spiegelhalter (1988). Local computations with
probabilities on graphical structures and their application to expert
systems (with discussion), Journal of the Royal Statistical Society
series B, vol. 50, no. 2, pp. 157-224.

O. J. Mengshoel (2007). Designing resource-bounded reasoners using
Bayesian networks: System health monitoring and diagnosis, in
Proceedings of the 18th International Workshop on Principles of
Diagnosis (DX-07), (Nashville, TN), pp. 330-337.

O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and S. Uckun
(2008). Diagnosing faults in electrical power systems of spacecraft and
aircraft, in Proceedings of the Twentieth Innovative Applications of
Artificial Intelligence Conference (IAAI-08), (Chicago, IL), pp. 1699-
1705.

J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann.

S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee, O. J.
Mengshoel, C. Neukom, D. Nishikawa, J. Ossenfort, A. Sweet, S.
Yentus, I. Roychoudhury, M. Daigle, G. Biswas, and X. Koutsoukos
(2007). Advanced diagnostics and prognostics testbed, in Proceedings
of the 18th International Workshop on Principles of Diagnosis (DX-
07), (Nashville, TN), pp. 178-185.

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	June, 2009

	The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems
	Probabilistic Modeling and Algorithmic Techniques for Fault Diagnosis

