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Abstract: Reliable systems health management  is an important research area of NASA.  A health management system that can 
accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and 
future NASA missions.   We introduce in this paper the ProDiagnose algorithm, a diagnostic  algorithm that uses a probabilistic 
approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems.  We describe the 
ProDiagnose algorithm, how it works, and the probabilistic models involved.  We show by experimentation on two Electrical Power 
Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results 
with over 96% accuracy and < 1 second mean diagnostic time. 

1. INTRODUCTION

From physical electrical systems to computer networks, the 
need to quickly and accurately diagnose faults in a system is 
an important part of the puzzle of keeping systems healthy 
and operating smoothly.

Here  are  two  examples  of  shortfalls  in  systems  health 
management.   They  showcase  just  a  couple  of  the  vastly 
many negative outcomes that can arise with systems that have 
inadequate or no health management system.

In December of 1999, the Mars Polar Lander, a NASA Mars 
exploration vehicle, descended into the Martian atmosphere, 
never to be heard from again.  The leading theory on the loss 
states possible misinterpretation of sensor noise received by 
the lander's on-board software.  It is believed that the descent 
engines  were  shut  down during leg deployment,  while  the 
lander was still about 40 meters above the surface, causing it 
to crash.  Had the Mars Polar Lander been equipped with a 
better health management system that had not generated these 
false positives, it is very possible that the lander would have 
been able to carry out its mission. 

In December of 2004, the F-22 Raptor suffered its first crash, 
after  a  brief  interruption in  the electrical  power system on 
board caused sensors that monitor the plane's pitch, roll and 
yaw to stop working.  The pilot did not know this until right 
at  take-off,  and  by  that  time  it  was  too  late.   A  health 
management system on board could have detected the fault 
and taken corrective action by alerting the pilot of the issue 
before take-off.

In this paper, we discuss the ProDiagnose  algorithm, which 
is designed to accurately and quickly diagnose faults such as 
the ones mentioned in the two examples above. ProDiagnose 
diagnoses  different  types  of  faults  for  sensors  and 
components.  It can determine if a sensor is stuck or offset.  It 
can  also  determine  if  a  component  has  failed,  or  if  a 

component is operating in a mode that it is not supposed to be 
in.

ProDiagnose  processes  all  incoming  environment  data 
(observations from a system being diagnosed), and acts as a 
gateway to a probabilistic inference engine.   The inference 
engine analyzes the observations given to it by ProDiagnose, 
and computes diagnoses.   ProDiagnose uses the Arithmetic 
Circuit  Evaluator,  or  ACE.   ACE uses  arithmetic  circuits 
(ACs),  which are compiled from Bayesian  network models 
(Chavira & Darwiche 2007; Darwiche 2003).  The primary 
advantage to using ACs is speed, which is key in resource-
bounded systems such as aircraft and spacecraft (Mengshoel 
2007).

To demonstrate  ProDiagnose in action, we have developed 
two probabilistic models of  Electrical Power Systems (EPS) 
for  diagnosis.   Both  of  these  models  were  based  on  the 
ADAPT testbed (Poll et al. 2007) at NASA Ames Research 
Center  <http://ti.arc.nasa.gov/project/adapt-diagnostics/>,  a 
physical  EPS that behaves similar to EPSs found on board 
NASA spacecraft.   These probabilistic  models  are  discrete 
and static Bayesian networks.  The ADAPT testbed also was 
used in the DX 09 Diagnostic Challenge Competition <http://
www.dx-competition.org/>, in which ProDiagnose competed 
and achieved the highest scores.

In  this paper,  we describe the ProDiagnose Algorithm, and 
DX  09  Competition  results  of  ProDiagnose.   We  also 
describe each probabilistic model of ADAPT in depth.

2. OVERVIEW

ProDiagnose  uses  a  probabilistic  modeling  system  for 
diagnosis,  called  a  Bayesian  network,  or  belief  network 
(Lauritzen & Spiegelhalter  1988; Pearl  1988).  A Bayesian 
network is a directed acyclic graph (DAG), combined with an 
associated set of conditional probability tables (CPTs).  Each 
vertex  of  the graph  represents  a  discrete random variable. 



Each random variable has a CPT of size that is dependent on 
the number  of  parent  vertices,  and  the  number  of  discrete 
states that  these  vertices  contain.   The  directed  edges 
typically  represent  the  causal  dependencies  between 
variables.   By denoting,  or  clamping, as  evidence  specific 
observations  (to  a  state)  with 100% probability for  certain 
random  variables,  it  is  possible  to  compute  the  marginal 
probability  of  all  other  vertices  in  the graph  very quickly. 
The marginal probabilities can then be used to diagnose the 
system itself.

Arithmetic  circuits  are  a  fast  way  to  evaluate  Bayesian 
networks.   An  arithmetic  circuit  derives  marginal 
probabilities  by  addition  and  multiplication  operations 
(Chavira & Darwiche 2007; Darwiche 2003).  During each 
ProDiagnose call to ACE, the partial derivatives of this AC 
are computed with respect to each discrete random variable. 
ProDiagnose  queries  the  arithmetic  circuit  to  return  the 
marginal probabilities in constant time.

2.1  Notations and Definitions

Figure  1:  The ProDiagnose Architecture.   Two types  of  diagnosis-
related  messages  can  be  received,  commands,  C(t)  and  sensor 
readings, S(t) (or sensor data).  Commands can be received any time, 
whereas  sensor  data  comes  in  at  specific  times,  according  to  the 
sample  cycle.  Diagnosis,  D(t),  is  sent  after  each  sample  cycle 
completes.

Before discussing the algorithms, we introduce notation and 
definitions, see also Figure 1.

PM (Probabilistic  Model):  The probabilistic  model  represents  the 
system that  ProDiagnose  will  diagnose.   The probabilistic  model 
that  ProDiagnose  uses  is  an  Arithmetic  Circuit  compiled  from a 
Bayesian Network.

e (evidence):  e represent the evidence that is used in the diagnosis 
process.  Evidence comes from commands and sensor readings.

A random variable in the network is referred to as a node, and a 
group  of  nodes  forms  a  component,  which  represents  a  physical 
object that we are modeling.  Each node in the network is described 
as follows:

C (Command Set): A Command node C  ∈ C represents a command 
given  to  a  component.   A  command  is  clamped  to  the  node  as 
evidence.

D (Delta Set): A Delta node D  ∈ D represents the difference (delta) 
between the current sensor reading S(t) and its previous reading S(t - 
1).  Its value represents either a negative delta, zero (no) delta, or a 
positive delta.  Note that D is not the same as D(t) in Figure 1.

A (Attribute): An Attribute A  ∈ A represents a subset of nodes that 
describe various attributes of a component.  These attributes could 
be  voltage  V and  current  I for  an  electrical  device.   A usually 
depends on A'  ∈ A upstream, where A' ≠ A.

CL (Closed): A Closed node CL  ∈ CL represents a generalized state 
of operation for the component.

S (Sensor Set): A Sensor node S  ∈ S represents the current reading 
of  a  sensor.   This  reading  is  a  discretized  real  value,  which 
represents a range for real-valued sensors, or the actual state of 0 or 
1 for a boolean position sensor.  The discretized sensor reading is 
clamped as evidence in the network.

ST (Stuck Set): A Stuck node ST  ∈ ST represents the stuck state of a 
sensor.  A sensor becomes stuck when its reading is the same over a 
period of time, regardless of what the underlying process state is.

H (Health Set): A Health node H  ∈ H represents the current health 
state of a component.  The set of states of a node  H is partitioned 
into normal and abnormal states.  Abnormal states indicate a fault in 
the component.

CH (Change  Set):  A Change  node  CH  ∈ CH  represents  overall 
trends  in  sensor  readings.   They  are  good  for  detecting  small 
changes in sensor readings over a period of time.  This change is 
clamped as evidence, but it also depends on H, as certain states of 
health for relevant components can play a role in how the change 
nodes affect the rest of the network.

Base_Component:  A  base_component of  a  node  represents  its 
physical  component or device in the real world.  base_components 
are used as a common link for  lookups of various nodes that all 
share a base_component.  For example, a physical sensor will have 
an H and S node associated with it, and may have D and ST nodes 
also. 

The following is  a  list  of  all  ProDiagnose  parameters  and 
their purpose:

Sample Cycle, SC: The amount of time, measured in milliseconds, 
between sample readings.

Command  Epsilon,  EP:  A  global  threshold  for  determining  if  a 
given  command  should  be  clamped  as  evidence  immediately  or 
queued in regard to the time stamp of the last sensor set.  This is 
discussed in more detail in the Command Data section.

Diagnosis Delay, DD: A global value, measured in sample cycles, 
that gives  the delay to start  diagnosis  output.  Diagnosis delay is 
used at the beginning of environment monitoring.  This variable is 
useful to filter out transients and other normal  behavior  that may 
appear abnormal and thus have false positive diagnoses associated 
with them.

Command Offset,  CO:  A global value, measured in sample cycles, 
that  gives  the  delay  to  output  diagnosis  when  a  command  is 
received.  This variable is useful for situations in which n sample 
cycles  after a command have some transients for  sensors that  are 
slower to update than others.  For these situations, false diagnosis 
output  will  be  generated  regardless  of  whether  the  command  is 
queued or  not.   For  most  sensors,  CO =  2  is  usually  enough to 
prevent this kind of behavior.

Sensor Stuck Delay, SSD: A value, measured in sample cycles, that 
gives, for a sensor  S  with a reading that is the same, a maximum 
number of sample cycles to wait before setting that sensor to a stuck 
state.

ProDiagnose is designed to handle two main types of faults: 
sensor faults and physical component faults.  Each type has a 

Env ironment Pro-
Diagnose

Probabilistic Model
(PM)

Inf erence
Engine

Diagnosis
D(t)

C(t)

S(t)

EP, DD,
CO, ...



set  of  faults,  depending  on  the  probabilistic  model  being 
diagnosed.

3.  PRODIAGNOSE ALGORITHM

The ProDiagnose  algorithm can  be  broken  down into  two 
stages: The pre-processing and diagnosing stages.  The pre-
processing stage initializes ProDiagnose to a state in which it 
can  start  accepting  data  from  an  environment.   The 
diagnosing stage  analyzes  each  message S(t)  or  C(t) when 
they come in and outputs diagnosis of abnormal health (H) 
states according to the sample cycle.

3.1  Pre-Processing Stage

1  Algorithm ProDiagnose(EP, DD, CO)
2  Begin:
3    initialize_DA(EP, DD, CO, Init_Params : PDB)
4
5    Send_Message(Message : M = DA_Ready)
6
7    do
8    Begin:
9      receive Message : M from environment
10
11     Process_Message(M, EP, DD, CO)
12   loop until M = Terminate
13 End

The  pre-processing  stage  sets  up  ProDiagnose,  including 
parameters  and all  data  structures  that  will  be used during 
diagnosing.  

H nodes are used on the output side, and C, D, S, ST, CH are 
for input.  On the input side, commands  (C) and sensor  (S) 
readings are given to ProDiagnose.  D and ST node values are 
derived  from  their  respective  component's  S node  sensor 
reading  (before  discretization),  and  a  CH  node's  value  is 
derived from an S node assigned to it.

3.2  Diagnosis Stage

The  diagnosis  stage  is  executed  each  time  data  from  the 
environment  is  received.   The  first  course  of  action  is  to 
determine  the  data  type  of  the  incoming  message. 
ProDiagnose evaluates the PM and computes diagnoses only 
when sensor data is received.

1  Algorithm Process_Message(Message : M, EP, DD, CO)
2  Begin:
3    if M = Scenario_Status : Terminate then Exit
4
5    if M = C(t) : (Command : C_Command, Value : V)
6    Begin:
7      C ← get_node(C_Command)
8      ti ← C.timestamp
9      tj ← S(t - 1).timestamp + SC
10     if tj -  ti < EP
11       command_queue ← C
12     else
13       C.command ← Discretize_For_PM(V)
14   End if
15
16   if M = S(t)
17   Begin:
18     for each S(t) : (Sensor : S_Sens, Value : V) ε S(t)
19     Begin:
20       S ← get_node(S_Sens)
21       S.value ← Discretize_For_PM(V)
22
23       if D ε Base_Component(S)
24         D.value ← Discretize_For_PM(Calc_Delta(D))
25
26       if ST ε Base_Component(S)
27         ST.value ← Discretize_For_PM(Calc_Stuck(ST))
28     End for
29
30     for each CH

31       CH.value ← Calc_Change(CH)
32
33   End if
34
35   Calculate_Marginals(PM)
36
37   Output_Diagnosis(H, DD, CO)
38
39   Update_Command_Queue(command_queue)
40 End

Scenario_Status (Line  3):  This  datatype  is  a  constant 
specifying any status updates that arrive to ProDiagnose as 
message M.  If M is the constant specifying termination, then 
ProDiagnose frees up its resources and exits gracefully.

C(t) (Line 5):  This datatype is a tuple, (C_Command, V), in 
which C_Command is a command given, and V is the value 
of the command.  ProDiagnose first fetches the appropriate C 
node (line 7).  It then checks the timestamp of the command. 
If the command C(ti) has come in too close to S(tj), where j > 
i  and  tj  - ti  <  EP, then  we  queue  the  command (line  11). 
Otherwise  we update  the  C node  with the  new command. 
ProDiagnose will  queue  commands  to  make  sure  that  a 
command does not  update before the sensor readings reflect 
the state change of the command.  Not doing this can often 
result in false positives (usually the component that we are 
commanding  coming  back  as  stuck)  due  to  the  sensor 
readings not immediately reflecting how the new command 
affects the rest of the network.  The worst case scenario is 
that  the  commanded  component  is  believed  to  be  healthy, 
which  sets  off  many  false  positives  of  other  components. 
Keeping these commands queued  for one sample set usually 
prevents this from happening.

S(t) (Line 16): This datatype is a set, {(S_Sens, V) | S_Sens ∈ 
S}, in which  S_Sens is a sensor, and  V is the value for the 
sensor.  Each sample has a key/value pair for every sensor in 
the network.  The keys map to an S node, and the values (V) 
represent the current sensor reading for the respective S node. 
For each  S node, its new sensor reading is discretized (Line 
21)  and  value  updated  to  the  new  reading.   During  each 
iteration ProDiagnose also looks for any D or  ST nodes that 
share the same base_component as the S node in the network. 
These  operations  consist  of  simple  lookups  using  the 
base_component for the sensor. 

If  a  D or  ST node is found for a specific  base_component, 
then its value is updated using the current sensor value (lines 
24,  27).   This  value is  further  discretized  for  clamping as 
evidence in the network.

After  all  S nodes  are  processed,  ProDiagnose  updates  the 
values of any CH nodes that may be present in the Bayesian 
network.  Since CH nodes can be bound to any sensor in the 
Bayesian network, a reference to the bound S node is stored 
in the CH node.  Because of this, we can iterate through the 
CH nodes after all S nodes are updated, as opposed to doing 
CH node  lookups  for  each  S node  (though  it  is  worth 
mentioning that CH nodes can be treated similar to D and ST 
nodes).  The CH node's value is then updated using the bound 
S node's value as a base (and discretized like the rest of the 
nodes).   At this  point  all  our  input  nodes  are  ready  for 
clamping to the network and evaluation of the network itself.

1  Algorithm Discretize_For_PM(Value : V, Thresholds : TH)
2  Begin:



3  A ← NEGATIVE_INFINITY
5
6    for each N ε TH
7    Begin:
8      B ← N
9      if V ≥ A and V < B
10       return TH.Index(N)
11     else
12     Begin:
13       A ← B
14     End else
15   End for
16
17   return TH.Index(TH.size + 1)
18 End

The  Discretize_For_PM  method  takes  the  current  sensor 
value  and  returns  an  index  value  that  is  used  in  network 
nodes as states (clamped evidence).  This index is the index 
value between two thresholds.  A threshold has TH.size + 1 
different Index values (line 6) that are possible, starting at  0, 
where  TH.size is defined as the number of thresholds N in 
the set TH.  The discretized value is Index(N) for which V is 
[A, B) (lines 9, 10), or Index(TH.size + 1) if V is above all 
thresholds (line 17).  For example, a sample sensor has three 
discrete  states  in  the  PM:  low,  mid  and  high,  which 
correspond  to  index  values  0,  1  and  2 respectively.   Two 
sample thresholds are given: 50 and 100.  Any sensor reading 
below 50 is given an index of 0, [50, 100) is given an index 
of 1, and above 100 is given index 2. 

Now  we  describe  the  algorithms  we  have  not  discussed 
already,  which  we  refer  to  as  dynamic  processing  for  the 
Bayesian network:

Figure  2:  The Bayesian  network  representation  of  a fan or  pump. 
Fans  and  pumps  utilize  delta  D and  stuck  ST nodes.   If  the 
base_component is a sensor,  then  H depends on  S and  ST,  as a 
faulty or stuck sensor would indicate an abnormal health state.  If the 
component is a physical device, then H depends on CL, as a device 
that has malfunctioned would indicate an abnormal health state.

1  Algorithm Calc_Delta(D)
2  Begin:
3    I ← Sensor_Average(Base_Component(D).S)
4    Iprev ← Sensor_Average(Base_Component(ST).S(t-1))
5    D.value ← I – Iprev

6
7    return D
8  End

1  Algorithm Sensor_Average(S)
2  Begin:
3    Sum ← 0
4    P ← 0
5
6    for each S  ε {S(t), ..., S(t – p)}
7    Begin:
8      Sum ← Sum + S.value
9      P ← P + 1
10   End for
11
12   return A / P

The Calc_Delta  method returns  the difference  between the 
current  and previous averaged sensor values of the delta  D 
node's  base_component (line  3,  4:  Calc_Delta,  Figure  2). 
The average is defined as the summation of any contiguous 
subsequence of sensor readings (lines 6, 8: Sensor_Average) 
from the current S(t) sample cycle to S(t  –  p), divided by p 
(line 12: Sensor_Average), where p is defined as the position 
in the sample timeline.

1  Algorithm Calc_Stuck(ST, Counter : I, Sensitivity : K)
2  Begin:
3    current_value ←  Base_Component(ST).S.value
4    previous_value ← Base_Component(ST).S(t-1).value
5    J ← current_value – previous_value
6
7    if J = 0 and I ≥ K
8      return 0
9    else if J ≠ 0
10     I ← 0
11   else
12     I ← I + 1
13
14   return J
15 End

The  Calc_Stuck  method  analyses  a  component's  sensor 
values for readings that are repeatedly identical, defined if J = 
0, by subtracting the current S(t) and previous S(t - 1) values 
of the  ST nodes'  base_component sensor (line 5, Figure 2). 
Each time J = 0 a counter I is incremented.  If  this pattern 
continues past a given  sensitivity threshold K so I ≥ K (line 
7), the ST node is considered stuck.  The pattern is broken if J 
≠ 0 during a sample cycle (line 5), at which point I is reset to 
0 (line 9).  A stuck node ST has three discretized states, 0, 1, 
and 2, where 1 represents stuck, and 0, 2 represent non-stuck 
states.

Figure 3 The Bayesian Network Representation of  a bound sensor 
(source sensor) S to a change node CH.  CH influences the Attribute 
node A in this figure, and depends on H.

1  Algorithm Calc_Change(CH, CUSUM : U)
2  Begin:
3    S ←  CH.Bound_Sensor
4    I ← Sensor_Average(S)
5    Uprev ← U
6    U ← (S.value – I) + Uprev

7
8    if U < CH.Lower_Threshold
9      return 0
10   else if U > CH.Upper_Threshold
11     return 2
12
13   return 1
14 End

The Calc_Change method calculates a continuous CUSUM, 
or cumulative sum, which is used to detect slight changes, or 
trends, in a sensor reading over time.  The current CUSUM U 
is calculated by taking the current sensor reading S from the 
CH nodes' bound sensor (Figure 3) and subtracting it from an 
averaged sensor reading I (lines 4, 6), in the same way as for 
D nodes (see Sensor_Average algorithm).  This difference is 
then added to the previous CUSUM, and updated as the new 
current CUSUM U (line 6).  Very slight changes that form a 
trend will over time will cause the CUSUM to consistently 
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increase or decrease. If this change accumulates to the point 
where the CUSUM's value to drop below a lower threshold 
(line 8) or above an upper threshold (line 10), the index of the 
CH node will change in the PM to 0 or 2, respectively.

1  Algorithm Calculate_Marginals(PM)
2  Begin:
3    for each Node : N ε {S,C,D,ST,CH}
4      e ← fetch_current_evidence(PM, N)  
5
6    for each H ε H
7      H.state ← argmax(P(H | E = e))
8
9    return H
10 End

In the Calculate_Marginals method, ProDiagnose clamps as 
evidence all of the input nodes (lines 3, 4).  Our probabilistic 
models will always have  S nodes, but not necessarily  C, D,  
ST, or CH nodes.  ProDiagnose then calculates the marginals, 
P(H |  E =  e),  for all  H  (lines 6,  7).   The output from the 
inference engine gives the DA the states of H.  For each H ∈ 
H, ProDiagnose takes the most likely value for that node and 
assigns it as the new health state (line 7).

1  Algorithm Output_Diagnosis(H, DD, CO)
2  Begin:
3    Candidate Set : CS
4
5    if first execution of Algorithm
6      dd ← DD
7    if received C(t) within last sample cycle
8      co ← CO
9    
10   if dd = 0 and co = 0
11   Begin:
12     for each H ε H
13     Begin:
14       if H.state = abnormal
15         CS ← H
16     End for
17   End if
18
19   if dd > 0
20     dd ← dd – 1
21   if co > 0
22     co ← co - 1
23 
24   return CS
25 End

If  the  diagnosis  delay  has  reached  0,  dd =  0  (initially  set 
during the first iteration of this algorithm), and there is no 
current command offset,  co = 0 (line 10), ProDiagnose will 
output a four-tuple (t, CS, DS, IS) as D(t) (Figure 1) if any 
abnormal health states are detected.  t is the current time, CS 
is a candidate set, DS is a boolean detection signal, and IS is 
a  boolean  isolation  signal.   A  candidate  set  CS  is  a  set 
containing zero or more  candidates.  DS and IS are simply: 
DS = IS = (|CS| > 0).  If CS is non-empty, we have CS = {C1, 
..., Cn}, where n ≥ 1, with each candidate C in CS consisting 
of two-tuples like this: C = {(H1, a1), ..., (Hm, am)}, for m ≥ 1. 
For ProDiagnose, a health node Hi is included in a candidate 
C, along with a most likely state ai, if and only if that state is 
abnormal.  ProDiagnose always outputs exactly one (Hi, ai) 
tuple per candidate, and thus candidate weights do not play a 
role (and have for simplicity been kept out of the discussion 
above).   If  dd > 0, then it decrements by 1 (line 20).  This 
also happens  with  co >  0  (line  22).   co will  be  set  to  its 
original  value  CO each  time  ProDiagnose  receives  a 
command within the last sample cycle of S(t).
1  Algorithm Update_Command_Queue(command_queue)
2  Begin:
3    for each C ε command_queue
4    Begin:
5      C ← get_node(C_Command)

6      ti ← C.timestamp
7      tj+ 1 ← S(t).timestamp + SC
8
9      if tj + 1 - ti < EP
10       keep command in queue
11     else
12     Begin:
13       pop command from queue
14       C ← V
15     End else
16   End for
17 End

The last step taken by ProDiagnose after diagnosis output is 
updating the command queue,  pulling any commands C(ti) 
whose timestamp is considered to be out of range of the next 
sample timestamp S(tj + 1) according to the command epsilon, 
tj + 1 - ti < EP (lines 8, 9).

4. MODELS

 

Figure 4: The ADAPT Tier 2 EPS.  ADAPT Tier 1 is a subset of Tier 2.
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4.1  ADAPT Tier 1

The ADAPT Tier 1 Bayesian network models a subset of the 
ADAPT testbed.   This  EPS  consists  of  the  inclusive  path 
from  the  second  (middle)  battery,  the  bottom DC →  AC 
inverter, and the bottom large fan in Load Bank 2 (Poll et al. 
2007, see Figure 4).  The Bayesian network model consists of 
133 nodes, 149 edges, and a minimum and maximum domain 
cardinality of 2 and 6, respectively.   A breakdown of node 
quantity for sensors is referenced in Table 1 below.

ADAPT EPS Bayesian 
Network

Quantity per 
EPS

Quantity per 
Sensor

Name Symbol Description Tier 1 Tier 2 Nodes Evidence 
Nodes

DC Current 
Sensor it Measures DC current in 

amps 2 7 3 2

AC Current 
Sensor it Measures AC current in 

amps 1 2 3 2

DC Voltage 
Sensor e Measures DC voltage in 

volts 4 12 3 2

AC Voltage 
Sensor e Measures AC voltage in 

volts 2 4 3 2

Circuit Breaker 
Position Sensor ish Senses whether a circuit 

breaker is opened or closed 3 9 2 1

Relay Position 
Sensor esh Senses whether a relay is 

opened or closed 3 24 2 1

Temperature 
Sensor te

Measures temperature in 
Fahrenheit of batteries, 
battery cabinet, and light 
bulbs

2 15 3 2

Speed 
Transmitter st Measures RPM of the large 

fans 1 2 5 3

Phase Angle 
Transducer xt

Measures the phase shift in 
degrees between the sine 
waves of AC current and 
voltage

1 2 6 2

AC Frequency 
Transmitter st Measures the AC frequency 

in Hertz 1 2 3 2

Flow 
Transmitter ft

Measures the flow rate in 
gallons per hour through a 
pump

0 2 5 3

Light Sensor lt Measures the intensity in 
millivolts of incoming light 0 2 3 2

TOTAL 20 83 41 24

Table 1:  ADAPT EPS sensors, with their quantity in the ADAPT Tier 
1  and  Tier  2  EPS.   Also  shown  is  the  number  of  nodes  in  the 
Bayesian network representation of the sensors, and which quantity 
of those nodes are evidence nodes.

4.2  ADAPT Tier 2

The  ADAPT  Tier  2  Bayesian  network  models  the  full 
ADAPT  testbed  (Figure  4).   This  Bayesian  network 
represents  an  EPS  that  is  similar  to  EPSs  found  aboard 
NASA  spacecraft  and  aircraft  (Mengshoel  et  al.  2008). 
ADAPT Tier 2 consists of 3 batteries connected in parallel 
through 2 DC → AC inverters  to 2 load banks  (Poll et al. 
2007, see Figure 4).  The Bayesian network model consists of 
601 nodes, 681 edges, a minimum domain cardinality of 2, 
and a maximum domain cardinality of 6.  Reference Table 1 
for a breakdown of node quantity for sensors.

4.3  Bayesian Network Representation

ProDiagnose currently employs two different static Bayesian 
network models, corresponding to ADAPT Tier 1 and Tier 2, 

respectively.   Both  Bayesian  networks  have  two  types  of 
parts:  components  and  sensors.   A  component  models  a 
physical  device in the EPS,  such as a  fan,  circuit  breaker, 
relay, or light bulb.  A sensor models a physical sensor in the 
EPS.   Sensors  can  take  measurements  of  components  or 
wires.  ADAPT e and  it sensors are wire sensors.  Figure 2 
models a physical component (left side) and its sensor (right 
side).   Figure  3  models  a  wire  sensor  (though  most  wire 
sensors do not have CH nodes associated with them).  These 
structures  are  combined  with  attribute  A  nodes  to  form  a 
complete Bayesian Network model of the EPS.

Associated with each node in a Bayesian network model is a 
Conditional  Probability  Table (CPT).   The  CPT gives  the 
conditional  probability  that  a  specific  node  will  be  in  a 
specific state given the state values of its parent nodes.

H

healthy 0.85

offsetToZero 0.02

offsetToLow, offsetToMid, or offsetToHigh 0.04

stuck 0.01

Table 2:  The CPT for  a health  node  H.  This CPT represents  the 
health of a fan sensor.

S

H A zero low mid high

healthy

zero 0.997 0.001 0.001 0.001

low 0.001 0.997 0.001 0.001

mid 0.001 0.001 0.997 0.001

high 0.001 0.001 0.001 0.997

offsetToZero zero, low, mid, or high 0.997 0.001 0.001 0.001

offsetToLow zero, low, mid, or high 0.001 0.997 0.001 0.001

offsetToMid zero, low, mid, or high 0.001 0.001 0.997 0.001

offsetToHigh zero, low, mid, or high 0.001 0.001 0.001 0.997

stuck zero, low, mid, or high 0.25 0.25 0.25 0.25

Table 3: The CPT for a sensor node S.  This CPT represents a fan 
sensor.  Sensor readings are after discretization clamped to S nodes.

A health node  H gives  the health state of a  component  or 
sensor in the Bayesian network.  Most  H nodes follow the 
same  type  of  CPT  pattern  as  Table  2.   Sensor  S nodes 
represent  sensors,  and  are  evidence  nodes  in  the  Bayesian 
network.   Sensor  readings  are  clamped  to  S nodes  as 
evidence.  Evidence nodes are the way in which ProDiagnose 
inputs information to the Bayesian network.

ST

H negDelta zeroDelta posDelta

healthy, offsetToZero, offsetToLow, 
offsetToMid, or offsetToHigh 0.499 0.002 0.499

stuck 0.001 0.998 0.001

Table 4:  The CPT for a stuck node ST.  Stuck nodes tend to have the 
same CPT pattern.   This CPT represents  the stuck state of  a fan 
sensor.

Stuck nodes ST are used to make a stuck state more probable 
within  the same part's  health  H node.   The  two  ST  states 
negDelta and posDelta refer to a negative or positive change, 
respectively,  in  the  sensor  S node's  sensor  reading.   The 
zeroDelta state represents a stuck state.  After the  SSD has 
been  reached,  this  state  will  be  clamped  in  the  ST node. 
When an ST node is clamped to zeroDelta, the H node's state 



has a very high probability (99.8%, Table 4) of  being stuck, 
and since the  ST  node is  directly connected  to it,  it  yields 
great influence over the most likely value of the H node (we 
have equal conditional probabilities for the stuck state in the 
S node, Table 3, to make sure that the  S node itself cannot 
yield any considerable influence on the H node being stuck).

Figure  5:   The  marginal  distributions  for  health  H nodes 
health_fan_component  and  health_fan_sensor  as  well  as  the 
actual_fan_speed  attribute A node (same representation as in Figure 
2).  The actual_fan_speed A node represents the actual state of the 
fan's blades.

In Figure 5 we see the most likely values for the health  H 
nodes of a fan component and sensor, based on the evidence 
shown (Figure  5).   The rest  of  the  Bayesian  network  also 
influences these outcomes.  Notice how the actual_fan_speed 
A node agrees with the evidence of the S node.

Figure  6:   The  marginal  distributions  for  health  H nodes 
health_fan_component  and  health_fan_sensor  as  well  as  the 
actual_fan_speed  attribute  A node, when the fan sensor's evidence 
(sensor reading - state) is changed to low.

Suppose now that the sensor readings for the same fan sensor 
dip downward so that the discretized state for the sensor  S 
node is now low (Figure 6).  Assuming the evidence clamped 
to the rest of the Bayesian network is the same as in Figure 5, 
we see that  the most likely value for the sensor's  health is 
now offsetToLow, based on the marginal distribution for that 
node (Figure 6).  However, there is still enough evidence to 
suggest that the sensor's health could be  healthy, but with a 
lower probability.  Therefore, we say that the sensor's health 
is  offsetToLow.   A  similar  logic  applies  to  the  fan 
component's health state as being healthy.

Figure  7:   The  marginal  distributions  for  health  H nodes 
health_fan_component  and  health_fan_sensor  as  well  as  the 
actual_fan_speed   attribute  A  node,  when  the  stuck  ST node  is 
clamped to the stuck state.

Now we show what happens when ProDiagnose determines 
that  a  sensor  is  stuck.   In  Figure  7,  the  stuck  ST node  is 
clamped to zeroDelta, the Bayesian network name for a stuck 
state. Again assuming the evidence in the rest of the Bayesian 
network is the same as in Figures 5 and 6, we see that the 
most likely value for the sensor's  health is  stuck, with high 
probability, based on the marginal distribution (Figure 7).

5.  EXPERIMENTAL RESULTS

ProDiagnose competed in both the ADAPT Tier 1 and Tier 2 
Industrial Track of the DXC 09 Competition under the name 
ProADAPT 1.  The competition results are based on multiple 
metrics,  which  we  will  now  briefly  summarize.   A  false 
positive refers to detecting a fault when a fault is not present. 
A false negative refers to not detecting a fault when a fault is 
present.   Classification  errors  refer  to  the  number  of 
misdiagnoses made during an entire scenario run.  Detection 
accuracy  is the percentage of correct fault detections when 
taking into account the total percentage of false positives and 
false  negatives.   Mean  time  to  detect  refers  to  the  time 
elapsed between specific fault injection and first detection of 
a fault.  Mean time to isolate is similar to the mean detection 
time, except that  an  isolation refers  to identification of the 
correct  fault.   Mean  CPU  Time   is  a  measure  of  CPU 
resources used by ProDiagnose, and Mean Peak RAM Usage 
measures  the  maximum  amount  of  memory  needed  by 
ProDiagnose.

5.1  Tier 1

The  Tier  1  competition  consisted  of  62  scenarios,  either 
nominal  (no  fault)  or  single  fault,  with  no  commands 
(Kurtoglu et al. 2009).  Each scenario features the ADAPT 
Tier 1 system in a fully powered-up state from the beginning.

In Table 5, the ProADAPT DX 09 Competition results are 
given  alongside  the  results  from  two  naïve  variants  of 
ProDiagnose,  ProDiagnose'  and  ProDiagnose'',  in  which 
various  diagnostic  features  are  disabled.   ProDiagnose'  is 
defined  with  DD enabled,  and  EP,  CO,  SSD disabled. 
ProDiagnose'' is defined with DD, EP, CO, and SSD disabled.

1The BN files used for Tier 1 and Tier 2 in this paper are named DXCT1.net 
and DXCT2.net respectively.  Discretization and other relevant information 
is kept in files DXCT1.plog and DXCT2.plog.
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ADAPT Tier 1 (Vista x64 / Core2 T6400, Java)  ProADAPT 

ProDiagnose ProDiagnose ' ProDiagnose''

False Positives 3.33% 3.33% 12.12%

False Negatives 3.12% 15.62% 13.79%

Classification Errors 2 14 15

Detection Accuracy 96.77% 90.32% 87.10%

Mean Time to Detect 1387 ms 139 ms 135 ms

Mean Time to Isolate 4080 ms 306 ms 308 ms

Mean CPU Time 2016 ms 1908 ms 2111 ms

Mean Peak RAM Usage 53 MB 51 MB 52 MB

Table 5: Comparison of the ProDiagnose DA against  ProDiagnose' 
and ProDiagnose'', for ADAPT Tier 1.

For  ADAPT  Tier  1,  ProDiagnose  had  very  low  false 
positives/negatives  rates,  with  only  2  classification  errors, 
and  very  high  detection  accuracy  (Table  5).    Also,  for 
ProDiagnose'  and  ProDiagnose''  results,  we  see  very  fast 
mean detection and isolation times in around 1/10 and 3/10 of 
a second, respectively.  This is due to SSD being disabled, as 
DD,  EP and  CO don't  have  much  impact  on  Tier  1. 
Disabling  DD in  ProDiagnose''  only  gives  us  1  more 
classification  error.   If the  fan  component  fault  scenarios 
were  taken  out,  the  mean  detection  time  would  drop  to 
around 1-2 ms, due to the extra time it  takes to accurately 
detect changes in the fan's RPM.  Mean Peak RAM usage for 
Windows is around 52 MB; Linux RAM usage decreases to 
<2 MB (Kurtoglu et al. 2009).

5.2  Tier 2

The ADAPT Tier 2 competition consisted of 120 scenarios, 
either  nominal,  single,  double  or  triple  fault,  with  various 
relay and circuit breaker open/close commands  (Kurtoglu et 
al. 2009).  The Tier 2 EPS starts in a powered down state, in 
that all commandable relays are open.  Then various relays 
are closed (and some possibly opened again), depending on 
the scenario.

ADAPT Tier 2 (Vista x64 / Core2 T6400, Java)  ProADAPT

ProDiagnose ProDiagnose ' ProDiagnose''

False Positives 7.32% 48.94% 100.00%

False Negatives 13.92% 13.70% 0.00%

Classification Errors 76 109 146

Detection Accuracy 88.33% 72.50% 0.00%

Mean Time to Detect 5973 ms 8556 ms N/A

Mean Time to Isolate 11988 ms 19569 ms 19569 ms

Mean CPU Time 2922 ms 2819 ms 2888 ms

Mean Peak RAM Usage 65 MB 66 MB 65 MB

Table 6: Comparison of the ProDiagnose DA against  ProDiagnose' 
and ProDiagnose'', for ADAPT Tier 2.

ProDiagnose  again  had  very  low  false  positives/negatives 
rates, and very high detection accuracy (Table 6).  Here,  it 
becomes  clear  that  DD is  very  important  for  a  low  false 
positives rate. ProDiagnose'' had a 100% false positives rate 
(and  almost  double  the  number  of  classification  errors  as 
ProDiagnose), but enabling DD decreased this rate by about 
51% for ProDiagnose'.  ADAPT Tier 2 has many transients 
when relays  are  initially  closed  to  power  up the  inverters. 
During this time many sensors give readings that can easily 
be mis-interpreted as faulty due to this.  DD helps eliminate 

this problem by telling ProDiagnose to not make diagnoses 
during  this  time.   Our  false  negatives  rate  drops  for 
ProDiagnose'  due to many of these scenarios now showing 
false positives  instead (CO being disabled).   ProDiagnose'' 
thus has a 0% false negative rate.

It  may seem that an 11 second mean isolation time is high, 
but this is in large part due to stuck faults, as ProDiagnose 
waits to ensure with high accuracy that  a sensor  is  indeed 
stuck before submitting a diagnosis for it.  Faults involving 
components such as fans and pumps usually will have high 
isolation times also, due to a similar principle of waiting.  In 
this  case,  ProDiagnose  waits  until  the  component's  sensor 
readings  trip  a  certain  threshold,  and  the  diagnosis  is  then 
made based  on  other  node  influences  within  the  Bayesian 
network (The delta  D node in Figure 2 aids the accuracy of 
this process).  For most types of faults, ProDiagnose has <1 
ms isolation time.  RAM usage is for Windows is 65 MB; 
Linux usage is < 7 MB (Kurtoglu et al. 2009).

6.  CONCLUSION

ProDiagnose is  a highly accurate,  fast  diagnostic  algorithm 
for  probabilistic  models.   It  is  characterized  by  quick 
detection and isolation times, with a high degree of accuracy 
for  detecting  faults.   ProADAPT's  results  in  the  DX  09 
Competition backs up these claims.  Part of this success was 
due  to  the  addition  of  certain  nodes  (Delta D,  Stuck ST, 
Change CH) to  an  earlier  version  of  the  static  Bayesian 
network  for  ADAPT  (Mengshoel  et  al.  2008),  and  using 
dynamic processing in ProDiagnose to calculate their states.
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