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Abstract

Bayesian networks are a theoretically well-founded ap-
proach to represent large multi-variate probability dis-
tributions, and have proven useful in a broad range of
applications. While several software tools for visualiz-
ing and editing Bayesian networks exist, they have im-
portant weaknesses when it comes to enabling users to
clearly understand and compare conditional probabil-
ity tables in the context of network topology, especially
in large-scale networks. This paper describes a system
for improving the ability for computers to work with
people to develop intelligent systems through the con-
struction of high-performing Bayesian networks. We
describe NetEx, a tool developed as a Cytoscape plug-
in, which allows a user to visually inspect and com-
pare details concerning multiple nodes in a Bayesian
network while maintaining awareness of their network
context. It uses a “thought bubble line” to connect nodes
in a graph representation and their internal information
at the side of the graph. The tool seeks to improve the
ability of experts to analyze and debug large Bayesian
network models, and to help people to understand how
alternative algorithms and Bayesian networks operate,
providing insights into how to improve them.

Introduction
Large-scale probabilistic graphical models are becoming in-
creasingly important across a broad range of scientific, tech-
nical, and business areas. Bayesian networks, for exam-
ple, have been useful in domains such as medical diag-
nosis (Andreassen et al. 1989; 1991; Shwe et al. 1991),
system health management (Rish, Brodie, and Ma 2002;
Mengshoel et al. 2008; Ricks and Mengshoel 2010; Meng-
shoel 2010), information theory (McEliece, Mackay, and
Cheng 1998; MacKay 2002), and reliability (Langseth and
Portinale 2007).

Bayesian networks are graphical models for encoding the
full joint probability distribution of variables in a compact
form (Pearl 1988; Darwiche 2009). A Bayesian network
consists of two components: a directed acyclic graph (i.e.
a graph with directed edges and no cycles) and a set of con-
ditional probability distributions (CPDs). Each node in the
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graph represents a random variable (i.e. an attribute of the
data), while edges represent dependencies among the vari-
ables. CPDs describe the probability for the value of each
node given the value of its parents, and are very often rep-
resented as conditional probability tables (CPTs, see Fig-
ure 2(A)).

As part of manually constructing a Bayesian network, or
validating a Bayesian network that has been induced using
machine learning, it is useful to visually inspect it. Structure,
states, and CPTs are all important in a Bayesian reasoning
architecture, and research has been done to understand how
each of these aspects can be effectively visualized. Interest-
ing work has been done in developing algorithms to com-
pute an optimal layout for the network (Marriott et al. 2005;
2011). The use of visual properties such as color, size, and
thickness of nodes and edges to convey information about
relative influence of variables, in terms of probabilities, has
been investigated as well (Koiter 2006; Williams and Amant
2006; Zapata-Rivera, Neufeld, and Greer 1999). Tools have
also been proposed to present compact representation of
CPTs (Chiang et al. 2005; Wang and Druzdzel 2000). Other
relevant work has focused on using animation for visualiz-
ing causal relationships (Kadaba, Irani, and Leboe 2007) and
building verbal descriptions to provide the user with more
insights into the computation of explanations (Yap, Tan, and
Pang 2008).

The challenges associated with understanding how a
Bayesian network works as well as visualizing it increase
significantly as the size and connectivity of the network in-
creases. While several software techniques for visualizing
and analyzing Bayesian networks have been developed, pop-
ular current tools1 for Bayesian network modeling focus on
inference/learning procedures, with little support for flexible
interactive visualization. First, they have difficulty visualiz-
ing large-scale networks, such as the one shown in Figure 1.
Second, they force the user to perform visual search to lo-
cate interesting information, which can be like looking for a
needle in a haystack even for Bayesian networks with a few
hundred nodes, depending on display size and resolution.
Also, current tools offer very little support for displaying the
network structure along with the underlying data (e.g., time

1http://www.cs.ubc.ca/˜murphyk/Software/
bnsoft.html



(a) Whole view: the global structure of the network is perfectly visible, but it is impossible to read labels of
individual nodes.

(b) Zoomed view: node labels are readable, but the global structure of the network is lost.

Figure 1: When large networks such as Munin1 are visualized, it is very hard to read labels of individual nodes (a), unless a
significant level of zooming is adopted (b).



series) used to build the network. Analysts would benefit
from improved interactive and visual support for debugging
the network structure and tuning CPT parameters, which are
fundamental stages in the process of Bayesian network mod-
eling.

In this paper we describe novel interactive visualization
techniques for Bayesian network, implemented in our soft-
ware tool NetEx, which is developed as a Cytoscape (Shan-
non et al. 2003) plug-in. The visualization techniques of
NetEx target large-scale Bayesian networks. Our techniques
are inspired by and extend techniques from other areas of
network visualization and analysis (Butkiewicz et al. 2008;
Baldonado, Woodruff, and Kuchinsky 2000; Collins and
Carpendale 2007; Weaver 2004; Plumlee and Ware 2006).
NetEx allows low-level, focused analysis while preserving
context awareness by displaying both an overview and de-
tailed view of the network, and anchoring CPTs to the net-
work view with dashed lines. NetEx also supports integra-
tion of additional data related to a node, such as time se-
ries sensor readings, and facilitates comparisons by show-
ing data from multiple nodes into a single data box. The
techniques described in this paper will allow better interac-
tive analysis of Bayesian networks and comparison of CPTs
within them, besides better understanding of the machine
learning algorithms sometimes used to build networks.

Background and related work
A Bayesian network, whose graph structure G =< V,E >
often reflects a domains causal structure, is a compact repre-
sentation of a joint probability table (Pearl 1988). Typically,
each random variable (or node) X ∈ V has a finite num-
ber of states {x1, . . . , xm} and is parameterized by a condi-
tional probability table P (X|Pa(X)), where Pa(X) is the
set of nodes Pa(X) = {Y ∈ Vs.t.(Y,X) ∈ E}, named the
parents of X . By providing evidence to a subset of nodes,
the answer to various interesting probabilistic queries can
be computed, including the marginal posterior distribution
over one or more nodes, or most probable explanations over
nodes for which no evidence is provided.

Previous research on Bayesian network visualization has
typically focused on two important problems: mapping rel-
evant data attributes into visual properties of the network
(such as node size, color and position) to make it easily
understandable by the viewer, and supporting navigation in
large conditional probability tables.

Zapata-Rivera et al. (1999), for example, showed that
cause-effect relationships can be made clearer by adopting a
top-down layout from causes to effects, and computing node
hues by combining the colors of parents. They also investi-
gated the use of node position to highlight strong dependen-
cies between variables, as well as node size and saturation
to convey information about marginal probabilities.

Koiter (2006) proposed a very powerful static visualiza-
tion of the properties of a network by rendering edge thick-
ness as an indicator of the strength of interaction between
nodes, combined with edge color to indicate the sign of
the correlation coefficient. Williams and Amant (2006) pre-
sented a method to emphasize evidence by adding a colored

border to nodes corresponding to observed variables. Kad-
aba et al. (2007) studied the visualization of causal seman-
tics through animated representations.

As for elicitation of conditional probability tables (CPT),
GeNIe & SMILE (Druzdzel 1999) provides users with bar
chart and pie chart distributions of the probabilities for a
selected column. Wang and Druzdel (2000) proposed two
graphical views, namely the Conditional Probability Tree
(CPTree) and the shrinkable Conditional Probability Table
(sCPT), that proved to be useful for navigation in large
CPTs. A different approach was presented by Chiang et
al. (2005), who represent CPTs using heat maps, where nu-
merical cell values are replaced by colors in order to facili-
tate comparisons and reduce space issues.

The systems discussed above are great at presenting a
static visualization, but provide little help for interactive fo-
cused comparisons of different parts of the network. These
valuable analysis tools can be very useful to explore local
cause-effect relationships in relatively small networks, but
do not allow a curious debugger to rummage through a large
network asking specific questions. Despite all the interesting
works discussed above, popular current tools for Bayesian
network modeling focus on editing, learning, and inference
procedures, offering less support for effective user-driven
exploration of large-scale networks. Current tools, such as
Hugin (Andersen et al. 1989), potentially require large vi-
sual search to locate isolated interesting information. As
Figure 1 shows, it is very hard to read node labels when a
large network such as Munin1 (Andreassen et al. 1989) is vi-
sualized (Figure 1(a)). Traditional zooming techniques im-
plemented in current tools allow the user to see details, but at
the price of loosing the global structure of the network (Fig-
ure 1(b)). These tools also typically lack support for easily
comparing underlying data (e.g. time series) which might
provide a richer understanding of the model.

Bayesian network visualization with NetEx
Large-scale Bayesian networks, including their develop-
ment and performance, are a key issue in artificial in-
telligence (Neil, Fenton, and Nielson 2000; Przytula, Is-
dale, and Lu 2006; Mengshoel, Wilkins, and Roth 2006;
Mengshoel, Poll, and Kurtoglu 2009; Mengshoel 2010).
What is meant by “large-scale”? For the purpose of this
paper, we are concerned with scalability as it pertains to
visualization and user interaction. This is different from
computational scalability, which is also very important but
discussed elsewhere (Mengshoel, Wilkins, and Roth 2006;
Mengshoel 2010).

To be precise, we define a BN to be large-scale if the com-
plete BN and all its node labels are not simultaneously visi-
ble on the computer screen. Once node labels are no longer
visible, one needs to (for example) zoom in to understand
what a particular node represents, and after zooming in the
big picture understanding may get lost. This effect is illus-
trated in Figure 1. Given this definition of large-scale, and
depending on the display technology used, a BN is large-
scale once it contains 100s or 1,000s of nodes and edges.
All the networks discussed and displayed in this paper are
large-scale according to the above definition.



Figure 2: Bayesian network visualization in NetEx: (A) CPTs, (B) bubble anchors, (C) integrated time series display, (D)
overview, and (E) detailed view. Anchoring the CPTs to the network view with large dashed bubbles allows low-level detailed
analysis and comparison while preserving the overview of the network and reducing clutter.

In this section we describe in detail the visualization tech-
niques for Bayesian networks implemented in our software
tool NetEx (Figure 2), which targets large-scale Bayesian
networks. First, conditional probability tables are, in NetEx,
shown in data boxes attached to the network view with a line
of bubbles which anchors each box to the node it is related
to. The representation is multi-focus as it allows the user
to open multiple boxes to focus on different nodes simulta-
neously. Second, NetEx supports integration of additional
data related to a node, such as time series sensor readings,
into a CPT data box. Third, NetEx facilitates comparison
of different nodes by allowing data from multiple nodes to
be merged into a single box by dragging a box and drop-
ping it over another one (drag&merge). Finally, the tool
provides overview+detail (Cockburn, Karlson, and Beder-
son 2008), simultaneously displaying both an overview and
detailed view of the network.

CPT bubble anchors
NetEx promotes interactive visual exploration, allowing
users to select nodes in the network with a mouse, and
to show the corresponding CPTs (Figure 2(A)) using on-
demand data boxes attached to the network view with a line
of bubbles anchoring the CPT P (X|Pa(X)) to the node X
(Figure 2(B)).

This joint use of CPT data boxes and anchors presents
a focus+context concept (Cockburn, Karlson, and Bederson
2008), as the user is allowed to focus on some particular

node and then continue the exploration of the network and
focus on another node without losing contact with the pre-
vious node. The change in representation level is reinforced
by bubbles that are inspired by the way cartoons show what
a person is thinking. The use of bubbles instead of straight
lines distinguishes between graph edges and anchors.

Multiple nodes can be selected at the same time, either
by dragging a bounding box around them or by clicking on
each separately. A single “s” key stroke expands the se-
lected nodes by showing the corresponding data boxes in
a panel next to network view (Figure 2(A)). If more boxes
are opened than can be displayed, a scroll-bar is used to
scroll the panel, with the bubble lines following the move-
ment of the boxes in the display. When one of the boxes
is closed by clicking the “x” at the top left corner, the re-
maining boxes are rearranged to fill the gap for the sake of
minimizing screen space usage.

This feature, which can be seen as an extension of the
probes proposed by Butkiewicz et al. (Butkiewicz et al.
2008) to Bayesian networks, is useful to all systems that
have multiple levels of representation: many analysis tasks
require the user to inspect multiple nodes at the same time
in order to easily compare them.

Showing data boxes in a separate panel as discussed above
reduces the space available for the network view. For this
reason, NetEx also allows the user to display the boxes over
the network with a “o” key stroke (Figure 3), and to move
them or change the network view through zooming and pan-



(a) Data boxes before merging.

(b) Merged data box.

Figure 3: Example of data box merging in NetEx: original plot and bubble line colors are preserved to help the user maintaining
association between nodes and data. Each cell in the merged CPT shows the difference between the original values of the two
nodes for that cell. This feature is available when the states of the nodes and their parents are exactly the same.



ning to focus on various parts of the network while preserv-
ing the context. The drawback of this approach is that data
boxes overlaying the network view can hide important de-
tails in some situations. NetEx allows the user to choose the
solution which is more appropriate to the specific analysis
task.

Integrated time series display
NetEx supports integration of additional data related nodes
into the data boxes to provide the user with a richer repre-
sentation of the model. Figure 2(C) shows an example in
which the CPT of a node representing a sensor in an electri-
cal power network is coupled with a time series plot show-
ing the sensor readings over time. Similarly to many other
cases, the node’s states are obtained through discretization
of the continuous range of values provided by the sensor.
NetEx enriches the time series representation by displaying
horizontal lines at the values corresponding to the thresholds
used to discretize the node’s states.

This feature is especially useful when the thresholds are
automatically computed using some machine learning algo-
rithm. Similar nodes might have the same set of states (i.e.
low and high), but very different thresholds. This informa-
tion, which is especially helpful while comparing multiple
nodes, is not easily accessible with other current tools.

CPT merging
NetEx facilitates comparison of different nodes by allow-
ing data from two nodes to be merged into a single box
just by dragging a box and dropping it over another one
(drag&merge). Figure 3 shows an example of application
of this technique. A different color is associated with each
of the nodes to be compared. Both the line in the plots and
the bubbles are painted with this color to allow for immedi-
ate association of nodes with corresponding data. Original
colors are preserved to help the user maintain association
between nodes and data, even when the latter is moved into
a different box.

This feature is available when nodes share the same CPT
structure, i.e. the states of the nodes and their parents are
exactly the same. Each cell in the merged CPT shows the
difference between the original values of the two nodes for
that cell. This is very useful when debugging a network,
as similar nodes are usually supposed to have similar CPTs,
and spotting non-zero values in the merged CPT is quicker
than comparing pairs of unspecified values in the two origi-
nal CPTs.

Data box merging also helps the user compare time series
plots of similar nodes. By looking at the combined data box
in Figure 3(b), for example, it is easy to realize that the con-
sidered nodes have very similar though not exactly identical
plots. The difference between two plots is much harder to
appreciate when separate individual boxes are shown (Fig-
ure 3(a)).

Network overview
NetEx provides overview+detail (Cockburn, Karlson,
and Bederson 2008), simultaneously displaying both an

overview (Figure 2(D)) and detailed view (Figure 2(E)) of
the network. Zooming and panning allow the user to restrict
attention to a particular area of the graph which is visual-
ized in the detailed view. NetEx allows the user to explore
data at a desired level of detail without losing the complete
picture of the network and thus preserving the capability
of orienting even when a small area is selected in the de-
tail view. Though common in other areas of network visu-
alization (Cockburn, Karlson, and Bederson 2008), to our
knowledge this technique has not been applied to Bayesian
networks before.

Applications
The techniques described in the previous section were im-
plemented by developing a visualization tool in the form of
a Cytoscape2 (Shannon et al. 2003) plug-in. Cytoscape is
a software platform for complex network analysis, offering
a basic set of visualization features that can be expanded
trough additional plug-ins.

This section demonstrates how NetEx can help analyze
different large-scale Bayesian networks, As examples, we
use a Bayesian network for fault diagnosis of the ADAPT
electrical power network (Mengshoel et al. 2010), and Dia-
betes (Andreassen et al. 1991), a well known network used
for medical diagnosis. For the purpose of comparison, we
use Hugin (Andersen et al. 1989), one of the most popular
current tools for Bayesian network modeling.

ADAPT Bayesian network
ADAPT (Poll et al. 2007) is an electrical power system cre-
ated and used for experimentation at the NASA Ames Re-
search Center, representative of real-world electrical power
networks found in aerospace vehicles. It has capabilities
for power storage, distribution, and consumption, contain-
ing batteries, electromechanical relays, circuit breakers, and
different kinds of loads, such as pumps, fans, and light bulbs.
Several sensors are available, measuring voltage, current, re-
lay position, temperature, light intensity, and liquid flow.

The ADAPT Bayesian network (BN) (Mengshoel et al.
2010) is a model of the electrical power network (EPS)
used for automatic fault diagnosis. Its structure reflects the
components and causal structure of the EPS, and explicitly
represents the health of each component and sensor using
random variables, supporting different diagnostic queries.
The ADAPT Bayesian network, shown in Figure 4, has 671
nodes and 790 edges. According to the definition provided
above, this network is large-scale as it is impossible to read
labels on nodes.

NetEx supports integration of time series sensor read-
ings together with the conditional probability tables (Figure
4(b)). The time series representation is enriched with hor-
izontal lines showing the thresholds used to discretize the
states of the corresponding node. This information, which
might be helpful while comparing multiple nodes, is not eas-
ily accessible with other software tools (Figure 4(a)).

2http://www.cytoscape.org



(a) Hugin: since there is no visual link between CPTs (top) and corresponding nodes (bottom), it might be hard for the user see
the connection between a node and its CPT and to compare multiple nodes.

(b) NetEx: colored bubble lines facilitate association of CPTs with respective nodes, and time series plots provide more insights
about the CPTs, allowing for deeper understanding of the network and facilitated comparison of nodes.

Figure 4: Visualization of the ADAPT Bayesian network using (a) Hugin and (b) NetEx.



(a) Hugin: there is no visual link between CPTs (top) and corresponding nodes (bottom); after zooming, the complete picture
of the network is lost.

(b) NetEx: colored bubble lines facilitate association of CPTs (right) with respective nodes (middle); the overview window
(left) helps the user keep oriented while exploring the network.

Figure 5: Visualization of the Diabetes Bayesian network using (a) Hugin and (b) NetEx.



Diabetes Bayesian network
The Diabetes Bayesian network (Andreassen et al. 1991) is a
model of blood glucose in diabetic subjects that can be used
for advising insulin dose adjustment. The network, having
413 nodes and 602 edges, is shown in Figure 5. While we
only show zoomed-in views, it is not possible to read labels
in a zoomed-out view.

Current tools such as Hugin provide no visual link be-
tween the conditional probability tables and the correspond-
ing nodes, requiring the user to match CPTs with nodes
based only on the node labels (Figure 5(a)). This may po-
tentially require the user to visually inspect all the nodes of
the network. Moreover, since the complete structure of the
network is lost after zooming, it is hard for the user to ori-
ent while exploring the network. NetEx, on the other hand,
facilitates association of CPTs with respective nodes trough
colored bubble lines and provides a network overview al-
lowing the user to restrict attention to a particular area of
the graph while simultaneously displaying the image of the
whole network (Figure 5(b)).

Conclusion
This paper demonstrates NetEx, an interactive network anal-
ysis tool designed to aid in understanding and developing
large-scale Bayesian networks. The described visualiza-
tion techniques allow detailed analysis and comparison of
multiple Bayesian network nodes while providing aware-
ness of the overall network structure. While many Bayesian
network tools focus on inference, NetEx provides the ana-
lyst with interactive visualization techniques to help iden-
tify problems, such as discrepancies in the model, including
CPT parameter errors or faulty network structure.

The value of this work is in celebrating the ability for
computers to work with people to create intelligent systems
through the construction of high-performing Bayesian net-
works. We seek to improve the ability of knowledge engi-
neers and experts to analyze and debug models of greater
complexity and with larger node counts. We expect Ne-
tEx will help the artificial intelligence and other commu-
nities explore more deeply how alternative algorithms and
Bayesian networks operate, thus providing insights into how
to improve them.
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