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Abstract

A wide range of niching techniques have been investigated in evolutionary and ge-
netic algorithms. In this article, we focus on niching using crowding techniques in
the context of what we call local tournament algorithms. In addition to determinis-
tic and probabilistic crowding, the family of local tournament algorithms includes the
Metropolis algorithm, simulated annealing, restricted tournament selection, and par-
allel recombinative simulated annealing. We describe an algorithmic and analytical
framework which is applicable to a wide range of crowding algorithms. As an ex-
ample of utilizing this framework, we present and analyze the probabilistic crowding
niching algorithm. Like the closely related deterministic crowding approach, proba-
bilistic crowding is fast, simple, and requires no parameters beyond those of classical
genetic algorithms. In probabilistic crowding, sub-populations are maintained reliably,
and we show that it is possible to analyze and predict how this maintenance takes
place. We also provide novel results for deterministic crowding, show how different
crowding replacement rules can be combined in portfolios, and discuss population siz-
ing. Our analysis is backed up by experiments that further increase the understanding
of probabilistic crowding.

Keywords
Genetic algorithms, niching, crowding, deterministic crowding, probabilistic crowd-
ing, local tournaments, population sizing, portfolios.

1 Introduction

Niching algorithms and techniques constitute an important research area in genetic
and evolutionary computation. The two main objectives of niching algorithms are (i)
to converge to multiple, highly fit, and significantly different solutions, and (ii) to slow
down convergence in cases where only one solution is required. A wide range of nich-
ing approaches have been investigated, including sharing (Goldberg and Richardson,
1987; Goldberg et al., 1992; Darwen and Yao, 1996; Pétrowski, 1996; Mengshoel and
Wilkins, 1998), crowding (DeJong, 1975; Mahfoud, 1995; Harik, 1995; Mengshoel and
Goldberg, 1999; Ando et al., 2005b), clustering (Yin, 1993; Hocaoglu and Sanderson,
1997; Ando et al., 2005a), and other approaches (Goldberg and Wang, 1998). Our main
focus here is on crowding, and in particular we take as starting point the crowding ap-
proach known as deterministic crowding (Mahfoud, 1995). Strengths of deterministic
crowding are that it is simple, fast, and requires no parameters in addition to those of a
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classical GA. Deterministic crowding has also been found to work well on test functions
as well as in applications.

In this article, we present an algorithmic framework that supports different crowd-
ing algorithms, including different replacement rules and the use of multiple replace-
ment rules in portfolios. While our main emphasis is on the probabilistic crowding al-
gorithm (Mengshoel and Goldberg, 1999; Mengshoel, 1999), we also investigate other
approaches including deterministic crowding within. As the name suggests, proba-
bilistic crowding is closely related to deterministic crowding, and as such shares many
of deterministic crowding’s strong characteristics. The main difference is the use of a
probabilistic rather than a deterministic replacement rule (or acceptance function). In
probabilistic crowding, stronger individuals do not always win over weaker individu-
als, they win proportionally according to their fitness. Using a probabilistic acceptance
function is shown to give stable, predictable convergence that approximates the niching
rule, a gold standard for niching algorithms.

We also present here a framework for analyzing crowding algorithms. We con-
sider performance at equilibrium and during convergence to equilibrium. Further, we
introduce a novel portfolio mechanism and discuss the benefit of integrating different
replacement rules by means of this mechanism. In particular, we show the advan-
tage of integrating deterministic and probabilistic crowding when selection pressure
under probabilistic crowding only is low. Our analysis, which includes population siz-
ing results, is backed up by experiments that confirm our analytical results and further
increase the understanding of how crowding and in particular probabilistic crowding
operates.

A final contribution of this article is to identify a class of algorithms to which both
deterministic and probabilistic crowding belongs, local tournament algorithms. Other
members of this class include the Metropolis algorithm (Metropolis et al., 1953), simu-
lated annealing (Kirkpatrick et al., 1983), restricted tournament selection (Harik, 1995),
elitist recombination (Thierens and Goldberg, 1994), and parallel recombinative simu-
lated annealing (Mahfoud and Goldberg, 1995). Common to these algorithms is that
competition is localized in that it occurs between genotypically similar individuals. It
turns out that slight variations in how tournaments are set up and take place are crucial
to whether one obtains a niching algorithm or not. This class of algorithms is interesting
because it is very efficient and can easily be applied in different settings, for example
by changing or combining the replacement rules.

We believe this work is significant for several reasons. As already mentioned, nich-
ing algorithms reduce the effect of premature convergence or improve search for mul-
tiple optima. Finding multiple optima is useful, for example, in situations where there
is uncertainty about the fitness function and robustness with respect to inaccuracies
in the fitness function is desired. Niching and crowding algorithms also play a fun-
damental role in multi-objective optimization algorithms (Fonseca and Fleming, 1993;
Deb, 2001) as well as in estimation of distribution algorithms (Pelikan and Goldberg,
2001; Sastry et al., 2005). We enable further progress in these areas by explicitly stat-
ing new and existing algorithms in an overarching framework, thereby improving the
understanding of the crowding approach to niching. There are several informative ex-
periments that compare different niching and crowding GAs (Ando et al., 2005b; Singh
and Deb, 2006). However, less effort has been devoted to increasing the understand-
ing of crowding from an analytical point of view, as we do here. Analytically, we also
make a contribution with our portfolio framework, which enables easy combination of
different replacement rules. Finally, while our focus is here on discrete multimodal
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optimization, a variant of probabilistic crowding has successfully been applied to hard
multimodal optimization problems in high-dimensional continuous spaces (Ballester
and Carter, 2003, 2004, 2006). We hope the present work will act as a catalyst to further
progress also in this area.

The rest of this article is organized as follows. Section 2 presents fundamental con-
cepts. Section 3 discusses local tournament algorithms. Section 4 discusses our crowd-
ing algorithms and replacement rules, including the probabilistic and deterministic
crowding replacement rules. In Section 5, we analyze several variants of probabilistic
and deterministic crowding. In Section 6, we introduce and analyze our approach to
integrating different crowding replacement rules in a portfolio. Section 7 discusses
how our analysis compares to previous analysis, using Markov chains, of stochastic
search algorithms including genetic algorithms. Section 8 contains experiments that
shed further light on probabilistic crowding, suggesting that it works well and in line
with our analysis. Section 9 concludes and points out directions for future research.

2 Preliminaries

To simplify the exposition we focus on GAs using binary strings, or bitstrings x 2
f0; 1gm, of length m . Distance is measured using Hamming distance DISTANCE(x; y)
between two bitstrings, x;y 2 f0; 1gm. More formally, we have the following defini-
tion.
Definition 1 (Distance) Let x, y be bitstrings of length m and let, for xi 2 x and yi 2 y
where 1 � i � m, d(xi; yi) = 0 if xi = yi, d(xi; yi) = 1 otherwise. Now, the distance function
DISTANCE(x;y) is defined as follows:

DISTANCE(x; y) =

mX
i=1

d(xi; yi):

Our DISTANCE definition is often called genotypic distance; when we discuss dis-
tance in this article the above definition is generally assumed.

A natural way to analyze a stochastic search algorithm’s operation on a problem
instance is to use discrete time Markov chains with discrete state spaces.
Definition 2 (Markov chain) A (discrete time, discrete state space) Markov chainM is de-
fined as a 3-tuple M = (S, V , P) where S = fs1, : : :, skg defines the set of k states while
V = (�1, . . . ,�k), a k-dimensional vector, defines the initial probability distribution. The con-
ditional state transition probabilities P can be characterized by means of a k � k matrix.

Only time-homogenous Markov chains, where P is constant, will be considered in
this article. The performance of stochastic search algorithms, both evolutionary algo-
rithms and stochastic local search algorithms, can be formalized using Markov chains
(Goldberg and Segrest, 1987; Nix and Vose, 1992; Harik et al., 1997; De Jong and Spears,
1997; Spears and De Jong, 1997; Cantu-Paz, 2000; Hoos, 2002; Moey and Rowe, 2004a,b;
Mengshoel, 2006). Unfortunately, if one attempts exact analysis, the size ofM becomes
very large even for relatively small problem instances (Nix and Vose, 1992; Mengshoel,
2006). In Section 7 we provide further discussion of how our analysis provides an
approximation compared to previous exact Markov chain analysis results.

In M, some states O � S are of particular interest since they represent globally
optimal states, and we introduce the following definition.
Definition 3 (Optimal states) Let M = (S, V , P) be a Markov chain. Further, assume a
fitness function f : S ! R and a globally optimal fitness function value f� 2 R that defines
globally optimal states O = fs j s 2 S and f(s) = f�g.

Evolutionary Computation Volume x, Number x 3
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Population-based Non-population-based

Probabilistic
acceptance

Probabilistic crowding
Parallel recombinative
simulated annealing

Metropolis algorithm
Simulated annealing
Stochastic local search

Deterministic
acceptance

Deterministic crowding
Restricted tournament
selection

Local search

Table 1: Two key dimensions of local tournament algorithms: (i) the nature of the ac-
ceptance (or replacement) rule and (ii) the nature of the current state of the algorithm’s
search process.

The fitness function f and the optimal states O are independent of the stochastic
search algorithm and its parameters. In general, of course, neitherM nor O are explic-
itly specified. Rather, they are induced by the fitness function, the stochastic search
algorithm, and the search algorithm’s parameter settings. Finding s� 2 O is often the
purpose of computation, as it is given only implicitly by the optimal fitness function
value f� 2 R. More generally, we want to not only find globally optimal states, but also
locally optimal states L, withO � L. Finding locally optimal states is, in particular, the
purpose of niching algorithms including crowding GAs. Without loss of generality we
consider maximization problems in this article; in other words we seek global and local
maxima in a fitness function f .

3 Crowding and Local Tournament Algorithms

In traditional GAs, mutation and recombination is done first, and then selection (or
replacement) is performed second, without regard to distance (or the degree of simi-
larity) between individuals. Other algorithms, such as probabilistic crowding (Meng-
shoel and Goldberg, 1999; Mengshoel, 1999), deterministic crowding (Mahfoud, 1995),
parallel recombinative simulated annealing (Mahfoud and Goldberg, 1995), restricted
tournament selection (Harik, 1995), the Metropolis algorithm Metropolis et al. (1953),
and simulated annealing (Kirkpatrick et al., 1983) operate similar to each other and dif-
ferent from traditional GAs. Unfortunately, this distinction has not always been clearly
expressed in the literature. What these algorithms, which we will here call local tour-
nament algorithms, have in common is that the combined effect of mutation, recombi-
nation, and replacement creates local tournaments; tournaments where distance plays
a key role. In some cases this happens because the operations are tightly integrated,
in other cases it happens because of explicit search for similar individuals. Intuitively,
such algorithms have the potential to result in niching through local tournaments: Sim-
ilar individuals compete for spots in the population, and fit individuals replace those
that are less fit, at least probabilistically. The exact nature of the local tournament de-
pends on the algorithm, and is a crucial factor in deciding whether we get a niching
algorithm or not. For instance, elitist recombination (Thierens and Goldberg, 1994) is a
local tournament algorithm, but it is typically not considered a niching algorithm.

An early local tournament algorithm is the Metropolis algorithm, which originated
in physics, and specifically in the area of Monte Carlo simulation for statistical physics
(Metropolis et al., 1953). The Metropolis algorithm was later generalized by Hastings
(Hastings, 1970), and consists of generation and acceptance steps (Neal, 1993). In the
generation step, a new state (or individual) is generated from an existing state; in the
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acceptance step, the new state is accepted or rejected with a probability following an
acceptance probability distribution. Two common acceptance probability distributions
are the Metropolis and the Boltzmann distributions. The Boltzmann distribution is

Pr(Ej) =
exp(�Ej=T )

exp(�Ej=T ) + exp(�Ei=T )
; (1)

where Ei and Ej are the energies of the old and new states (individuals) respectively,
and T is temperature.

Simulated annealing is essentially the Metropolis algorithm with temperature vari-
ation added. Variation of the temperature T changes the probability of accepting a
higher-energy state (less fit individual). At high temperature, this probability is high,
but it decreases with the temperature. Simulated annealing consists of iterating the
Metropolis algorithm at successively lower temperatures, and in this way it finds an
estimate of the global optimum (Kirkpatrick et al., 1983; Laarhoven and Aarts, 1987).
Both the Metropolis rule and the Boltzmann rule achieve the Boltzmann distribution

Pr(Ei) =
exp(�Ei=T )P
j exp(�Ej=T )

; (2)

where Pr(Ei) is the probability of having a state i with energy Ei at equilibrium; T is
temperature. If cooling is slow enough, simulated annealing is guaranteed to find an
optimum. Further discussion is provided in Section 4.3.

Within the field of genetic algorithms proper, an early local tournament approach
is preselection. Cavicchio introduced preselection, in which a child replaces an inferior
parent (Goldberg, 1989). DeJong turned preselection into crowding (DeJong, 1975). In
crowding, an individual is compared to a randomly drawn subpopulation of c mem-
bers, and the most similar member among the c is replaced. Good results with c = 2
and c = 3were reported by DeJong on multimodal functions (DeJong, 1975).

In order to integrate simulated annealing and genetic algorithms, the notion of
Boltzmann tournament selection was introduced (Goldberg, 1990). Two motivations
for Boltzmann tournament selection were asymptotic convergence (as in simulated an-
nealing) and providing a niching mechanism. The Boltzmann (or logistic) acceptance
rule, shown in Equation 1, was used. Boltzmann tournament selection was the ba-
sis for parallel recombinative simulated annealing (PRSA) (Mahfoud and Goldberg,
1995). PRSA also used Boltzmann acceptance, and introduced the following two rules
for handling children and parents: (i) In double acceptance and rejection, both par-
ents compete against both children. (ii) In single acceptance and rejection, each parent
competes against a pre-determined child in two distinct competitions. Like simulated
annealing, PRSA uses a cooling schedule. Both mutation and crossover are used, to
guarantee convergence to the Boltzmann distribution at equilibrium. Three different
variants of PRSA were tested empirically with good results, two of which have proofs
of global convergence (Mahfoud and Goldberg, 1995). Deterministic crowding (Mah-
foud, 1995) is similar to PRSA. Differences are that deterministic crowding matches
up parents and children by minimizing a distance measure over all parent-child com-
binations, and it uses the deterministic acceptance rule of always picking the best fit
individual in each parent and child pair.

Another local tournament algorithm is the gene-invariant GA (GIGA) (Culberson,
1992). In GIGA, children replace the parents (Culberson, 1992). Parents are selected,
a family constructed, children selected, and parents replaced. Family construction

Evolutionary Computation Volume x, Number x 5



O. J. Mengshoel and D. E. Goldberg

amounts to creating a set of pairs of children, and from this set one pair is picked ac-
cording to some criterion, such as highest average fitness or highest maximal fitness.
The genetic invariance principle is that the distribution over any one position on the
gene does not change over time. GIGA with no mutation obeys the genetic invariance
principle, so the genetic material of the initial population is retained. In addition to se-
lection pressure provided by selection of better child pairs in a family, there is selection
pressure due to a sorting1 effect in the population combined with selection of adjacent
individuals in the population array.

Restricted tournament selection is another local tournament algorithm (Harik,
1995). The approach is a modification of standard tournament selection, based on lo-
cal competition. Two individuals x and y are picked, and crossover and mutation is
performed in the standard way, creating new individuals x0 and y0. Then w individ-
uals are randomly chosen from the population, and among these the closest one to x0,
namely x00, competes with x0 for a spot in the new population. A similar procedure is
applied to y0. The parameter w is called the window size. The window size is set to be
a multiple of s, the number of peaks to be found: w = c� s, where c is a constant.

In summary, important dimensions of local tournament algorithms are the form of
the acceptance rule, whether the algorithm is population-based, whether temperature
is used, which operators are used, and whether the algorithm gives niching or not.
Table 1 shows two of the key dimensions of local tournament algorithms, and how
different algorithms are classified along these two dimensions. The importance of the
distinction between probabilistic and deterministic acceptance is as follows. In some
sense, and as discussed further in Section 5, it is easier to maintain a diverse population
with probabilistic acceptance, and such diversity maintenance is the goal of niching
algorithms. Processes similar to probabilistic acceptance occur elsewhere in nature, for
instance in chemical reactions and in statistical mechanics.

Algorithmically, one important distinction concerns how similar individuals are
brought together to compete in the local tournament. We distinguish between two
approaches. The implicit approach, of which PRSA, deterministic crowding, and prob-
abilistic crowding are examples, integrates the operations of variation and selection to
set up local tournaments between similar individuals. The explicit approach, exam-
ples of which are crowding and restricted tournament selection, searches for similar
individuals in the population in order to set up local tournaments. Restricted tourna-
ment selection illustrates that local tournament algorithms only need to be have their
operations conceptually integrated; the key point is that individuals compete locally
(with similar individuals) for a spot in the population. So in addition to variation and
selection, the explicit approach employs an explicit search step.2 Whether a local tour-
nament algorithm gives niching or not depends on the nature of the local (family) tour-
nament. If the tournament is based on minimizing distance, the result is niching, else
no niching is obtained. For example, deterministic crowding, restricted tournament se-
lection, and probabilistic crowding are niching algorithms, while elitist recombination
and GIGA are not.

The focus in the rest of this article is on the crowding approach to niching in evo-

1Culberson’s approach induces a sorting of the population due to the way in which the two children
replace the two parents: The best fit child is placed in the population array cell with the highest index. Better
fit individuals thus gradually move towards higher indexes; worse fit individuals towards lower indexes.

2Note that explicit versus implicit is a matter of degree, since deterministic or probabilistic crowding with
crossover perform an optimization step in order to compute parent-child pairs that minimize total distance.
This optimization step is implemented in MATCH in Figure 3.
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CROWDINGGA(n; S, PM , PC , gN , R, f;general)
Input: n population size

S size of family to participate in tournaments
PM probability of mutation
PC probability of crossover
gN number of generations
R replacement rule returning true or false
f fitness function
general true for CROWDINGSTEP, false for SIMPLESTEP

Output: newPop final population of individuals
begin

gC  0 fInitialize current generation counterg
oldPop NEW(n) {Create population array with n positions}
newPop NEW(n) {Create second population array with n positions}
INITIALIZE(oldPop) {Typical initialization is uniformly at random}
while gC < gN

if (general)
newPop CROWDINGSTEP(oldPop, S, PM , PC , gC , R, f)

else
newPop SIMPLESTEP(oldPop, PM , gC , R, f)

end
oldPop newPop
gC  gC + 1

end
return newPop

end

Figure 1: Pseudo-code for the main loop of our crowding GA. A population array old-
Pop is taken as input, and a new population array newPop is created from it, using also
the variation operators as implemented in the respective step algorithms.

lutionary algorithms. While our main emphasis will be on probabilistic crowding and
deterministic crowding, the algorithmic and analytical frameworks presented are more
general and can easily be applied to other crowding approaches.

4 Crowding in Genetic Algorithms

Algorithmically, we identify three components of crowding, namely crowding’s main
loop (Section 4.1); the transition or step from one generation to the next (Section 4.2);
and finally the issue of replacement rules (Section 4.3). A number of replacement rules
are discussed in this section; our main focus is on the PROBABILISTICREPLACEMENT
and DETERMINISTICREPLACEMENT rules.

4.1 The Main Loop

The main loop of our CROWDINGGA is shown in Figure 1. Without loss of generality,
we assume that CROWDINGGA’s input fitness function f is to be maximized. INITIAL-
IZE initializes each individual in the population. Then, for each iteration of the while-
loop in the CROWDINGGA, local tournaments are held in order to fill up the population
array newPop, based on the existing (old) population array oldPop. Occupation of one
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SIMPLESTEP(oldPop; PM , gC , R, f)
Input: oldPop old population of individuals

PM probability of mutation
gC current generation number
R replacement rule returning true or false
f fitness function

Output: newPop new population of individuals
begin

i 1 fCounter variableg
while i � SIZE(oldPop) {Treat all individuals in the population}

child oldPop[i] {Create child by copying parent in population}
MUTATE(child, PM )
if R(f(parent[i]); f(child); gC) fTournament using replacement rule Rg

newPop[i] child fChild wins over parentg
else

newPop[i] oldPop[i] fParent wins over childg
end
i i+ 1

end
return newPop

end

Figure 2: Pseudo-code for one step of a simple crowding GA which uses mutation only.

array position in newPop is decided through a local tournament between two or more
individuals, where each individual has a certain probability of winning. Tournaments
are held until all positions in the population array have been filled. The CROWDINGGA
delegates the work of holding tournaments to either SIMPLESTEP, which is presented
in Figure 2, or the CROWDINGSTEP, which is presented in Figure 3. As reflected in
its name, SIMPLESTEP is a simple algorithm that is — in certain cases — amendable to
exact analysis. The CROWDINGSTEP algorithm, on the other hand, is more general but
also more difficult to analyze. In this section we focus on the algorithmic aspects, while
in Section 5 we provide analysis.

4.2 Stepping Through the Generations

Two different ways of going from one generation to the next are now presented, namely
the SIMPLESTEP algorithm and the CROWDINGSTEP algorithm.

4.2.1 A Simple Crowding Approach

The SIMPLESTEP crowding algorithm is presented in Figure 2. The algorithm itera-
tively takes individuals from oldPop, applies a variation operator MUTATE, and uses a
replacement ruleR in order to decide whether the parent or child should be placed into
the next generation’s population newPop. The SIMPLESTEP algorithm is a stepping
stone for CROWDINGSTEP. The relatively straight-forward structure of SIMPLESTEP
simplifies analysis (see Section 5) and also makes our initial experiments more straight-
forward (see in particular Section 8.1).

8 Evolutionary Computation Volume x, Number x
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CROWDINGSTEP(oldPop, S, PM , PC , gC , R, f)
Input: oldPop population of individuals - before this step

S even number of parents (with S � 2) in tournament
PM probability of mutation
PC probability of crossover
gC current generation number
R replacement rule returning true or false
f fitness function

Output: newPop new population of individuals
begin

k  1 fBegin Phase 0: Create running index for newPopg
for i 1 to SIZE(oldPop) step 1

indexPool[i] i
while SIZE(indexPool) > 1 {Continue while individuals are left in oldPop}

for i 1 to S step 1 fBegin Phase 1: Select parents from oldPopg
random RANDOMINT(1; SIZE(indexPool)) fUniformly at randomg
j  indexPool[random]
parent[i] oldPop[j]
REMOVE(indexPool,random) {Remove index of random individual}

for i 1 to S step 2 fBegin Phase 2: Perform crossover and mutationg
if PC > RANDOMDOUBLE(0; 1) then fPick random number in [0; 1]g

CROSSOVER(parent[i];parent[i+ 1]; child[i]; child[i+ 1],PC)
else

child[i] parent[i]
child[i+ 1] parent[i+ 1]

MUTATE(child[i], PM )
MUTATE(child[i+ 1], PM )

for i 1 to S step 1 fBegin Phase 3: Select ith parentg
for j  1 to S step 1 fSelect jth childg

distance[i; j] DISTANCE(parent[i]; child[j])
m�  MATCH(distance;parent, child, S) fPhase 4: Compute matchingsg
for i 1 to S step 1 fBegin Phase 5: Invoke rule for eachmi 2m�g

c child[childIndex(mi)] fGet index of child in match mig
p parent[parentIndex(mi)] fGet index of parent in match mig
if R(f(p); f(c); gC) fTournament using replacement rule Rg
w  c fChild is winner w in local tournamentg

else
w  p fParent is winner w in local tournamentg

newPop[k] w fPut winner w into new populationg
k  k + 1

return newPop
end

Figure 3: Pseudo-code for one step of a general crowding GA. It is assumed, for sim-
plicity, that popSize is a multiple of the number of parents S. All phases operate on a
family consisting of S parents and S children. In Phase 3, distances are computed for all
possible parent-child pairs. In Phase 4, matching parent-child pairs are computed, min-
imizing a distance metric. In Phase 5, tournaments are held by means of a replacement
rule. The rule decides, for each matching parent-child pair, which individual wins and
is placed in newPop.

Evolutionary Computation Volume x, Number x 9
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4.2.2 A Comprehensive Crowding Approach
The CROWDINGSTEP algorithm is presented in Figure 3. The CROWDINGSTEP consists
of several phases, which we present in the following.

Phase 0 of CROWDINGSTEP: all valid indexes of the population array are placed
in the indexPool. The indexPool is then gradually depleted by repeated picking from it
without replacement in the following step.

Phase 1 of CROWDINGSTEP: First, parents are selected uniformly at random with-
out replacement. This is done by picking indexes into newPop (using RANDOMINT)
and then removing those indexes from the indexPool (using REMOVE). For the special
case of S = 2, the CROWDINGSTEP randomly selects two parents p1 and p2 from the
population, similar to classical tournament selection.

Phase 2 of CROWDINGSTEP: In this phase, the CROWDINGSTEP performs one-
point crossover and bit-wise mutation using the CROSSOVER and MUTATION al-
gorithms respectively. Two parents are crossed over with probability PC using
CROSSOVER, which creates two children c1 and c2. The crossover point is decided
inside the CROSSOVER operator. After crossover, a bit-wise MUTATION operator is ap-
plied to c1 and c2 with probability PM , creating mutated children c01 and c02.

Phase 3 of CROWDINGSTEP: This is the phase where distances between parents
and children in a family are computed. This is done by filling in the distance-array
using the DISTANCE algorithm, see Definition 1. In the S = 2 special case, distances
are computed for all combinations of the two mutated children c01 and c02 with the two
parents p1 and p2, giving a 2 � 2 distance array. In general, the size of the distance
array is S2. For the case of S = 2, the 2 � 2 distance array is populated as follows:
distance[1,1]  DISTANCE(p1;c

0
1), distance[1,2]  DISTANCE(p1;c

0
2), distance[2,1]  

DISTANCE(p2;c
0
1), and distance[2,2] DISTANCE(p2;c

0
2).

Phase 4 of CROWDINGSTEP:3 The algorithm MATCH and the distances computed
in Phase 3 are used to compute a best matchingm� = fm1, : : :,mSg, where each match
mi is a 2-tuple containing one parent and one child. For the S = 2 case, the matchings
considered are

m1 = f(p1;c01), (p2;c02)g (3)

and
m2 = f(p1;c02), (p2;c01)g. (4)

The corresponding total distances d1 and d2 are defined as follows

d1 = DISTANCE(p1;c
0
1) + DISTANCE(p2;c

0
2) = distance[1; 1] + distance[2; 2] (5)

d2 = DISTANCE(p1;c
0
2) + DISTANCE(p2;c

0
1) = distance[1; 2] + distance[2; 1], (6)

and determine which matching is returned by MATCH. Continuing the S = 2 special
case, the output from MATCH is either m� = m1 = f(p1;c01), (p2;c02)g (3) or m� = m2 =
f(p1;c02), (p2;c01)g (4). MATCH picksm1 (3) if d1 < d2, elsem2 (4) is picked.

Generally, each individual in the population is unique in the worst case, therefore
m� is one among S! possibilities m1 = f(p1;c01), (p2;c02), . . . ,(pS ;c0S)g, m2 = f(p1;c02),
(p2;c

0
1), . . . ,(pS ;c0S)g, . . . , mS! = f(p1;c0S), (p2;c0S�1), . . . ,(pS ;c01)g. The complexity of

a brute-force implementation of MATCH is clearly S! in the worst case. For large S,
where the size of S! becomes a concern, one would not take a brute-force approach but

3Note that other crowding algorithms, which use mutation only, and no crossover, have a lesser need for
this matching step. For reasonably small mutation probabilities, one can assume that the child c, created
from a parent p, will likely be very close to p.
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instead use an efficient algorithm such as the Hungarian weighted bipartite matching
algorithm. This algorithm uses two partite sets, in our case the parents fp1, . . . , pSg
and children fc1, . . . , cSg, and performs matching in O(S3) time.

Our minimization of total distance in MATCH is similar to that performed in de-
terministic crowding (Mahfoud, 1995), and there is a crucial difference to matching
in PRSA (Mahfoud and Goldberg, 1995). Using PRSA’s single acceptance and rejec-
tion replacement rule, each parent competes against a pre-determined child rather than
against the child that minimizes total distance as given by DISTANCE. In other words,
only one of the two matchings m1 andm2, saym1, is considered in PRSA.

Phase 5 of CROWDINGSTEP: This is the local tournament phase, where tourna-
ment winners fw1;w2; : : :g are placed in newPop according to the replacement rule
R.4 More specifically, this phase consists of holding a tournament within each pair in
m�. Suppose, in the case of S = 2, that the matching m� = m1 = f(p1;c01), (p2;c02)g (3)
is the output of MATCH. In this case, tournaments are held between p1 and c01 as well
as between p2 and c02, producing two winners w1 2 fp1; c01g and w2 2 fp2;c02g. The
details of different replacement rules that can be used forR are discussed in Section 4.3.

4.2.3 Discussion
To summarize, we briefly discuss similarities and differences between CROWDINGSTEP
and SIMPLESTEP. Clearly, their overall structure is similar: First, one or more parents
are selected from the population, then one or more variation operators are applied,
and then finally similar individuals compete in local tournaments. In this article, a
variation operator is either mutation (used in CROWDINGSTEP and SIMPLESTEP) or
crossover (used in CROWDINGSTEP). Similarity, or short distance, between individuals
may come about implicitly, as is the case when mutation only is employed in SIM-
PLESTEP, or explicitly, for instance by minimizing a distance measure in MATCH as
part of CROWDINGSTEP or by explicitly searching for similar individuals in the popu-
lation (Harik, 1995). In all cases, one or more tournaments are held per “step”. If p and
c are two similar individuals that have been picked to compete, formally (p;c) 2 m�,
then the result of executing the replacement ruleR(f(p)), f(c)) decides which of p and
c is elected the tournament winnerw and is placed in the next generation’s population
newPop by CROWDINGSTEP or SIMPLESTEP. Obviously, there are differences between
CROWDINGSTEP and SIMPLESTEP as well: SIMPLESTEP does not include crossover or
explicit computation of distances and matchings.

4.3 Replacement Rules

A replacement rule R determines how a crowding GA picks the winner in a competi-
tion between two individuals. Such rules are used both in SIMPLESTEP and in CROWD-
INGSTEP. Without loss of generality, we denote the individuals input to R a parent p,
with fitness f(p), and a child c, with fitness f(c). If R returns true then c is the winner
(or w  c), else p is the winner (orw  p). Example replacement rules are presented
in Figure 4. In these rules, FLIPCOIN(p) simulates a binomial random variable with
parameter p while RANDOMDOUBLE(a; b) simulates a uniform random variable with
parameters a and b and produces an output r such that a � r � b. The probabilistic
crowding approach is based on deterministic crowding (Mahfoud, 1995); in this section

4This phase would also be a natural place to include domain or application heuristics, if available, into
the crowding algorithm. Such heuristics would be invoked before the replacement rule. If the child was
not valid, the heuristics would then return false without even invoking the replacement rule, under the
assumption that the parent was valid to start with. If the child was valid, the replacement rule would be
invoked as usual.
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we focus on the DETERMINISTICREPLACEMENT rule of deterministic crowding and the
PROBABILISTICREPLACEMENT rule of probabilistic crowding. We also present more
briefly other replacement rules, in particular BOLTZMANNREPLACEMENT, METROPO-
LISREPLACEMENT and NOISYREPLACEMENT.

It also turns out that different replacement rules can be combined; we return to this
in Section 6.

4.3.1 Deterministic Crowding Replacement Rule
DETERMINISTICREPLACEMENT (abbreviated RD) implements the deterministic crowd-
ing replacement rule (Mahfoud, 1995) in our framework. This replacement rule always
picks the individual with the higher fitness score, be it f(c) (fitness of the child c) or
f(p) (fitness of the parent p). The DETERMINISTICREPLACEMENT rule gives the follow-
ing probability for c winning the tournament:

pc = p(c) =

8<: 1 if f(c) > f(p)
1
2 if f(c) = f(p)
0 if f(c) < f(p)

: (7)

4.3.2 Probabilistic Crowding Replacement Rule
PROBABILISTICREPLACEMENT (RP) implements the probabilistic crowding approach
(Mengshoel and Goldberg, 1999) in our framework. Let c and p be the two individuals
that have been matched to compete. In probabilistic crowding, c and p compete in a
probabilistic tournament. The probability of c winning is given by:

pc = p(c) =
f(c)

f(c) + f(p)
; (8)

where f is the fitness function.
After the probabilistic replacement rule was first introduced (Mengshoel and Gold-

berg, 1999), a continuous variant of probabilistic crowding has successfully been de-
veloped and applied to hard multimodal optimization problems in high-dimensional
spaces (Ballester and Carter, 2003, 2004, 2006).

4.3.3 Other Replacement Rules
In addition to those already discussed, the following replacement rules have been iden-
tified. Note that some of these latter rules refer to global variables — specifically ini-
tial temperature T0, cooling constant cC , and scaling constant cS — whose values are
application-specific and assumed to be set appropriately.

� BOLTZMANNREPLACEMENT (abbreviated RB) picks the child c proportionally to
its score cScore, and the parent p proportionally to its score pScore. The constant cS
is a scaling factor that prevents the exponent from getting too large. A good default
value is cS = 0. TC is the temperature, which decreases as the generation gC of the
GA increases. Boltzmann replacement has also been used in PRSA (Mahfoud and
Goldberg, 1995).

� METROPOLISREPLACEMENT (RM) always picks the child c if there is a non-
decrease in �f , else it will hold a probabilistic tournament where either child c
or parent p wins. This rule was introduced in 1953 in what is now known as
the Metropolis algorithm, an early Monte Carlo approach (Metropolis et al., 1953)
which was later generalized (Hastings, 1970).
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boolean DETERMINISTICREPLACEMENT(f(p), f(c), gC)
begin

if f(c) > f(p) then return true
else if f(c) = f(p) return FLIPCOIN( 12 )
else return false

end

boolean PROBABILISTICREPLACEMENT(f(p), f(c), gC)
begin

p f(c)
f(c)+f(p)

return FLIPCOIN(p)
end

boolean BOLTZMANNREPLACEMENT(f(p), f(c), gC)
begin

TC  T0 � exp (cC � gC) fcC is a constant; T0 initial initial temperatureg
pScore exp

�
f(p)�cS

TC

�
fcS is a constantg

cScore exp
�
f(c)�cS

TC

�
p cScore

pScore+ cScore
return FLIPCOIN(p)

end

boolean METROPOLISREPLACEMENT(f(p), f(c), gC)
begin
4f  f(c) - f(p)
if 4 f � 0 then return true
else {4 f < 0}

r  RANDOMDOUBLE(0,1)
TC  T0 � exp (cC � gC)
if r < exp

�
4f
TC

�
then return true

else return false
end

end

boolean NOISYREPLACEMENT(f(p), f(c), gC)
begin

return FLIPCOIN( 12 )
end

Figure 4: Different replacement rules used in the crowding GA. Each rule has as in-
put the parent’s fitness f(p), the child’s fitness f(c), and the generation counter gC .
Each rule returns true if the child’s fitness f(c) is better than the parent’s fitness f(p),
according to the replacement rule, else the rule returns false.
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computing most probable explanations in Bayesian networks (Mengshoel, 1999).

There is an important difference between, on the one hand, applications of re-
placement rules in statistical physics and, on the other hand, applications of replace-
ment rules in optimization using evolutionary algorithms. In statistical physics, there
is a need to obtain the Boltzmann distribution at equilibrium in order to properly
model physical reality. Since both the BOLTZMANNREPLACEMENT and METROPO-
LISREPLACEMENT rules have this property, they are used for Monte Carlo simulation
in statistical physics (Metropolis et al., 1953; Newman and Barkema, 1999). In opti-
mization we are not, however, necessarily restricted to the Boltzmann distribution at
equilibrium. We are therefore free to investigate replacement rules other than BOLTZ-
MANNREPLACEMENT and METROPOLISREPLACEMENT, as we indeed do in this article.

By combining different steps and replacement rules we obtain different crowd-
ing GAs as follows: SIMPLESTEP with PROBABILISTICREPLACEMENT gives the SIM-
PLEPCGA; CROWDINGSTEP with PROBABILISTICREPLACEMENT gives the GENER-
ALPCGA; SIMPLESTEP with DETERMINISTICREPLACEMENT gives the SIMPLEDCGA;
and CROWDINGSTEP with DETERMINISTICREPLACEMENT gives the GENERALDCGA.

5 Analysis of Crowding

Complementing the presentation of algorithms in Section 4, we now turn to analy-
sis. One of the most important questions to ask about a niching algorithm is what the
characteristics of its steady-state (equilibrium) distribution are. In particular, we are
interested in this for niches. The notation x 2 X will below be used to indicate that
individual x is a member of niche X � f0; 1gm.

Definition 4 (Niching rule) Let q be the number of niches, let Xi be the i-th niche, and let xi
2 Xi. Further, let fi be a measure of fitness of individuals in niche Xi (typically fitness of the
best fit individual or average fitness of all individuals). The niching rule is defined as

�i =
fiPq
j=1 fj

=
f(xi)Pq
j=1 f(xj)

: (9)

We note that the niching rule gives proportions 0 � �i � 1. Analytically, it gives
an allocation of �i � n individuals to niche Xi, where n is population size. The rule can
be derived from the sharing rule (Goldberg and Richardson, 1987), and is considered
an idealized baseline for niching algorithms. In the following, we will see that the
behavior of probabilistic crowding is related to the niching rule.

In the rest of this section, we first provide an analysis of our crowding ap-
proach. Two types of analysis are provided: at steady state and of the form of con-
vergence of the population. We assume some variation operator, typically muta-
tion or crossover. In the analysis we assume one representative per niche; for ex-
ample if the niche is X, the representative is x 2 X. Using difference equations,
we perform a deterministic analysis, thus approximating the stochastic sampling
in a crowding GA. Applying the theoretical framework, the replacements rules of
probabilistic crowding (PROBABILISTICREPLACEMENT) and deterministic crowding
(DETERMINISTREPLACEMENT) are studied in more detail. Both the special case with
two niches as well as the more general case with several niches are analyzed. The third
area we discuss in this section is population sizing.
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5.1 Two Niches, Same Jump Probabilities

We first discuss the case of two niches X and Y. This is admittedly a restriction of the
setting with an arbitrary number of niches, but a separate investigation is warranted for
several reasons. First, some fitness functions may have exactly two optimal (maxima or
minima) points, or one optimal point and another almost-optimal point, and one may
want to find both of them. Second, one may use the two-niche case as an abstraction of
the multi-niche case, where one niche (say X) is an actual niche while the second niche
(say Y) is used to lump together all other niches. Third, the two-niche case is a stepping
stone for the analysis of more than two niches; such further analysis follows below.

In the two niche case, suppose we have a variation operator that results in two
types of jumps; short jumps and long jumps. When an individual is treated with a
short jump by the GA it stays within its niche, when it is treated with a long jump it
moves to the other niche. The probabilities for undertaking short and long jumps are ps
and p` respectively, where ps+ p` = 1. That is, we either jump short or long. Generally,
we assume non-degenerate probabilities 0 < ps, p` < 1 in this article.

Consider parent p and child c constructed by either SIMPLESTEP or CROWDING-
STEP. Further, consider how X can gain or maintain individuals from one generation
to the next. Letw be the winner of the local tournament, and suppose that we focus on
w 2 X. By the law of total probability, we have the following probability of the winner
w, either parent p or child c, ending up in the niche X:

Pr(w 2 X) =
P

A;B2fX;Yg
Pr(w 2 X;p 2 A; c 2 B) (10)

There are clearly four combinations possible for p 2 A; c 2 B in (10). By using Bayes
rule for each combination, we obtain the following:

Pr(w 2 X;p 2 X; c 2 X) = Pr(w 2 X j p 2 X; c 2 X) Pr (c 2 X;p 2 X) (11)
Pr(w 2 X;p 2 X; c 2 Y) = Pr(w 2 X j p 2 X; c 2 Y) Pr (c 2 Y;p 2 X) (12)
Pr(w 2 X;p 2 Y; c 2 X) = Pr(w 2 X j p 2 Y; c 2 X) Pr (c 2 X;p 2 Y) (13)
Pr(w 2 X;p 2 Y; c 2 Y) = Pr(w 2 X j p 2 Y; c 2 Y) Pr (c 2 Y;p 2 Y): (14)

Here, (11) represents a short jump inside X; (12) represents a long jump from X to Y;
(13) represents a long jump from X to Y; and (14) represents a short jump inside Y.

Before continuing our analysis, we introduce the following assumptions and defi-
nitions:

ps = Pr(c 2 X j p 2 X) = Pr(c 2 Y j p 2 Y)
p` = Pr(c 2 X j p 2 Y) = Pr(c 2 Y j p 2 X)
px = Pr(w 2 X j p 2 X; c 2 Y) = Pr(w 2 X j p 2 Y; c 2 X)
py = Pr(w 2 Y j p 2 X; c 2 Y) = Pr(w 2 Y j p 2 Y; c 2 X)

In words, ps is the probability of a short jump (either insideX orY); p` is the probability
of a long jump (either fromX toY or in the opposite direction); and px is the probability
of w 2 X given that the parents are in different niches. That is, px is the probability of
an individual in X winning the local tournament.

Obviously, (14) is zero and will not be considered further below. Excluding (14)
there are three cases, which we now consider in turn. The first case (11) involves p 2 X.
Specifically, a short jump is made and the child c stays in the parent p’s niche X. With
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respect to X, it does not matter whether p or cwin since both are in the same niche, and
by using Bayes rule we get for (11):

Pr(w 2 X;p 2 X; c 2 X) = Pr(w 2 X j p 2 X; c 2 X) Pr (c 2 X j p 2 X) Pr (p 2 X)
= ps Pr(p 2 X): (15)

The second case (12) is that the child jumps long from X to Y and loses, and we get:

Pr(w 2 X;p 2 X; c 2 Y) = Pr(w 2 X j p 2 X; c 2 Y) Pr (c 2 Y j p 2 X) Pr (p 2 X)
= pxp` Pr(p 2 X): (16)

The third and final case (13) involves that p 2 Y. Now, gain for niche X takes place
when the child c jumps to X and wins over p. Formally, we obtain:

Pr(w 2 X;p 2 Y; c 2 X) = Pr(w 2 X j p 2 Y; c 2 X) Pr (c 2 X j p 2 Y) Pr (p 2 Y)
= pxp` Pr(p 2 Y): (17)

By substituting (15), (16), and (17) into (10) we get the following:

Pr(w 2 X) = ps Pr(p 2 X) + pxp` Pr(p 2 X) + pxp` Pr(p 2 Y)
= Pr(p 2 X)� p` Pr(p 2 X) + p`px: (18)

We will solve this equation in two ways, namely by considering the steady state
(or equilibrium) and by obtaining a closed form formula. Assuming that a steady state
exists, we have

Pr(p 2 X) = Pr(w 2 X): (19)

Substituting (19) into (18) gives

Pr(w 2 X) = Pr(w 2 X)� p` Pr(w 2 X) + p`px; (20)

which can be simplified to
Pr(w 2 X) = px; (21)

where px depends on the replacement rule being used as follows.
For PROBABILISTICREPLACEMENT, we use (8) to obtain for (21)

Pr(w 2 X) = f(x)

f(x) + f(y)
; (22)

where x 2 X, y 2 Y. In other words, we get the niching rule of Equation 9 at steady
state.

Using DETERMINISTICREPLACEMENT, suppose f(x) � f(y). We obtain for (21)

Pr(w 2 X) = 1 if f(x) > f(y)

Pr(w 2 X) = 1

2
if f(x) = f(y).

We now turn to obtaining a closed form formula. By assumption we have two
niches, X and Y, and the proportions of individuals of interest at time t are denoted
X(t) and Y (t) respectively.5 Note that X(t) + Y (t) = 1 for any t. Now, w 2 X is

5Instead of using the proportion of a population allocated to a niche, one can base the analysis on the
number of individuals in a niche. The analysis is quite similar in the two cases, and in the analysis in this
paper we have generally used the former proportional approach.
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equivalent to X(t+ 1) = 1, whereX(t+ 1) is an indicator random variable for niche X
for generation t+ 1, and we note that

Pr(w 2 X) = Pr(X(t+ 1) = 1) = E(X(t+ 1)): (23)

The last equality holds because the expectation ofX(t+1) isE(X(t+1)) =
1P
i=0

iPr(X(t+

1) = i) = Pr(X(t+ 1) = 1). Along similar lines, Pr(p 2 X) = Pr(X(t) = 1) = E(X(t)):
Considering two expected niche proportions E(X(t)) and E(Y (t)), we have these

two difference equations:

E(X(t+ 1)) = psE(X(t)) + p`pxE(X(t)) + p`pxE(Y (t)) (24)
E(Y (t+ 1)) = psE(Y (t)) + p`pyE(Y (t)) + p`pyE(X(t)):

The solution to the above system of difference equations can be written as:

E(X(t)) = px + p
t
sE(X(0))� ptspxE(X(0))� ptspxE(Y (0)) (25)

E(Y (t)) = py � ptsE(X(0)) + ptspxE(X(0)) + ptspxE(Y (0)); (26)

where t = 0 is the time of the initial generation.
For PROBABILISTICREPLACEMENT we see how, as t ! 1 and assuming ps < 1,

we get the niching rule (9), expressed as px and py , for both niches. More formally,
limt!1E(X(t)) = px and limt!1E(Y (t)) = py . In other words, initialization does
not affect the fact that the niching rule is achieved in the limit when PROBABILISTICRE-
PLACEMENT is used for crowding.

We now turn to the effect of the initial population, which is important before equi-
librium is reached. Above, E(X(0)) and E(Y (0)) reflect the initialization algorithm
used. Assuming initialization uniformly at random, we let in the initial population
E(X(0)) = E(X(Y (0)) = 1

2 . This gives the following solutions for (25):

E(X(t)) = px +

�
1

2
� px

�
pts; (27)

E(Y (t)) = py +

�
1

2
� py

�
pts: (28)

Again, under the ps < 1 assumption already mentioned, we see how px and py result as
t!1. Also note in (27) and (28) that a smaller ps, and consequently a larger p` = 1�ps,
gives faster convergence to the niching rule at equilibrium.

We now turn to DETERMINISTICREPLACEMENT. Suppose that px = 0 and py = 1,
for example we may have f(x) = 1 and f(y) = 4. Substituting into (27) gives

E(X(t)) =
1

2
pts (29)

E(Y (t)) = 1� 1
2
pts; (30)

which provides a (to our knowledge) novel result regarding the analysis of conver-
gence for deterministic crowding, thus improving the understanding of how this al-
gorithm operates. Under the assumption ps < 1 we get limt!1E(X(t)) = 0 and
limt!1E(Y (t)) = 1 for (29) and (30) respectively. In this example, and except for the
degenerate case px = 0 and py = 1, deterministic crowding gives a much stronger
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selection pressure than probabilistic crowding. Using DETERMINISTICREPLACEMENT,
a more fit niche (here Y) will in the limit t ! 1 win over a less fit niche (here X).
Using PROBABILISTICREPLACEMENT, on the other hand, both niches are maintained—
subject to noise—in the limit t!1. Considering the operation of DETERMINISTICRE-
PLACEMENT, the main difference to PROBABILISTICREPLACEMENT is that there is no
restorative pressure—thus niches may get lost under DETERMINISTICREPLACEMENT
even though they have substantial fitness.

5.2 Two Niches, Different Jump Probabilities

Here we relax the assumption of equal jump probabilities for the two niches X and Y.
Rather than jump probabilities ps and p`, we have jump probabilities pij for jumping
from niche Xi to niche Xj , where i; j 2 f0; 1g. We use the notation E(Xi(t)) for the
expected proportion of individuals in niche Xi at time t, and let pi be the probability of
the i-th niche winning in a local tournament. The facts p11 + p12 = 1 and p21 + p22 = 1
are used below, too.

We obtain the following expression for E(X1(t + 1)); using reasoning similar to
that used for Equation 18:

E(X1(t+ 1)) = p11E(X1(t)) + p12p1E(X1(t)) + p21p1E(X2(t)) (31)
= p11E(X1(t)) + (1� p11)p1E(X1(t)) + p21p1(1� E(X1(t)))
= p11E(X1(t)) + p1E(X1(t))� p11p1E(X1(t))� p21p1E(X1(t)) + p21p1:

At steady state we have E(X1(t+ 1)) = E(X1(t)) = E(X1), leading to

E(X1) = p11E(X1) + p1E(X1)� p11p1E(X1)� p21p1E(X1) + p21p1
which after some manipulation simplifies to the following allocation ratio for niche X1

E(X1) =
p1

p1 +
p12
p21
p2
=

p1
p1 + �12p2

: (32)

Here, �12 := p12
p21

is denoted the transmission ratio from X1 to X2. In general, we say that
�ij is the transmission ratio from niche Xi to Xj . Clearly, �12 is large if the transmission
of individuals from X1 into X2 is large relative to the transmission from X2 into X1.

Let x1 2 X1 and x2 2 X2. Assuming PROBABILISTICREPLACEMENT and using (8)
we obtain p1 =

f(x1)
f(x1)+f(x2)

and p2 =
f(x2)

f(x1)+f(x2)
. Substituting these values for p1 and

p2 into (32) and simplifying gives

E(X1) =
f(x1)

f(x1) + �12f(x2)
: (33)

For two niches, (33) is clearly a generalization of the niching rule (9); just put �12 = 1 in
(33) to obtain (9).

The size of a niche as well as the operators used may have an impact on p12 and p21
and thereby also on �12 and �21. Comparing (9) and (33), we note how �12 > 1 means
that niche X2 will have a larger subpopulation at equilibrium than under the niching
rule, giving X1 a smaller subpopulation, while �12 < 1 means that X2’s subpopulation
at equilibrium will be smaller than under the niching rule, giving X1 a larger subpopu-
lation.

Along similar lines, the ratio for niche X2 turns out to be

E(X2) =
p2

p21
p12
p1 + p2

=
p2

�21p1 + p2
; (34)
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with �21 := p21
p12

.
Note that values for �12 and �21, or more generally �ij for the transmission ratio

from niche i to j, will be unknown. So one can not use known values for �12 and �21
in the equations above. However, it is possible to estimate transmission ratios using
sampling or one may use worst-case or average-case values.

Finally, we note that the same result as in (32) and (34) can be established by solving
these two simultaneous difference equations:

E(X1(t+ 1)) = p11E(X1(t)) + p12p1E(X1(t)) + p21p1E(X2(t))

E(X2(t+ 1)) = p22E(X2(t)) + p21p2E(X2(t)) + p12p2E(X1(t));

which yields fairly complex solutions which can be solved by eliminating all terms with
generation t in the exponent. These solutions can then be simplified, giving exactly the
same result as above.

5.3 Multiple Niches, Different Jump Probabilities

We now generalize from two to q � 2 niches. Let the probability of transfer from the
i-th to j-th niche under the variation operators be pij , where

Pq
j=1 pij = 1. A variation

operator refers to mutation in SIMPLESTEP and mutation or crossover in CROWDING-
STEP. Let the probability of an individual xi 2 Xi occurring at time t be pi(t), and
let its probability of winning over an individual xj 2 Xj in a local tournament be p�ij .
The expression for p�ij depends on the replacement rule as we will discuss later in this
section. We can now set up a system of q difference equations of the following form by
letting i 2 f1; : : : qg:

pi(t+ 1) =
X
j 6=i

pijp
�
ijpi(t) +

X
j 6=i

pjip
�
ijpj(t) + piipi(t): (35)

In words, pijp�ijpi(t) represents transmission of individuals from Xi to Xj and
pjip

�
ijpj(t) represents transmission of individuals from Xj to Xi. Unfortunately, these

equations are hard to solve. But by introducing the assumption of local balance (known
as detailed balance in physics (Laarhoven and Aarts, 1987)), progress can be made. The
condition is (Neal, 1993, p. 37):

pipijp
�
ji = pjpjip

�
ij : (36)

The local balance assumption is that individuals (or states, or niches) are in balance:
The probability of an individual xi being transformed into another individual xj is the
same as the probability of the second individual xj being transformed into the first
individual xi. We can assume this is for a niche rather than for an individual, similar
to what we did above, thus giving Equation 36. On the left-hand side of Equation 36
we have the probability of escaping niche Xi, on the right-hand side of Equation 36 we
have the probability of escaping niche Xj . Simple rearrangement of (36) gives

pi =
pjip

�
ij

pijp�ji
pj = �ji

p�ij
p�ji
pj ; (37)

where �ji :=
pji
pij

. Here, p
�
ij

p�ji
depends on the replacement rule used.

Using the framework introduced above, we analyze the PROBABILISTICREPLACE-
MENT rule presented in Section 4 and in Figure 4. Specifically, for two niches Xi and
Xj we have for p�ij in (37)
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p�ij =
f(xi)

f(xi) + f(xj)
; (38)

where xi 2 Xi and xj 2 Xj . Using (38) and a similar expression for p�ji, we substitute
for p�ij and p�ji in (37) and obtain

pi =
pjip

�
ij

pijp�ji
pj = �ji

f(xi)

f(xj)
pj ; (39)

We now consider the k-th niche, and express all other niches, using (39), in terms of this
niche. In particular, we express an arbitrary proportion pi using a particular proportion
pk:

pi = �ki
f(xi)

f(xk)
pk: (40)

Now, we introduce the fact that
qP
i=1

pi = 1, where q is the number of niches:

�k1
f(x1)

f(xk)
pk + �k2

f(x2)

f(xk)
pk + � � �+ pk + � � �+ �kq

f(xq)

f(xk)
pk = 1: (41)

Solving for pk in (41) gives

pk =
1

�k1
f(x1)
f(xk)

+ �k2
f(x2)
f(xk)

+ � � �+ 1 + � � �+ �kq f(xq)f(xk)

; (42)

and we next use the fact that
f(xk)

f(xk)
�kk = 1; (43)

where we set �kk := 1. Substituting (43) into (42) and simplifying gives

pk =
f(xk)Pq

i=1 �kif(xi)
: (44)

Notice how the transmission ratio �ki from Xk to Xi generalizes the transmission ratio
�12 from Equation 32. Equation 44 is among the most general theoretical result on prob-
abilistic crowding presented in this article; it generalizes the niching rule of Equation
9 (see also (Mahfoud, 1995, p. 157)). The niching rule applies to sharing with roulette-
wheel selection (Mahfoud, 1995), and much of that approach to analyzing niching GAs
can now be carried over to probabilistic crowding.

5.4 Noise and Population Sizing

Suppose that the population is in equilibrium. Each time an individual is sampled
from or placed into the population, it can be considered a Bernoulli trial. Specifically,
suppose it is a Bernoulli trial with a certain probability p of the winner w being taken
from or placed into a niche X. We now form for each trial an indicator random variable
Si as follows:

Si =

�
0 if w =2 X
1 if w 2 X :

Taking into account all n individuals in the population, we form the random variable
B =

Pn
i=1 Si; clearly B has a binomial probability density BinomialDen(x;n; p). The
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above argument can be extended to an arbitrary number of niches. Again, consider the
crowding GA’s operation as n Bernoulli trials. Now, the probability of picking from the
k-th niche Xk is given by pk in Equation 44. This again gives a binomial distribution
BinomialDen(x;n; pk), where �k = npk and �2k = npk(1� pk).

We now turn to our novel population sizing result. To derive population sizing
results for crowding, we consider again the population at equilibrium. Then, at equilib-
rium, we require that with high probability, we shall find individuals from the desired
niches in the population. We consider the joint distribution over the number of mem-
bers in all q niches possible in the population, Pr(B) = Pr(B1; : : : ; Bq). In general, we
are interested in the joint probability that each of the q niches have at least a certain
(niche-dependent) number of members bi, for 1 � i � q: Pr (B1 � b1; : : : : : : ; Bq � bq).

An obvious population size lower bound is then n �
qP
i=1

bi. Of particular interest are

the � fittest niches X1; : : : ;X� among all niches X1; : : : ;Xq, and without loss of gener-
ality we assume an ordering in which the � fittest niches come first. Specifically, we
are interested in the probability that each of the � niches has a positive member count,
giving

Pr (B1 > 0; : : : ; B� > 0; B�+1 � 0; : : : ; Bq � 0) = Pr (B1 > 0; : : : ; B� > 0) ; (45)

since a random variable Bi representing the i-th niche is clearly non-negative. Assum-
ing independence for simplicity, we obtain for (45)

Pr (B1 > 0; : : : ; B� > 0) =

�Y
i=1

Pr (Bi > 0) =

�Y
i=1

(1� Pr (Bi = 0)) ; (46)

Further progress can be made by assuming that Bi follows a binomial distribu-
tion with probability pi as discussed above. For binomial B we have Pr (B = j) =�
n
j

�
pj (1� p)n�j . Putting j = 0 in this expression for Pr (B = j) gives for (46):

�Y
i=1

(1� Pr (Bi = 0)) =
�Y
i=1

(1� (1� pi)n) : (47)

Simplifying further, a conservative lower bound can be derived by focusing on the
least fit niche among the � desired niches. Without loss of generality, assume that p� �
p��1 � � � � � p1. Consequently, (1 � p�) � (1 � p��1) � � � � � (1 � p1) and therefore
since n � 1

(1� (1� p�)n) � (1� (1� p��1)n) � � � � � (1� (1� p1)n);

from which it is easy to see that

Pr (B1 > 0; : : : ; B� > 0) =
�Y
i=1

(1� (1� pi)n) � (1� (1� p�)n)� : (48)

In other words, we have the following lower bound on the joint probability 
(n; �; p�):


(n; �; p�) := Pr (B1 > 0; : : : ; B� > 0) � (1� (1� p�)n)� : (49)

For simplicity, we often say just 
 instead of 
(n; �; p�). This is an important result since
it ties together positive niche counts in the � most fit niches, smallest niche probability
p�, and population size n.

Solving for n in (49) gives the following population sizing result.
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Figure 5: The effect of varying the population size n (along the x-axis), the desired
number of niches �, and the smallest niche probability p� on the lower bound p =

(n; �; p�) (along the y-axis) for the joint niche count probability. Left: Here we keep
constant � = 1 and vary the population size n as well as the niche probability p� at
steady state: p� = 0:1 (solid line), p� = 0:05 (dashed line), p� = 0:01 (diamond line),
p� = 0:005 (cross line), and p� = 0:001 (circle line). Right: Here we keep constant
p� = 0:01 and varying the population size n as well as the number of maintained
niches �: � = 1 (diamond line), � = 5 (solid line), � = 10 (circle line), � = 50 (dashed
line), and � = 100 (boxed line).

Theorem 5 (Novel population sizing) Let � be the number of desired niches, p� the prob-
ability of the least-fit niche’s presence at equilibrium, and 
 := Pr (B1 > 0; : : : ; B� > 0) the
desired joint niche presence probability. The novel model’s population size nN is given by:

nN �
ln(1� �

p

)

ln(1� p�)
: (50)

This result gives a lower bound ln(1 � �
p

)= ln(1 � p�) for population size nN

necessary to obtain, with probabilities 0 < 
; p� < 1, non-zero counts for the � highest-
fit niches.

If we take n as the independent variable in (49), there are two other main parame-
ters, namely � and p�. In Figure 5, we independently investigate the effect of varying
each of these. This figure clearly illustrates the risk of using too small population sizes
n, an effect that has been demonstrated in experiments (Singh and Deb, 2006). For ex-
ample, for � = 100 and n � 300, we see from Figure 5 that the probability of all � = 100
niches being present is essentially zero. Since their time complexity is O(n), crowd-
ing algorithms can afford relatively large population sizes n; this figure illustrates the
importance of doing so.

It is instructive to compare our novel population result with the following result
from earlier work (Mahfoud, 1995, p. 175).
Theorem 6 (Classical population sizing) Let r := fmin=fmax be the ratio between minimal
and maximal of fitness optima in the � niches; g the number of generations; and 
 the probability
of maintaining all � niches. The population size nC is given by

nC =

&
�

r

 
� ln

 
1� 


1
g

�

!!'
: (51)

We note that (51) is based on considering selection alone. Here, the two only possi-
ble outcomes are that an existing niche is maintained, or an existing niche is lost (Mah-
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boolean PORTFOLIOREPLACEMENT(f(p), f(c), generation)
begin

r  RANDOMDOUBLE(0; 1)
R Ri in the 2-tuple (wi; Ri) 2W such that wi�1 < r � wi {We put w0 := 0}
q  R(f(p), f(c), generation) {Invoke replacement rule R from portfolioW}
return q

end

Figure 6: The portfolio replacement rule, which combines different replacement rules.
For example, it can combine the Deterministic crowding rule, the Probabilistic crowd-
ing rule, the Metropolis rule, and the Boltzman rule.

foud, 1995, p. 175). In order for successful niche maintenance to occur, it is required
that the � niches are maintained for all g generations. This is reflected in Equation 51 as
follows. When the number of generations g increases, the expression 


1
g will get closer

to one, and the required population size nC will increase as a result. This reflects the
fact that with selection only operating, niches can only be lost.

One could argue that the focus on loss only is appropriate for DETERMINISTICRE-
PLACEMENT but too conservative for PROBABILISTICREPLACEMENT, since under this
latter scheme niches may be lost, but they may also be gained. When inspecting the last
generation’s population, say, one is interested in whether a representative for a niche
is there or not, and not whether it had been lost previously. In (51), using g with the
actual number of generations run can be used to give a conservative population sizing
estimate, while setting g = 1 gives a less conservative population sizing estimate. Both
of these approaches are investigated in Section 8.

6 Portfolios of Replacement Rules in Crowding

From our analytical result in Section 5, a reader might expect that deterministic crowd-
ing could give too strong convergence, while probabilistic crowding could give too
weak convergence. Is there a middle ground?

To answer this question, we present the portfolio replacement rule PORTFOLIORE-
PLACEMENT (RU), which was briefly introduced in Section 5. In this section we discuss
PORTFOLIOREPLACEMENT in detail and also show how it can be analyzed using gen-
eralizations of the approaches employed in Section 5. As an illustration, we combine
deterministic and probabilistic crowding. We hypothesize that a GA practitioner might
want to combine other replacement rules in a portfolio as well, in order to obtain better
results than provided by using individual replacement rules on their own.

6.1 A Portfolio of Replacement Rules

PORTFOLIOREPLACEMENT (RU) is a novel replacement rule which generalizes the re-
placement rules described in Section 4.3 by relying on a portfolio of (atomic) replace-
ment rules. Under the PORTFOLIOREPLACEMENT rule, which is presented in Figure 6,
a choice is made from a set, or a portfolio, of replacement rules. Each replacement rule
is chosen with a certain probability. The choice is based on a probability associated
with each replacement rule as follows.

Definition 7 (Replacement rule portfolio) A replacement rule portfolio R is a set of q 2-
tuples

R = f(p1; R1); : : : ; (pq; Rq)g ,
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where
qP
i=1

pi = 1 and 0 � pi � 1 for all 1 � i � q.

In Definition 7, and for 1 � i � q, (pi; Ri) means that the i-th replacement rule
Ri is picked and executed with probability pi when a rule is selected from R by the
crowding GA. An alternative to R, used in PORTFOLIOREPLACEMENT, is the cumula-
tive (replacement) rule portfolio W, defined as follows:

W =

��
1P
i=1

pi; R1

�
; : : : ;

�
qP
i=1

pi; Rq

��
= f(w1; R1) ; : : : ; (wq; Rq)g . (52)

When invoked with the parameter R = PORTFOLIOREPLACEMENT, the CROWD-
INGGA chooses among all the replacement rules included in the portfolio W for that
invocation of the GA. In Figure 6, we assume thatW is defined according to (52).

The PORTFOLIOREPLACEMENT replacement rule approach gives greater flexibility
and extensibility than what has previously been reported for crowding algorithms. As
an illustration, here are a few example portfolios.
Example 8 The portfolio R =f(1, RP )g gives probabilistic crowding, while R =f(1, RD)g
gives deterministic crowding. The portfolio R =

��
1
2 , RD

�
,
�
1
2 , RP

�	
gives a balanced mix-

ture of deterministic crowding and probabilistic crowding.

6.2 Analysis of the Portfolio Approach

We assume two niches X and Y. For the portfolio approach, (10) is generalized to
include the crowding algorithm’s random selection of a replacement ruleRi as follows:

Pr(p 2 X) =
P

(pi;Ri)2R

P
A;B2fX;Yg

Pr(w 2 X;p 2 A; c 2 B; R = Ri): (53)

Using Bayes rule and the independence of rule selection from R gives

Pr(w 2 X;p 2 A; c 2 B; R = Ri) =
Pr(w 2 X j p 2 A; c 2 B; R = Ri) Pr(p 2 A; c 2 B) Pr(R = Ri):

Consequently, in the replacement phase of a crowding GA we now need to consider
the full portfolio R. For example, (12) generalizes to

Pr(w 2 X;p 2 X; c 2 Y; R = Ri) =
Pr(w 2 X j p 2 X; c 2 Y; R = Ri) Pr (c 2 Y j p 2 X) Pr (p 2 X) Pr(R = Ri):

Here, the new factors compared to those of the corresponding non-portfolio expression
(12) are Pr(w 2 X j p 2 X; c 2 Y; R = Ri) and Pr(R = Ri); hence we focus on these
and similar factors in the rest of this section.

For an arbitrary number of replacement rules in R, the resulting winning probabil-
ities for px and py for niches X and Y respectively are as follows:

px =
X

(pi;Ri)2R

Pr(w 2 X j p 2 X; c 2 Y; R = Ri)pi (54)

py =
X

(pi;Ri)2R

Pr(w 2 Y j p 2 X; c 2 Y; R = Ri)pi: (55)

More than two niches can easily be accommodated. Much of the analysis earlier in
this section remains very similar due to (53) and its Bayesian decomposition. One just
needs to plug in new values, such as for px and py above in (54) and (55), to reflect the
particular portfolio R.
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6.3 Combining Deterministic and Probabilistic Crowding using a Portfolio

For probabilistic crowding, a challenge may arise with “flat” fitness functions with
small differences between fitness values and corresponding mild selection pressure.
Such fitness functions can be tackled by means of our portfolio approach, and in par-
ticular by combining deterministic and probabilistic crowding.

Consider the portfolio R = f(pD, RD), (pP , RP )g, with pD + pP = 1, and suppose
that the setup is as described in Section 5.1, namely two niches X and Y with the same
probability of transitioning between them. Let us further assume that f(x) < f(y).
At equilibrium we have X = px (see Equation 21). Now, px needs to reflect that two
different replacement rules are being used in R or W when determining the winning
probability Pr (w 2 X), say. To do so, we condition also on the random variable R rep-
resenting the GA’s randomly selected replacement rule and use the law of total proba-
bility:

px = Pr(w 2 X j p 2 X; c 2 Y; R = RD) Pr(R = RD)
+ Pr(w 2 X j p 2 X; c 2 Y; R = RP ) Pr(R = RP )

which simplifies as follows

px = pP �
f(x)

f(x) + f(y)
: (56)

Along similar lines, we obtain for Y:

py = pD + pP �
f(y)

f(x) + f(y)
: (57)

Here, pD and pP are the “knobs” used to control the GA’s performance. When pD ! 1
one approaches pure deterministic crowding, while when pP ! 1 one approaches pure
probabilistic crowding. The optimal settings of pD and pP , used to fruitfully combine
deterministic and probabilistic crowding, depend on the application and the fitness
function at hand.

Here is an example of a “flat” fitness function.

Example 9 Let f1(x) = sin6(5�x) (see also Section 8.2) and define f3(x) = f1(x) + 1000.6

Consider the portfolio R = f(pD, RD), (pP , RP )g. Suppose that we have individuals x and y
with f3(y) = 1001 and f3(x) = 1000. Using the portfolio approach (57) with pD = 0:9 and
pP = 0:1, we obtain this probability px for y winning over x:

py = 0:9 + 0:1�
f3(y)

f3(x) + f3(y)
� 0:95:

In contrast, with pure probabilistic crowding (pD = 0 and pP = 1) we obtain

py =
f3(y)

f3(x) + f3(y)
� 0:5:

This example illustrates the following general point: The flatter the fitness function,
the greater the probability pD (and the smaller the probability pP ) should be in order to
obtain a reasonably high winning probability py for a better-fit niche such as Y.

6An anonymous reviewer is acknowledged for suggesting this example.
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7 A Markov Chain Perspective

We now discuss previous analysis of genetic and stochastic local search algorithms
using Markov chains (Goldberg and Segrest, 1987; Nix and Vose, 1992; Harik et al.,
1997; De Jong and Spears, 1997; Spears and De Jong, 1997; Cantu-Paz, 2000; Hoos, 2002;
Moey and Rowe, 2004a,b; Mengshoel, 2006). In addition, we discuss how our analysis
in Section 5 and Section 6 relates to these previous analysis efforts.

7.1 Markov Chains in Genetic Algorithms

Most evolutionary algorithms simulate a Markov chain in which each state represents
one particular population. For example, consider the simple genetic algorithm (SGA)
with fixed-length bitstrings, one-point crossover, mutation using bit-flipping, and pro-
portional selection. The SGA simulates a Markov chain with jSj =

�
n+2m�1
2m�1

�
states,

where n is the population size and m is the bitstring length (Nix and Vose, 1992). For
non-trivial values of n and m, the large size of S makes exact analysis difficult. In
addition to the use of Markov chains in SGA analysis (Goldberg and Segrest, 1987; Nix
and Vose, 1992; Suzuki, 1995; Spears and De Jong, 1997), they have also been applied
to parallel genetic algorithms (Cantu-Paz, 2000). Markov chain lumping or state aggre-
gation techniques, to reduce the problem of exponentially large state spaces, have been
investigated as well (De Jong and Spears, 1997; Spears and De Jong, 1997; Moey and
Rowe, 2004a).

It is important to note that most previous work has been on the simple genetic
algorithm (SGA) (Goldberg and Segrest, 1987; Nix and Vose, 1992; Suzuki, 1995; Spears
and De Jong, 1997), not in our area of niching or crowding genetic algorithms. Further,
much previous work has used an exact but intractable Markov chain approach, while
we aim for inexact but tractable analysis in this article.

7.2 Markov Chains in Stochastic Local Search

For stochastic local search (SLS) algorithms using bit-flipping, the underlying search
space is a Markov chain that is a hypercube. Each hypercube state x 2 f0; 1gm repre-
sents a bitstring. Each state x has m neighbors, namely those states that are bitstrings
one flip away from x. As search takes place in a state space S = fb j b 2 f0; 1gmg, with
size jSj = 2m, analysis can also be done in this space. However, such analysis is costly
for non-trivial values of m since the size of P is jf0; 1gmj � jf0; 1gmj = 2m+1 and the
size of V is jf0; 1gmj = 2m.

In related research, we have introduced two approximate models for SLS, the naive
and trap Markov chain models (Mengshoel, 2006). Extending previous research (Hoos,
2002), these models improve the understanding of SLS by means of expected hitting
time analysis. Naive Markov chain models approximate the search space of an SLS by
using three states. Trap Markov chain models extend the naive models by (i) explicitly
representing noise and (ii) using state spaces that are larger than those of naive Markov
chain models but smaller than the corresponding exact models.

Trap Markov chains are related to the simple and branched Markov chain models
introduced by Hoos (2002). Hoos’ Markov chain models capture similar phenomena to
our trap Markov chains, but the latter have a few novel and important features. First, a
trap Markov chain has a noise parameter, which is essential when analyzing the impact
of noise on SLS. Second, while it is based on empirical considerations, the trap Markov
chain approach is derived analytically based on work by Deb and Goldberg (1993).
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7.3 Our Analysis

Our analysis in Section 5 and Section 6 is related to a Markov chain analysis as follows.
In CROWDINGSTEP (see Figure 3), MATCH creates a matching m�. This matching step
is followed by local tournaments, each between a child c and a parent p, where (c;p) 2
m�, with outcome newPop[k]  c or newPop[k]  p. For each population array
location newPop[k], one can introduce a Markov chain. The state of each Markov
chain represents the niche of a parent, and probabilities on transitions represent the
corresponding probabilities of outcomes of local tournaments for newPop[k] between
the parent p and the matched child c.

Our approach is most similar to previous research using aggregated Markov chain
states in evolutionary algorithms and stochastic local search (De Jong and Spears, 1997;
Spears and De Jong, 1997; Hoos, 2002; Moey and Rowe, 2004a,b; Mengshoel, 2006).
Such aggregation is often possible with minimal loss of accuracy (Moey and Rowe,
2004a,b; Mengshoel, 2006). In a crowding GA Markov chain model, each position in the
GA’s population array can be associated with a Markov chain. However, Markov chain
transitions are not restricted to one-bit flips (as they typically are in SLS), but depend on
factors such as tournament size S, crossover probability PC , and mutation probability
PM . With large S, small PC , and small PM , tournaments clearly will be very local (in
other words between individuals with small genotypic distance). On the other hand,
given small S, large PC , and large PM , tournaments clearly will be less local (in other
words between individuals with larger genotypic distance). A detailed investigation
of the interaction between these different parameters from a Markov chain perspective
is an interesting direction for future research.

8 Experiments

In order to complement the algorithms and theoretical framework developed so far in
this article, we report on experimental results in this section. We have experimented
with our crowding approach — and in particular PROBABILISTICCROWDING — un-
der progressively more challenging conditions as follows. As reported in Section 8.1,
we first used the SIMPLESTEP crowding algorithm and its idealized variation opera-
tor along with quite simple fitness functions. The remaining sections employed the
GENERALPCGA. Section 8.2 presents results obtained using the CROWDINGSTEP algo-
rithm which uses traditional crossover and mutation along with classical fitness func-
tions. Finally, in Section 8.3 we present empirical population sizing results, again the
CROWDINGSTEP algorithm was used.

8.1 Experiments Using Idealized Operators and SIMPLESTEP

The purposes of these experiments were to: (i) Check whether the deterministic dif-
ference equation analysis models the stochastic situation well; (ii) Check whether the
approach of picking a candidate from each niche is reasonable in the analysis. In order
to achieve these goals, we used the SIMPLESTEP algorithm as well as quite large popula-
tion sizes. These initial experiments were performed using a fitness function with only
q discrete niches (each of size one) and mutation probability p` idealized as uniform
jump probability to one of the other niches. The probabilistic crowding replacement
rule RP was used to choose the winner in a tournament.

8.1.1 Two Niches, Same Jump Probabilities
In our first experiment, using the SIMPLESTEP algorithm and the PROBABILISTICRE-
PLACEMENT rule, we consider two niches X = f0g and Y = f1g and the fitness func-
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Figure 7: Predicted results versus experimental results for probabilistic crowding, using
a simple fitness function f3 with two niches X = f0g and Y = f1g. The fitness function
is f3(0) = 1 and f3(1) = 4. Here we show empirical results, including 95% confidence
intervals, for both X and Y averaged over ten runs with different initial populations.

tion f3(0) = 1, f3(1) = 4. Since there were two niches, the solutions to the differ-
ence equations in Equation 27 can be applied along with px = f(x)= (f(x) + f(y)) =
f3(0)= (f3(0) + f3(1)) = 1=5 and py = f(y)= (f(x) + f(y)) = f3(1)= (f3(1) + f3(0)) =
4=5. This gives the following niche proportions:

E(X(t)) =
1

5
+

�
1

2
� 1
5

�
pts =

1

5
+
3

10
pts (58)

and

E(Y (t)) =
4

5
+

�
1

2
� 4
5

�
pts =

4

5
� 3

10
pts: (59)

We let ps = 0:8, used population size n = 100, and let the crowding GA run for 50
generations. (A variation probability p` = 1� ps = 0:2might seem high, but recall that
this operation gives jumps between niches, and is not the traditional bit-wise mutation
operator.) A plot of experimental versus predicted results for both niches is provided
in Figure 7. Using (58) and (59), we obtain respectively limt!1E(X(t)) =

1
5 , hence

�x =
1
5 � 100 = 20, and limt!1E(Y (t)) =

4
5 , hence �y = 4

5 � 100 = 80. Alternatively,
and using the approach of Section 5, we obtain �x = npx = 100 � 1

5 = 20, �2x =
npx(1� px) = 16 and �y = npy = 100� 4

5 = 80, �2y = npy(1� py) = 16. In the figure,
we notice that the experimental results follow these predictions quite well. In general,
the predictions are inside their respective confidence intervals. There is some noise, but
this is as expected, since a GA with a probabilistic replacement rule is used.

8.1.2 Multiple Niches, Same Jump Probabilities
In the second experiment, the SIMPLESTEP algorithm and the PROBABILISTICREPLACE-
MENT rule were again used. The fitness function f4(xi) = i, for integer 1 � i � 8, gave
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Figure 8: Predicted versus experimental results for fitness function f4’s niches X1, X4,
andX8. The predicted results are based on steady-state expected number of individuals
in different niches in the population. The experimental results are sample means for ten
runs (with different initial populations) and include 95% confidence intervals.

q = 8 niches. Here we can use Equation 44 with �ji = 1, giving

pi =
f(xi)Pq
i=1 f(xi)

; (60)

with, for example, p1 = 1=36, p4 = 4=36, and p8 = 8=36 for niches X1, X4 and, X8
respectively.

A population size of n = 360 was used in our experiments, and the GA was run
for gN = 50 generations. With the probabilities just mentioned for X1, X4 and, X8, we
get predicted subpopulation sizes np1 = 10, np4 = 40, and np8 = 80. A plot of ex-
perimental versus predicted results for ps = 0:8 is provided in Figure 8. The predicted
subpopulation sizes are also plotted in Figure 8. After short initialization phase, the
empirical results follow the predicted equilibrium results very well, although there is
a certain level of noise also in this case, as expected. In the majority of cases, the pre-
dicted mean is inside the confidence interval of the sample mean. Qualitatively, it is
important to notice that all the niches, even X1, are maintained reliably.

An analysis of the amount of noise can be performed as follows, using results
from Section 5. As an example, for niche X1 we obtain �21 = 360 � 1

36 �
35
36 , which

gives �1 � 3:1. For X4 and X8 we similarly get �4 � 6:0 and �8 � 7:9 respectively.
The fact that the observed noise increases with the fitness of a niche, as reflected in
corresponding increases in lengths of confidence intervals in Figure 8, is therefore in
line with our analytical results.

8.2 Experiments Using Traditional Operators and CROWDINGSTEP

In this section, we report on the empirical investigations of the CROWDINGSTEP algo-
rithm, which uses traditional mutation and crossover operators. Experiments were
performed using discretized variants of the f1 and f2 test functions (Goldberg and
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Figure 9: Probabilistic crowding variant GENERALPCGA with n = 200, PC = 1, PM =
0:3, and gN = 120. The test function used is f1, with the number of individuals on
the y-axis. Generations are shown in increasing order from bottom left to top right.
The bottom panel shows generations 1 through 12; the middle panel generations 13
through 24; and the top panel generations 73 through 84 (which are representative for
later generations).
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Richardson, 1987), where

f1(x) = sin
6(5�x)

f2(x) = e
�2(ln 2)( x�0:10:8 )

2

sin6(5�x):

These two functions are of interest for a number of reasons. First, they have multiple
local optima, and are therefore representative of certain applications in which multi-
modality is found. In f1, all local optima are global optima. In f2, the magnitude of the
local optima decreases with increasing x. Second, these functions have been used as
test functions in previous research on niching algorithms (Goldberg and Richardson,
1987; Yin, 1993; Harik, 1995; Goldberg and Wang, 1998; Singh and Deb, 2006).

In our analysis of the experiments, the domain [0; 1] of the two test functions was
split up into 25 equally-sized subintervals [a; b) or [a; b]. For each test function, pre-
dicted allocation and experimental allocation of individuals were considered. Pre-
dicted allocation, in terms of individuals in an interval [a; b) or [a; b], was computed
by forming for i 2 f1; 2g:

n
bR
a

fi(x)dx

�
1R
0

fi(x)dx:

This prediction is closely related to the niching rule. Experimental allocation is merely
the observed number of individuals in the interval [a; b) or [a; b], averaged over the
number of experiments performed.

For f1 we show experimental results for two variants of the probabilistic crowding
algorithm GENERALPCGA. In the mutation only variant (the M variant) we used PC =
0, PM = 0:1, n = 200, and gN = 100. For the variant using both mutation and crossover
(the M+C variant), we used PC = 1:0 and PM = 0:3; n and gN were the same.

The behavior of variant M+C is illustrated in Figure 9. This figure shows, using
the f1 test function, how niches emerge and are maintained by the algorithm in one
experimental run. The main result for f1 is that the probabilistic crowding variants M
and M+C give a reliable niching effect as desired. The five global maxima emerge early
and are, in general, reliably maintained throughout an experiment. The allocation of
individuals in the population reflects the shape of f1 quite early; there is some increase
in peakiness with increasing generations.

The performance of GENERALPCGA on f1 is summarized in Figure 10. Before
discussing these results in more detail, we make a distinction between inter- and intra-
niche effects as it relates to the allocation of individuals. Inter-niche effects take place
between niches, while intra-niche effects happen inside a niche. Compared to the nich-
ing rule prediction, the main intra-niche effect observed in Figure 10 is that individuals
close to optima are slightly over-represented at the expense of individuals farther away.
For both GA variants in Figure 10, examples of this effect can be seen for the intervals
[0:28�0:32) and [0:68�0:72). There are also inter-niche effects, in particular the fourth
optimum from the left is over-sampled for both M and M+C variants. For the M vari-
ant, this is partly due to a few high-allocation outlying experiments as illustrated in (i)
the wide confidence interval and (ii) the difference between the sample mean and the
sample median.

We now turn to f2 and the experimental results for our two variants of GENER-
ALPCGA. For the M variant, we used PC = 0, PM = 0:1, n = 200, and gN = 100. For
the M+C variant we used PC = 1:0 and PM = 0:3; n and gN were the same.

Figure 11 summarizes the performance on the f2 test function. The main result for
f2 is that the variants M and M+C give reliable niching as desired. Again, the maxima
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Figure 10: The performance of the probabilistic crowding algorithm GENERALPCGA
on the f1 fitness function. We show empirical results, averaged over 10 experiments, at
generation 100 for the case of mutation only (the M variant) at the top; for the case of
both mutation and crossover (the M+C variant) at the bottom.

emerge early and are in general maintained reliably throughout an experiment. Intra-
niche effects are for f2 similar to those for f1; in addition our experiments suggest some
inter-niche effects that are probably due to f2’s shape and go beyond those discussed
for f1. Specifically, compared to the prediction based on the niching rule, there is some
over-sampling of the two greater local optima (to the left in Figure 11) at the expense
of the two smaller local optima (to the right in Figure 11). This over-sampling is less
pronounced for the M variant compared to the M+C variant, however.

Overall, our experiments on f1 and f2 show reliable niche maintenancs and sug-
gest that Equation 44, and in particular its special case the niching rule, can be applied
also when the classical GA operators of GENERALPCGA are used. At least, our ex-
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Figure 11: The performance of the probabilistic crowding algorithm GENERALPCGA
on the f2 fitness function. We show empirical results, averaged over 10 experiments, at
generation 100 for the case of mutation only (the M variant) at the top; for the case of
both mutation and crossover (the M+C variant) at the bottom.

periments suggest this for fitness functions that are similar in form to f1 and f2. Ex-
perimentally, we have found a slight over-sampling of higher-fit individuals compared
to lower-fit individuals. Clearly, this over-sampling effect can have several underlying
causes, including the noise induced by the GA’s sampling, discretization of the un-
derlying continuous functions into binary strings over which search is performed, and
limitations of our analytical models. We leave further investigation of this issue as a
topic for future research.
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Less conservative (set g = 1) Conservative (set g = 50)
Desired 
 Population size Observed 
o Population size Observed 
o
0:80 11 0:74 27 1:0
0:95 17 0:93 32 1:0

Table 2: Population size predicted from desired reliability, along with observed relia-
bility.

Probability Population Size, f1 Population Size, f2

 Classical; nC Novel; nN Classical; nC Novel; nN

0:9 20 18 79 50
0:99 32 28 125 79
0:999 43 39 171 109
0:9999 55 49 217 138
0:99999 66 59 263 167
0:999999 78 70 309 197

Table 3: Population sizing results for probabilistic crowding for the f1 and f2 functions.
The population sizes for the classical and novel population sizing models as shown for
each of the test functions f1 and f2.

8.3 Population Sizing Experiments and CROWDINGSTEP

Here we show how the population sizing results in Section 5.4 can be used, and provide
experimental verification by means of the CROWDINGSTEP algorithm. Specifically, we
consider the f4 fitness function used in Section 8.1.2. Suppose that we want to reliably
maintain the three best fit niches X6; X7; and X8: For population sizing purposes, we
need to consider all of these niches.

We used Equation 51 for population sizing as follows: Given known parameters
�, r, 
, and g, we computed the population size n. Two different approaches were used
to set g. We either set g = 1 or g = 50, since 50 generations are used in the experiments
here. The first setting g = 1 corresponds to essentially ignoring the effect of niche loss
over generations. The second setting g = 50 is more conservative, and takes niche
loss into account as discussed in Section 5.4. Using (51), the conservative population
size (using g = 50) is nC = 27; while the less conservative population size (g = 1) is
nC = 11. Observed 
o is computed as follows. For desired 
, re experimental runs were
performed. Runs in which the top � niches did not have a representative were counted,
resulting in a value for failure runs rf . These are runs where, at the last generation, at
least one of the X6, X7, or X8 niches did not have a representative. Finally, the observed

o was computed as 
o = (re � rf )=re. In the experiments reported here, re = 100was
used.

In Table 3, the results from using the population sizing equation (51) are summa-
rized. We see that the less conservative population sizing approach is in closer cor-
respondence to the empirical data than the more conservative population sizing ap-
proach. This shows that the assumption of niche loss, at least for this particular test
function, might be overly conservative.

Additional population sizing results for f1 and f2 are shown in Table 3. We note
that the classical approach is intended as a model for deterministic crowding (before
convergence), while the novel approach is a model of probabilistic crowding (after con-
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vergence). With those differences in mind, the results are quite similar, and it is not
surprising that the classical approach gives more conservative results than our novel
approach, especially for f2 where the fitness ratio r = fmin=fmax is four times greater
than what r is for f1. This ratio difference impacts the classical approach more than
our novel approach.

9 Conclusion and Future Work

Inspired by multimodal fitness functions and deterministic crowding (Mahfoud, 1995),
we have investigated crowding in genetic algorithms, and in particular the probabilistic
crowding approach. Probabilistic crowding is a tournament selection algorithm using
distance-based tournaments, and it employs a probabilistic rather than a deterministic
acceptance function as basis for replacement. The two core ideas in probabilistic crowd-
ing are to (i) hold pair-wise tournaments between bitstrings (or individuals) with small
distance and (ii) employ probabilistic tournaments. These two principles leads to a
niching algorithm which is simple, predictable, and fast. In fact, our approach is an
example instantiation of an algorithmic framework that supports different crowding
algorithms, including different replacement rules and the use of multiple replacement
rules in a portfolio. We have shown, analytically and experimentally, that our approach
gives stable, predictable convergence that approximates the niching rule, a gold stan-
dard for niching algorithms. We also introduced a novel, more general niching rule,
that generalizes the niching rule known from previous research. In addition, a new
population sizing result for crowding algorithms was provided.

This research also identifies probabilistic crowding as a member of a class of al-
gorithms, which we call local tournament algorithms. Local tournament algorithms
also include deterministic crowding, restricted tournament selection, parallel recom-
binative simulated annealing, the Metropolis algorithm, and simulated annealing. By
introducing portfolios of replacement rules, we have shown how replacement rules
from different local tournament algorithms can be combined in a principled way. We
illustrated the benefit of using portfolios by combining deterministic and probabilistic
crowding, thereby increasing performance on “flat” fitness functions.

Future work includes the following. First, experiments on harder fitness functions,
such as complex Bayesian networks, would be interesting. Second, a more detailed
Markov chain analysis could perhaps explain some of the intra- and inter-niche effects
found in experiments. Third, it would be interesting to further explore our novel pop-
ulation sizing result, in order to more fully understand what it means for other niching
algorithms.
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