Carnegie Mellon University

From the SelectedWorks of Ole] Mengshoel

November, 2010

Towards Software Health Management with
Bayesian Networks

Johann Schumann

Ole] Mengshoel, Carnegie Mellon University
Ashok Srivastava, NASA Ames Research Center
Adnan Darwiche

Available at: https://works.bepress.com/ole_mengshoel/12/

B bepress®

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/12/

Towards Software Health Management
with Bayesian Networks

Position Paper

Johann Schumann
SGT, Inc., NASA Ames

Johann.M.Schumann@nasa.gov

Ole J. Mengshoel cMuU-sv
Ole.J.Mengshoel@nasa.gov

Ashok N. Srivastava
NASA ARC

Ashok.N.Srivastava@nasa.gov

Adnan Darwiche UCLA

darwiche@cs.ucla.edu

ABSTRACT

More and more systems (e.g., aircraft, machinery, cars) rely
heavily on software, which performs safety-critical opera-
tions. Assuring software safety though traditional V&V has
become a tremendous, if not impossible task, given the grow-
ing size and complexity of the software.

We propose that iSWHM (Integrated SoftWare Health
Management) can increase safety and reliability of high-
assurance software systems. iISWHM uses advanced tech-
niques from the area of system health management in order
to continuously monitor the behavior of the software during
operation, quickly detect anomalies and perform automatic
and reliable root-cause analysis, while not replacing tradi-
tional V&V. Information provided by the iSWHM system
can be used for automatic mitigation mechanisms (e.g., re-
covery, dynamic reconfiguration) or presented to a human
operator. iISWHM’s prognostic capabilities will further im-
prove reliability and availability as it provides information
about soon-to-occur failures or looming performance bottle-
necks. In this paper, we will discuss challenges and future
potential and describe how Bayesian networks (BN) could
be used for iISWHM modeling.

Categories and Subject Descriptors

D.2 [Software Engineering]: Distribution, Maintenance,
Enhancement

1. INTRODUCTION

In modern aircraft and other complex machinery, impor-
tant electrical, mechanical, and hydraulic components and
systems are monitored by ISHM (Integrated System Health
Management) systems. These can detect, diagnose, predict,
and mitigate adverse events during the operation of the sys-
tem. With the help of such diagnostics and prognostics tech-
niques, appropriate mitigation strategies can be selected (re-

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FSE/DSP 2010 FSE/SDP Workshop

Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

placement or repair, switch to redundant systems, etc.).

iISWHM (intelligent Software Health Management) extends
this approach to software systems. An iSWHM system con-
tinuously monitors the behavior of the software and the in-
terfacing hardware or sensor components. Using an abstract
model of the software (e.g., a Bayesian statistical model),
the iISWHM can detect unexpected behavior, reason about
its root cause (failure identification) and trigger failure re-
pair or mitigation actions. A similar mechanism can be used
for prognostic purposes, trying to reliably predict possible
software and/or system failures in the future.

In principle, an iISWHM system could operate similar to
a traditional ISHM system, but would focus its attention on
software instead of hardware. However, there are substantial
differences between hardware and software systems:

e Software errors do not develop when the software is
in operation but are introduced at some stage of the
software development life cycle, as there is typically
no wear-and-tear effects in software. Examples include
requirements errors, design flaws, or coding errors, just
to mention a few. If they are not detected and removed
during testing, they remain (dormant) in the software
system and can show up during operation.

e Failures in software often occur due to problematic in-
teroperation with hardware. Hardware systems (and
their sensors) might behave differently than expected,
and thus could cause software failure. Such a differ-
ent behavior could be by accident during development
(e.g., a change in hardware is not reflected in the soft-
ware design), as a result of hardware failure (e.g., a
broken sensor cable, or a disabled sensor), or grad-
ual degradation (e.g., signal noise increases beyond the
specified level and causes the SW to behave errati-
cally). Likewise, interoperation with human operators
or other software systems can cause problems.

e Because many software systems interact with human
operators, it is possible that the human can engage the
system in an unexpected way due to the human mis-
understanding the entire state of the system. In aero-
nautical applications on Flight Management Systems
(FMS), this is called “Mode Confusion”. If a pilot ex-
periences mode confusion, he or she can interact with
the system in unanticipated ways. Although verifica-
tion and validation of the Flight Management System

Software can anticipate many such interactions, it is
possible that the human operator could give a com-
mand which is unanticipated for a given configuration
of the FMS.

e Many hardware systems have extremely complex physics-

based models, which are used to predict the behav-
ior of the system. These models can take the form
of differential equations, difference equations, or other
generative models based on physical laws. In general,
software systems do not obey such physical laws. It
is important to note, however, that the software sys-
tems themselves may be used to model or incorporate
physical laws such as the case for motion dependent
control systems. These models provide an interesting
intermediate point between the two extremes of pure
hardware systems with physical models and general
software systems

All these differences (and commonalities) between ISHM
of physical systems and software systems must be taken into
account when developing novel techniques for an intelligent
software health management system. Like all fault detection
and monitoring systems, our iISWHM system is implemented
as a piece of software itself. Safety analysis has to ask: “QUis
CUSTODIET IPSOS CUSTODES?” (Juvenal, “Who guards the
guardians?”). This means that iSWHM systems must be at
least as safe and dependable as the software they monitor
(“host software”).

Some examples of major failures of safety-critical soft-
ware systems can illustrate what kinds of software errors
and problems an iSWHM system has to cope with. In Ari-
ane V, several software modules from the smaller Ariane IV
had been re-used [30]. However, the range of certain sen-
sor values was larger (due to different physical dimensions
and construction), which led to an uncaught overflow er-
ror, causing the rocket to behave erratically and required its
destruction.

The recent incident with the NASA DART probe [4] was
mainly caused by software problems. One major issue was
that the GPS receiver was replaced just prior to launch
with a different model, with different noise and bias without
proper adaptation of the software. Automatic error correc-
tion in the navigation module caused wrong (biased) posi-
tion and velocity values to be used as reference, causing the
spacecraft to miss important trajectory points and to bump
into the target satellite.

However, we do not claim that a SWHM system could
have prevented all of these software-related mishaps.

2. ISWHM GOALS

While the overall goal of iSWHM is to extend and aug-
ment traditional V&V for a full lifecycle protection of soft-
ware systems, thus ultimately enabling in-the-field assurance
of composed software intensive systems, iISWHM needs to
provide the following capabilities:

e iSWHM needs to continuously monitor the software
under scrutiny. That software can be a compact piece
of embedded software, or a huge, distributed software-
rich system of systems, which might consist of hetero-
geneous components. It also must monitor the inter-
actions of the software with the hardware, as many

software faults originate (or are triggered) by anoma-
lies in software-hardware interactions.

e iISWHM should provide model-based fault detection,
fault identification (root cause analysis) and decision
support (for mitigation systems or human operators).

e iISHWM should provide prognostic capabilities for en-
hanced system reliability, availability, and performance.
iISWHM will not only react on problems that already
occurred, but will be able to give future prognosis on
performance (e.g., by predicting computational bottle-
necks), availability, and reliability (prognosis of loom-
ing problems, e.g., memory leaks, overfull file systems,
overloaded network connections).

e iSWHM will be capable of detecting environmental
changes and emerging behaviors as those cannot be
detected (by definition) during pre-deployment verifi-
cation and validation (V&V).

e iISWHM will need to undergo rigorous V&V itself, as
the iISWHM must be at least as reliable as the system
it monitors.

e iSWHM models and reasoning capabilities must be
able to minimize the number of false positives (spuri-
ous alarms) and false negatives (undetected failures).

e iISWHM must be integrated seamlessly with traditional
V&V, as it is not intended to replace V&V but to
augment it for in-the-field software assurance. In par-
ticular, pre-deployment V&V will provide verification
credit. Also V&V information will be perused to im-
prove iISWHM models.

Whereas ISHM is a mature field, research on the specific
topic of software health management is still in its infancy.
The 2009 SHM workshop [16] held during the Conference
on Space Mission Challenges for Information Technology
(SMC-IT 2009) gives an overview of some of the state-of-the-
art approaches. Obviously, monitoring of software, while it
is in operation, is an important topic of research. Extend-
ing the notion of runtime monitors for runtime verification
enables the designer to explore possible fault states of the
software in advance (see [31}8]). The dynamic monitoring
of highly reliable and redundant software poses its own chal-
lenges (e.g., [12]). Other SWHM research focuses on spe-
cific software architectures that are particularly amenable
for SWHM (e.g., [9]). Some research describes SWHM in
architectures that conform to the ARINC 653 standard [1]
while others discuss the automated generation of fault trees
[18]. A process-oriented approach to regularly check on the
health of a (large) software system has been discussed in
[26]. Here, the goal is that regular (non-automated) health
checks improve the technical condition of the software and
has positive economic effectiveness.

3. TECHNOLOGY

The principle architecture of an iISWHM system (Figure[l)
consists of four components: the system (SW and hardware)
to be monitored; a health model of the system; the iSWHM
reasoning engine that performs failure detection; identifica-
tion and prognostics; and components for failure annuncia-
tion or failure mitigation. In the following, we will focus on

iISWHM modeling and reasoning aspects, as their scalability
is particularly important for large-scale and heterogeneous
software systems. Under the assumption that modeling and
reasoning is done using Bayesian networks and arithmetic
circuits [6} 25], we will also briefly discuss existing techniques
and research needed to improve V&V of iSWHM.

AC Controller
(Software)

PiIotanut

HE)
LA
iISWHM

Executive

©)

Figure 1: Principal architecture for iISWHM for an
aircraft controller: pilot input and feedback (F) pro-
duce actuator output (O). Hardware health sensors
(H), signal quality data (I), and software quality
data (S) go into the iISWHM system, which produces
a recovery/mitigation signal (C).

3.1 Advanced iISWHM Modeling

Many software systems include a wide range of different
and heterogeneous components along many dimensions, e.g.,
embedded vs. ground SW, autonomous vs. human-in-the-
loop. As a consequence of the uncertain, heterogeneous,
and interacting nature of these systems, as well as their
environments, there is a need for supporting probabilistic
modelling and analysis paradigms, techniques, and tools.
We believe that it is important to pursue research regard-
ing, on the one hand, probabilistic modeling and reasoning
approaches (including dynamic Bayesian networks), and on
the other hand, probabilistic model checking and more gen-
erally formal methods that involve probabilities. In particu-
lar, there is a need to integrate dynamic Bayesian networks
research and research on probabilistic model checking based
on Markov chains, as previous research efforts have largely
been pursued independently and in different research com-
munities.

We emphasize large-scale probabilistic graphical models,
in particular hierarchical and compositional Bayesian net-
works, and algorithms for probabilistic inference and ma-
chine learning using graphical models to ensure scalability
to large software systems. These Bayesian graphical models
allow the designer to specify large models (for large software
systems) in a hierarchical and structured way and use differ-
ent levels of abstraction for the individual SW components.

Great progress has been made over the last decade, in
learning and reasoning using probabilistic graphical models,
including Bayesian networks (BN) and Markov networks. In
addition to being well-suited to automated analysis, these
graphical models are also amenable to visualization!. While
most BN inference problems are computationally hard in
the general case, efficient algorithms have been developed
[6/17] that open the path toward successful applications in
a wide range of automated reasoning areas, for example in
model-based diagnosis (e.g., [21]), sensor validation [2][22],
or intelligent data analysis [15, [27].

'e.g., http://reasoning.cs.ucla.edu/samiam

3.2 iISWHM with Arithmetic Circuits

Based upon sensor signals and health monitor signals, the
iISWHM engine tries to disambiguate the information and lo-
cate the failures that have occurred, using a representation
of a model of the host software. The reasoning engine often
also makes decisions on how to overcome the failure or to re-
cover the system. Because most inference problems needed
for fault detection and identification are computationally ex-
pensive, we propose to use techniques that compile BNs into
a data-structure, which allows highly optimized and efficient
processing. For Bayesian networks, the fourth author has de-
veloped a translation of BNs into arithmetic circuits [3,/5]/6].
Powerful optimizations keep these data structures compact,
so that reasoning can be performed over large models. Fu-
ture research will investigate the compilation of hierarchical
and heterogeneous Bayesian network models.

3.3 V&V of iSWHM Systems

The iISWHM system is a piece of software itself. Based
on our discussion above, it is obvious that the iSWHM sys-
tem is highly safety critical. False alarms or undetected
faults can have severe consequences, ranging from unneces-
sary switching to redundant components to potential loss of
life.

Therefore, all iSWHM system components have to un-
dergo rigorous V&V as well as certification. In general, this
involves two major parts: (a) V&V of the iSWHM model,
i.e., assuring that the model reflects the software system and
its failures/faults correctly and sufficiently, and (b) V&V of
the algorithm and implementation of the proper iISWHM
system, i.e., the reasoning engine and executive that will be
running during the operation of the overall system.

As discussed earlier, our iSHWM models are represented
as Bayesian networks, which can be compiled into arithmetic
circuits of bounded size [6], which enables the iISWHM en-
gine to perform efficient reasoning. However, this executive
is a highly non-standard algorithm, which means that spe-
cific V&V techniques are needed. In particular, the following
research questions need to be addressed:

e Correctness and completeness of model compilation:
will reasoning with arithmetic circuits yield the same
results as reasoning over the BN?

e Functional correctness of the ISHM reasoning execu-
tive: does the implementation of the executive perform
the right kinds of reasoning operations on the compiled
model?

e Runtime and memory limitations: can the run-time
for reasoning be limited (real-time guarantee)? Can
the memory requirements for reasoning be limited up-
front, such that no dynamic memory handling is nec-
essary?

For V&V, advanced verification and validation tools, like
the Java PathFinder model checke , automatic generation
of test-cases with symbolic PathFinder [24], compositional
verification [11], and parametric testing [13, (28] will provide
a basis. It is expected that techniques for the verification
and validation of system health management software (e.g.,
[19,(29]) can be adapted for iSWHM.

nttp://javapathfinder.sourceforge.net

4. CONCLUSIONS

iSWHM is a key technology for detecting, diagnosing, pre-
dicting, and mitigating the adverse events during the opera-
tion of safety-critical software systems. The use of Bayesian
networks for modeling and model-compilation into arith-
metic circuits offers advantages (like well-defined semantics,
wide range of techniques, tools, and algorithms, as well as
exact compilation), which makes their use in monitoring
the health of safety-critical and embedded software possi-
ble. Approaches for V&V and certification of iSWHM can
be based upon advanced verification tools (like model check-
ing), but substantial research will be necessary to address
these issues.
Acknowledgements This work is in part supported by
the NASA Aviation Safety Program IVHM project (NRA
NNXO08AY50A).

5. REFERENCES

[1] M. Barry and G. Horvath. Goal-based Flight Software
Health Management Services. In SHM 2009, 2009.

[2] T. W. Bickmore. A probabilistic Approach to Sensor
Data Validation. In ATAA, SAE, ASME, and ASEE
28th Joint Propulsion Conf. and Ezhibit, 1992.

[3] M. Chavira and A. Darwiche. Compiling Bayesian
networks using variable elimination. In Proc.
1JCAI-07, pages 2443-2449, 2007.

[4] http://www.nasa.gov/pdf/
148072main_DART_mishap_overview.pdf

[5] A. Darwiche. A differential Approach to Inference in
Bayesian Networks. JACM, 50(3):280-305, 2003.

[6] A. Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

[7] M. desJardins, P. Rathod, and L. Getoor. Bayesian
Network Learning with Abstraction Hierarchies and
context-specific Independence. In Proc. ECML-2005,
volume 16, 2005.

[8] W. Dong, M. Leucker, and C. Schallhart. Impartial
anticipations in runtime verification. In 6th Int. Symp.
on Automated Technology for Verification and
Analysis (ATVA’08), vol 5311 LNCS. Springer, 2008.

[9] A. Dubey, G. Karsai, R. Kereskenyi, and
M. Mahadevan. A Real-Time Component Framework:
Experience with CCM and ARINC-653. IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing, 2010.

[10] N. Friedman and M. Goldszmidt. Learning Bayesian
Networks with local Structure. In Proc. UAI-96, pages
252-262, 1996.

[11] D. Giannakopoulou and C. S. Pasareanu. Interface
Generation and compositional Verification in Java
PathFinder. In FASE, vol 5503 of LNCS, pages
94-108. Springer, 2009.

[12] A. Goodlow and L. Pike. Toward Monitoring
fault-tolerant embedded Systems. In SHM-2009, 2009.

[13] K. Gundy-Burlet, J. Schumann, T. Menzies, and
T. Barrett. Parametric Analysis of ANTARES
Re-entry Guidance Algorithms using advanced Test
Generation and Data Analysis. In iSAIRAS, 2008.

[14] Y. Guo, D. Wilkinson, and D. Schuurmans. Maximum
Margin Bayesian Networks. In Proc. UAI, page 233,
2005. AUAI Press.

[15] P. Jones, C. Hayes, D. Wilkins, R. Bargar, J. Sniezek,
P. Asaro, O. J. Mengshoel, D. Kessler, M. Lucenti,

I. Choi, N. Tu, and J. Schlabach. CoORAVEN:
Modeling and Design of a Multimedia intelligent
Infrastructure for collaborative Intelligence Analysis.
In Proceedings of the International Conference on
Systems, Man, and Cybernetics, pages 914-919, 1998.

[16] G. Karsai, editor. st International Workshop on
Software Health Management (SHM 2009). ISIS,
Vanderbilt University, 2009.

[17] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles And Techniques. MIT Press, 2009.

[18] T. Kurtoglu, R. Lutz, and A. Patterson-Hine. Using
auto-generated Diagnostic Trees for optimized Fault
Handling. In SHM 2009, 2009.

[19] A. E. Lindsey and C. Pecheur. Simulation-based
Verification of autonomous Controllers via Livingstone
pathfinder. In TACAS 2004, vol 2988 of LNCS, pages
357-371. Springer, 2004.

[20] O. J. Mengshoel. Understanding the Role of Noise in
Stochastic Local Search: Analysis and Experiments.
Artificial Intelligence 172:8-9, pages 955-990, 2008.

[21] O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira,
S. Poll, and S. Uckun. Diagnosing Faults in electrical
Power Systems of Spacecraft and Aircraft. In Proc.
TAAI-08, pages 1699-1705, 2008.

[22] O. J. Mengshoel, A. Darwiche, and S. Uckun. Sensor
Validation using Bayesian Networks. In iSAIRAS,
2008.

[23] O. J. Mengshoel, D. Roth, and D. C. Wilkins.
Portfolios in Stochastic Local Search: Efficiently
Computing Most Probable Explanations in Bayesian
Networks. JAR (accepted), 2010.

[24] C. S. Pasareanu and W. Visser. Symbolic Execution
and Model Checking for Testing. In Haifa Verification
Conf., vol 4899 of LNCS, pages 17—18. Springer, 2007.

[25] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, 1988.

[26] M. Pizka and T. Panas. Establishing economic
Effectiveness through Software Health Management.
In SHM 2009, 2009.

[27] C. C. Ruokangas and O. J. Mengshoel. Information
filtering using Bayesian networks: Effective user
interfaces for aviation weather data. In Int. Conf on
intell. User Interfaces, pages 280-283, 2003.

[28] J. Schumann, A. Bajwa, and P. Berg. Parametric
Testing of Launch Vehicle FDDR Models. In ATAA
Space, 2010.

[29] J. Schumann, A. Srivastava, and O. Mengshoel. Who
guards the Guardians? — toward V&V of Health
Management Software (short paper). In Runtime
Verification 2010 (submitted), 2010.

[30] Wired.com: "History’s Worst Software Bugs”, 2009.

[31] C. Zhao, W. Dong, J. Wang, P. Sui, and Z. Qi.
Software active online Monitoring under anticipatory
Semantics. In SHM 2009, 2009.

http://www.nasa.gov/pdf/
148072main_DART_mishap_overview.pdf

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	November, 2010

	Towards Software Health Management with Bayesian Networks
	Introduction
	iSWHM Goals
	Technology
	Advanced iSWHM Modeling
	iSWHM with Arithmetic Circuits
	V&V of iSWHM Systems

	Conclusions
	References

