
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

February, 2011

Initialization and Restart in Stochastic Local
Search: Computing a Most Probable Explanation
in Bayesian Networks
Ole J Mengshoel, Carnegie Mellon University
David C Wilkins, Stanford University
Dan Roth, University of Illinois at Urbana-Champaign

Available at: https://works.bepress.com/ole_mengshoel/11/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/11/

Initialization and Restart in Stochastic Local
Search: Computing a Most Probable
Explanation in Bayesian Networks

Ole J. Mengshoel, Member, IEEE, David C. Wilkins, and Dan Roth, Member, IEEE

Abstract—For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or

approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are

effective for initialization? When should the search process be restarted? In the present work, we investigate these research questions

in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel

approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and

trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on

initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE

computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization

and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random

initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique

tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

Index Terms—Stochastic local search, Bayesian networks, initialization, restart, finite mixture models.

Ç

1 INTRODUCTION

MULTIVARIATE probability distributions play a central
role in a wide range of automated reasoning and state

estimation applications. Multivariate probability distribu-
tions can be decomposed by means of Bayesian networks
[1], factor graphs [2], Tanner graphs, Markov random fields
[3], [4], arithmetic circuits [5], or clique trees [6], [7], [8]. If
the resulting graph decomposition is relatively sparse,
efficient reasoning and learning algorithms exist.

In this paper, we focus on reasoning in the form of
stochastic local search in Bayesian networks (BNs). Stochas-
tic local search (SLS) algorithms are among the best known
for computationally hard problems including satisfiability
(SAT) [9], [10], [11], [12]. SLS algorithms have also been
successful in computing the most probable explanation [13],
[14], [15], [16], [17], [18] and the maximum a posteriori
hypothesis [19] in Bayesian networks. While the details of
different SLS algorithms vary [12], by definition they use
noise and initialization algorithms in addition to hill-
climbing; SLS algorithms typically also rely on restarts.

Our focus in this work is on initialization and restart.
Specifically, we investigate the following research questions:

How do different SLS initialization algorithms impact
performance? How can their effect be analyzed? and What
is the impact of the restart parameter? In answering these
questions, we consider the Stochastic Greedy Search (SGS)
algorithm, an SLS approach for computing MPEs in BNs [14],
[15]. The stochastic local search part of SGS is a generalization
of the GSAT and WALKSAT family of algorithms [9], [20], [10]
to the probabilistic setting of BNs, and SGS is also related to
other SLS algorithms for BN computation [21], [13], [19].
Specifically, our contribution in this work is twofold. Our
first contribution consists of two novel initialization algo-
rithms. These algorithms are generalizations of the Viterbi
approach [22] and use Viterbi to exactly compute MPEs for
tree-structured BNs. Algorithms that exploit tree-structured
graphs or subgraphs are well known [2], [3], [4]; in this paper,
we discuss how such algorithms can be used for SLS
initialization in general BNs. Informally, these algorithms
construct explanations that are good approximations to
MPEs, and these explanations make up starting points for the
hill-climbing phase of SGS. In application BNs, we show
experimentally that these and other initialization algorithms
can substantially improve performance. Our second con-
tribution rests on the belief that the research questions raised
above are best answered within a solid mathematical
framework. Consequently, we carefully develop a mathe-
matical framework for SLS analysis, based on probability
theory and mixture distributions, and fit mixture models to
SLS run-length data in experiments. We thus help improve
the theoretical foundations of SLS; this is significant because
the theoretical foundations of SLS have lagged compared
to the impressive experimental performance of these algo-
rithms [23], [24], [17].

The most closely related research to ours has focused on
runtime variability, SLS restart, and SLS initialization. An

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011 1

. O.J. Mengshoel is with Carnegie Mellon University, NASA-Ames
Research Center, Mail Stop 269-3, Bldg. T35-B, Rm. 107, PO Box 1,
Moffett Field, CA 94035-0001. E-mail: ole.mengshoel@sv.cmu.edu.

. D.C. Wilkins is with Symbolic Systems Program, Stanford University,
Bldg 460 Room 127, Stanford, CA 94305. E-mail: dwilkins@stanford.edu.

. D. Roth is with the Department of Computer Science, University of Illinois
at Urbana-Champaign, 3322 Siebel Center, 201 N. Goodwin Avenue,
Urbana, IL 61801. E-mail: danr@cs.uiuc.edu.

Manuscript received 25 May 2007; revised 28 Dec. 2009; accepted 3 Mar.
2010; published online 7 June 2010.
Recommended for acceptance by J. Pei.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-05-0237.
Digital Object Identifier no. 10.1109/TKDE.2010.98.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

easy-hard-easy runtime pattern has been observed for the
NP-complete satisfiability (SAT) problem [25], and great
variability in runtimes has been observed in the hard region
of SAT [26]. Even in the easy region, there is great
variability in the runtime for an ensemble of problem
instances [27]. Based on these observations, the benefit of
randomized restarts has been established, both for SLS [28]
and for systematic search [29]. Motivated by high runtime
variability for hard problem instances, Bayesian models that
predict inference runtimes have been learned and then used
to dynamically optimize the SLS restart point [30]. In other
related research, offline and online computations are
combined to dynamically control restarts [31], and restart
policies based on beliefs about problem instance hardness
are used to make search more efficient [32] . Finally, we note
that initialization has turned out to be crucial in making SLS
competitive with other approaches to BN computation,
especially in application BNs [14], [15], [19], [13].

The rest of this paper is organized as follows: Section 2
contains notation and fundamental concepts. In Section 3, we
introduce our SLS approach including our novel initialization
algorithms. In Section 4, we analyze our approach using
techniques from probability theory and finite mixtures.
Experimental results are presented in Section 5. In Section 6,
we conclude and present directions for future research. We
note that earlier versions of this research have been reported
previously [14], [15].

2 PRELIMINARIES

This section introduces notation and known results related
to Bayesian networks, the Viterbi approach, and tree-based
reparameterization.

2.1 Fundamental Concepts and Notation

Bayesian networks [1], defined as follows, organize random
variables in directed acyclic graphs (DAGs):

Definition 1 (Bayesian network). A Bayesian network is a
tuple � ¼ ðXX, EE, PP Þ, where ðXX, EEÞ is a DAG with n ¼ jXXj
nodes, m ¼ jEEj edges, and an associated set of conditional
probability distributions PP ¼ fPrðX1 j �X1

Þ; . . . ;PrðXnj
�Xn
Þg. Here, PrðXi j �Xi

Þ is the conditional probability
distribution for Xi 2 XX. Further, let �Xi

represent the
instantiation of the parents �Xi

of Xi. The independence
assumptions encoded in ðXX, EEÞ imply the joint probability
distribution

PrðxxÞ ¼
Yn

i¼1

Prðxi j �Xi
Þ; ð1Þ

where PrðxxÞ ¼ PrðX1 ¼ x1, . . . , Xn ¼ xnÞ.

PrðXi j �Xi
Þ is also known as a conditional probability

table (CPT). The notation �X is used to represent the (here
discrete) state space of a BN node X. A BN may be given
evidence by clamping some nodes to their observed states.
An instantiation of the remaining nodes is an explanation,
formally defined as follows:

Definition 2 (Explanation). Consider a BN � ¼ ðXX, EE, PP Þ
with evidence ee ¼ fx1;; xmg ¼ fX1 ¼ x1;; Xm ¼ xmg.

An explanation xx is defined as xx ¼ fxmþ1;; xng ¼
fXmþ1 ¼ xmþ1;; Xn ¼ xng. A subexplanation yy of xx is
defined as yy � xx.

To simplify the exposition, one may regard zz ¼ xx [e,
and consider PrðzzÞ ¼ Prðxx, eeÞ ¼ Prðxx j eeÞPrðeeÞ instead of
the closely related Prðxx j eÞ. The BN � is typically left
implicit when discussing an explanation xx for �.

Given a BN with evidence or no evidence, various forms
of BN inference can be performed [1], [6], [7], [33], [8], [19].
This paper focuses on computing the most probable
explanation, also known as belief revision [1].

Definition 3 (Most probable explanation (MPE)). Comput-
ing an MPE in a BN is the problem of finding an explanation
xx� such that Prðxx�Þ � PrðyyÞ, where yy is any other explanation
in the BN. The set of the k most probable explanations is
defined as XX� ¼ fxx�1;; xx�kg, where Prðxx�Þ ¼ Prðxx�1Þ ¼
� � � ¼ Prðxx�kÞ.

In other words, no other explanation has higher
probability than xx�i for 1 � i � k. Several explanations with
the same probability can exist, and we therefore say “an”
MPE rather than “the” MPE.

It can be shown by reduction from SAT that MPE
computation is NP-hard [34]. Approximating an MPE to
within a constant ratio-bound has also been proven to be
NP-hard [35]. Since inference in BNs is computationally
hard and the MPE problem is important in applications, it is
important to study inexact approaches, including SLS
algorithms, where estimates of xx� 2 XX� are computed.

Definition 4 (MPE (lower bound) estimate). Let xx� be an
MPE. A best-effort estimate of xx� is denoted x̂x�; if Prðx̂x�Þ �
Prðxx�Þ then x̂x� is a lower bound estimate.

SLS algorithms typically compute lower bound MPE
estimates x̂x�. In Section 3.1, we discuss one SLS algorithm,
Stochastic Greedy Search, in more detail.

2.2 Existing Dynamic Programming Algorithms

We now discuss forward and backward dynamic program-
ming for chains and trees; we denote these algorithms
TREEFDP and TREEBDP, respectively. We present this well-
known approach due to Viterbi [36], [22], for BNs that are
chains in some detail. The case of trees is a straightforward
extension since different paths down a tree are independent
and can be treated independently using essentially the same
algorithm. We introduce the following terminology for BNs
with such tree topologies.

Definition 5 (Backward tree, forward tree). Consider a BN
� ¼ ðXX, EE, PP Þ. If the underlying graph ðXX, EEÞ of � is a tree
where all nonleaf nodes have one or more children, then � is a
backward tree. If the underlying graph ðXX, EEÞ of � is a tree
where all nonroot nodes have one or more parents, then � is a
forward tree.

Y ! X Z is an example forward tree and Y X ! Z
is an example backward tree; see Fig. 2 for other backward
tree examples.

To simplify exposition, we now assume BN nodes with
S ¼ 2 states, say f0; 1g. The approach clearly generalizes to
S > 2. We consider a BN that is a chain X1 ! X2 ! � � � !

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011

XT of length T . The CPTs are denoted by PrðX1 ¼ x1Þ,
PrðX2 ¼ x2 j X1 ¼ x1Þ, . . . , PrðXt ¼ xt j Xt�1 ¼ xt�1Þ, where
xi 2 f0; 1g. The key observation that TREEFDP is based on is
the following. In order to compute the probability of the
most probable explanation of a subchain of length t � T , it
is sufficient to know S ¼ 2 numbers: 1) the probability of
the most probable explanation until node number t� 1,
assuming that the ðt� 1Þth node is set to 0; and 2) the
probability of the most probable explanation until node
number t� 1, assuming that the ðt� 1Þth node is set to 1.

More specifically, let xt 2 f0; 1g be the assignment of the
tth node. In order to compute an MPE, we operate on two
arrays, the D-array containing probabilities (such as Prðxx�Þ)
and the A-array containing states (such as xx�). Let DtðxtÞ be
the maximal probability of a sequence of assignments to
nodes X1; . . . ; Xt, with Xt ¼ xt. Let At�1ðxtÞ be the assign-
ment to the node Xt�1 in the most probable subexplanation
that assigns Xt ¼ xt.

For initialization in the TREEFDP algorithm, let D1ðx1Þ ¼
Prðx1Þ for x1 2 f0; 1g. These D1 values are simply priors.
Also set A0ðx0Þ ¼ fg. The recursive step is for the D-array

DtðxtÞ ¼ max
xt�12f0;1g

fDt�1ðxt�1ÞPrðxt j xt�1Þg;

while for the A-array, we get the recursive step

At�1ðxt�1Þ ¼ arg max
xt�12f0;1g

fDt�1ðxt�1ÞPrðxt j xt�1Þg:

The final assignments in the iterative loop are to DT ðXT ¼
0Þ and DT ðXT ¼ 1Þ for probabilities, and to AT�1ðXT ¼ 0Þ
and AT�1ðXT ¼ 1Þ for states.

Computing DT ¼ maxxT2f0;1gfDT ðXT ¼ xT Þg is one of the
last steps of the algorithm. Here, we choose the best of
the two probabilities DT ðXT ¼ 0Þ and DT ðXT ¼ 1Þ. For the
states, we similarly compute the last assignment
AT ¼ arg maxxT2f0;1gfDðXT ¼ xT Þg. Note that this is done
after computing AT�1ðxT Þ. Given the information in the A-
array, one just needs to perform a backtracking step in order
to compute the MPE xx� for the chain [22, p. 264, (35)].

The TREEBDP algorithm is similar to TREEFDP. Again,
there are two arrays, an array E containing probabilities,
and an array B containing states. The E-array corresponds
to the D-array, while the B-array corresponds to the A-
array. To save space, we refer to the literature [36], [22] for
further details.

The following result, adapted from Rabiner [22], sum-
marizes the performance of TREEBDP and TREEFDP.

Theorem 1. In a BN that is a backward tree, TREEBDP computes
an MPE xx�. In a BN that is a forward tree, TREEFDP computes
an MPE xx�.

Viterbi, generalized to arbitrary tree-structured graphi-
cal models, is called max-product belief propagation [2].
A tree-based reparameterization framework has been
developed [3], [4], which includes the belief propagation
[1] and sum-product algorithms [2] as special cases.
Within this reparameterization framework, there are
approximation algorithms for MPEs [3] and marginals
[4]. Our novel approaches to initialization, discussed in
Section 3.2.2, are based on TREEBDP and TREEFDP and
are closely related to the tree-based reparameterization
algorithm for MPE computation.

3 STOCHASTIC LOCAL SEARCH

In this section, we present our stochastic local search
algorithm, SGS, in Section 3.1. Our initialization algorithms,
the forward dynamic programming (GRAPHFDP) and
backward dynamic programming (GRAPHBDP) algorithms,
are discussed in Section 3.2.

3.1 Stochastic Greedy Search

Fig. 1 presents our SGS algorithm, discussed in more detail
elsewhere [15], [17], [18]. The structure of SGS is similar to
that of the seminal WALKSAT family of algorithms [20],
[10]. In SGS, as in WALKSAT, the MAX-FLIPS restart
parameter controls the number of flips made before SGS is
restarted. A try starts with initialization and ends after at
most MAX-FLIP flips. After MAX-FLIPS flips, if there is a
new try, a new explanation xx from which search restarts are
randomly generated; this is also similar to WALKSAT. If
exactly one initialization is performed at the beginning of
each try, a total of at most MAX-FLIPS + 1 operations are
performed per try. Two termination criteria are displayed in
Fig. 1; the lower bound ‘ � Prðxx�Þ and the MAX-TRIES
parameter. The latter is easy to understand, for the former
SGS terminates when the probability of the MPE estimate x̂x�

exceed the lower bound ‘, or Prðx̂x�Þ � ‘. While we assume
that ‘ is an input parameter, it can also be estimated during
search. Other termination criteria can easily be introduced.

MENGSHOEL ET AL.: INITIALIZATION AND RESTART IN STOCHASTIC LOCAL SEARCH: COMPUTING A MOST PROBABLE EXPLANATION IN... 3

Fig. 1. The stochastic local search algorithm, SGS, for computing
MPEs. SGS operates in two main phases: an initialization phase and a
local search phase. INITIALIZE applies initialization algorithms from II,
while SEARCH applies search algorithms from SS. SGS terminates if a
high-probability explanation is found or if the number of tries exceeds
MAX-TRIES.

There are some important differences between SGS and
many other WALKSAT-style algorithms. First, SGS searches
for an MPE in a BN, not a satisfying assignment in a CNF
logic formula. Second, SGS combines greedy and noisy
search algorithms in a portfolio SS with stochastic initializa-
tion algorithms in a portfolio II, while WALKSAT does not
use portfolios. Formally, we use the following definition
(see [18]):

Definition 6 (Stochastic portfolio). Let q � 1 and let � ¼
f�1; . . . ; �qg be a set of algorithms. A stochastic portfolio over
� is a set of q tuples � ¼ f�1; . . . ; �qg ¼ fð�1; p1Þ; . . . ;
ð�q; pqÞg where 0 � pi � 1,

Pq
i¼1 pi ¼ 1, and ð�i; piÞ means

that the ith algorithm �i, where 1 � i � q, is picked (and
executed) with selection probability pi when an algorithm is
selected from �.

Both II and SS are portfolios according to this definition.

3.2 Initialization Algorithms

Initialization algorithms play an important role in SGS and
other SLS algorithms [14], [15], [16]. We present below
several initialization algorithms for stochastic generation of
initial explanations. SGS uses a portfolio II of initialization
algorithm (or operators), and initialization of an explanation
takes place when INITIALIZE(II, �) is invoked. The algo-
rithms discussed in this section, as well as other initializa-
tion algorithms, can easily be incorporated in the
initialization portfolio II of SGS. Evidence ee in a BN is not
changed by any of these initialization algorithms, however,
in order to simplify the discussion, we often do not make
this explicit in the following.

3.2.1 Related SLS Initialization Algorithms

Uniform initialization (UN), the basis for our SGS/UN

experiments in Section 5, assigns initial states independently
and uniformly at random to an explanation xx. More
formally, suppose that we have a Bayesian network with
nodes XX. The uniform initialization algorithm goes through
all nodes X 2 XX. If X is a nonevidence node, each state x 2
�X has a probability of 1=j�Xj of being chosen to be part of
the initial explanation xx. An early approach to MPE
computation by means of stochastic methods used uniform
initialization and investigated three randomized search
techniques: iterative local search, simulated annealing, and
genetic search [21]. In general, SAT solvers have also
employed initialization uniformly at random, and innova-
tions have largely been made in the area of search heuristics.

In the late 1990s, the benefit of more advanced SLS
initialization algorithms when computing an MPE became
clear [13], [14], [15].

Forward simulation (FS), the basis for our SGS/FS

experiments in Section 5, is a well-known BN simulation
algorithm that operates as follows [37]: Suppose we have a
Bayesian network where VV represents the root nodes and CC
represents the nonroot nodes. Using FS, a root node V 2 VV
is initialized, i.e., its states chosen for inclusion in the initial
explanation xx; independently at random according to the
prior distribution PrðV Þ. A nonroot node C 2 CC is initi-
alized randomly according to its conditional distribution
PrðC j �CÞ, and only after all of its parent nodes �C have
been initialized. Clearly, both UN and FS are OðnÞ.

Kask and Dechter empirically found strong MPE
performance using greedy search combined with stochastic
simulation [1] after performing initialization using the
minibucket approximation algorithm [13]. This algorithm
[38] approximates bucket elimination and is useful for
problem instances with large induced width (or treewidth),
since bucket elimination has exponential space and time
complexity in induced width [39].

Developing an SLS approach for the MAP problem,
which generalizes the MPE problem for BNs, Park and
Darwiche investigated two search algorithms (hill-climbing
and taboo search) as well as four initialization algorithms
[19]. Since the MAP problem is strictly harder than the MPE
problem [19], they in fact use MPE computation as an
initialization algorithm.

3.2.2 Novel Dynamic Programming Algorithms

We now turn to GRAPHFDP and GRAPHBDP. Unlike
TREEBDP and TREEFDP, GRAPHFDP and GRAPHBDP can
handle arbitrary BNs and not only trees and chains. Both
these algorithms split a BN � into trees, initialize each tree
independently using Viterbi (see Section 2.2), and then
collect the subexplanations for all trees to give an explana-
tion for the entire BN �. More formally, let XX be the nodes
in a BN. These nodes are partitioned into k partitions

XX ¼ TT 1 [. . . [TTk; ð2Þ

where TT i \ TTj ¼ ; for i 6¼ j. All partitions TT i, where
1 � i � k, are either forward trees or backward trees.

Without loss of generality, we now assume that
GRAPHBDP is used and that all TT i, where 1 � i � k,
therefore are backward trees. Consider the ith backward
tree TT i ¼ fXi1 ; . . . ; XiN g, where Xij 2 XX. For TT i, TREEBDP
computes the subexplanation

xx�i ¼ fXi1 ¼ xi1 ; . . . ; XiN ¼ xiNg; ð3Þ

which is an MPE for TT i according to Theorem 1. An MPE
estimate x̂x� for the complete BN � can now be generated by
GRAPHBDP simply by collecting subexplanations for all k
backward trees:

x̂x� ¼ xx�1 [. . . [xx�k: ð4Þ

The GRAPHBDP algorithm is presented in Fig. 3.
In constructing the trees fTT 1; . . . ; TTkg, some way to

introduce randomness is clearly needed in GRAPHBDP.
That is, we do not want every explanation generated using
INITIALIZE to be the same. Randomness is introduced by
constructing depth-first search trees where root nodes, and

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011

Fig. 2. Backward dynamic programming initialization in a nontree
Bayesian network. (a) The BN is decomposed, by GRAPHBDP, into two
backward trees T1 ¼ fX1; X3; X4; X5; X6g and T2 ¼ fX2; X7g. (b) The
BN is decomposed, again by GRAPHBDP, into two different backward
trees T1 ¼ fX1; X3g and T2 ¼ fX2; X4; X5; X6; X7g.

then the children of any node, are picked for processing
uniformly at random. We call this novel approach stochastic
depth-first search, STOCHASTICDFS, and summarize it as
follows:

Let � ¼ ðXX, EE, PP Þ be a BN, V 2 XX a root node, and ee
evidence. The algorithm STOCHASTICDFS ð�; V ; eeÞ performs
a depth-first search where all nonvisited children of V are
recursively visited uniformly at random. STOCHASTICDFS
outputs a backward treeTT i rooted inV and marks all nodes in
TT i as visited in �. In TT i, all nodes reachable from V along a
directed path in � are included, except those nodes in � that
are part of backward trees fTT 1, . . . , TT i�1g already created by
STOCHASTICDFS and thus already marked as visited.

In its first while-loop, GRAPHBDP decomposes a BN �
into trees, starting from the root nodes, resulting in a forest of
trees. Each tree TT in the induced forest of trees is then, in the
second while-loop, input to TREEBDP, and an MPE for TT is
thus computed. Given the combined operation of STOCHAS-

TICDFS and GRAPHBDP, we can show the following.

Theorem 2. Let � be a BN and ee ¼ fX1 ¼ x1;; Xm ¼ xmg
the evidence. The GRAPHBDP ð�; eeÞ algorithm creates a forest
of trees fTT 1; . . . ; TTkg in which each node X 2 XX of � ¼ ðXX,
EE, PP Þ participate in exactly one tree TT i, where 1 � i � k.

Proof. We first show that any node must be a member of at
least one tree. In � ¼ ðXX, EE, PP Þ, where VV � X are root
nodes, suppose for the purpose of contradiction that X 2
XX is not in any tree. Obviously, X is either a BN root
node, X 2 VV , or X is a BN nonroot node, X 2 XX � VV .
Case 1: If X 2 VV , it is the root of exactly one tree by
construction of GRAPHBDP and there is a contradiction.
Case 2: If X is a nonroot node, X 2 XX � VV , it is reachable

by STOCHASTICDFS from one or more root nodes, say
fV1; . . . ; Vmg � VV , through its parent nodes �X. Some
Vi 2 fV1; . . . ; Vmg must have been the first to have been
picked in the first while-loop of GRAPHBDP. At that
point, by construction of STOCHASTICDFS, X would
eventually have been included in Vi’s tree, thus giving a
contradiction and proving that any node must be a
member of at least one tree. Now we show that X 2 XX
cannot be member of two different trees. Suppose, for the
purpose of contradiction, that X 2 TT i and X 2 TTj with
respective root nodes Vi and Vj for i 6¼ j. The only
nontrivial case is X 6¼ Vi and X 6¼ Vj. Without loss of
generality, we assume that Vi was picked before Vj from
VV in the first while-loop of GRAPHBDP, so i < j. When
Vi was picked, and since X 2 TT i, there must be a path
from Vi to X and thus X is marked visited upon
inclusion in TT i. By construction of STOCHASTICDFS, X
cannot be included in another tree TTj for j > i, giving a
contradiction. An evidence node Xi in ee is treated exactly
like any other node except that it’s state xi is not
changed. We have shown that any node must be a
member of at least one tree and cannot be member of two
trees; three or more trees follows easily in a similar
manner, proving the claim. tu

The second while-loop in GRAPHBDP invokes TREEBDP
for each backward tree TT i. For each TT i, TREEBDP then sets up
the dynamic programming arrays, starting from the leaf
nodes. The arrays are one numerical array E and one state
arrayBas discussed in Section 2.2. Then, TREEBDP constructs
a subexplanation xx�i—as shown in (3)—by forward propaga-
tion and back-tracking over these DP arrays. Finally, all
subexplanations are collected to form x̂x�; see (4).

Example 1. Fig. 2 illustrates, for a small BN, how
GRAPHBDP may decompose a BN into two different
backward trees.

Example 1 illustrates the following general result, which
follows immediately from Theorem 2 and our discussion
above.

Corollary 3. Consider a BN � ¼ ðXX, EE, PP Þ with XX ¼
fX1;; Xng and evidence ee ¼ fX1 ¼ x1;; Xm ¼ xmg
where m < n. GRAPHBDPð�; eeÞ computes an explanation yy
over all nonevidence nodes YY ¼ fXmþ1; ; Xng��XX.

GRAPHFDP works similar to GRAPHBDP, but starts its
stochastic decomposition of the BN into a forest of forward
trees from the leaf nodes, constructs DP arrays from the root
nodes, and then propagates and backtracks. Both GRAPHFDP
and GRAPHBDP have complexity OðnÞ, since each node X 2
XX is processed at most once in both algorithms.

Both GRAPHBDP and GRAPHFDP are heuristics and have
limitations. At the same time, this way of generalizing
beyond the cases of chains and trees is fast and produces, as it
turns out, good explanations for certain tree-like BNs. Since
trees are generated in a randomized fashion, different
subexplanations fxx1; . . . ; xxkg which are MPEs for the
individual trees fTT 1; . . . ; TTkg are constructed and aggregated
to form different candidate MPEs. For trees, we will get an
MPE xx�; generally an explanation constructed in this manner

MENGSHOEL ET AL.: INITIALIZATION AND RESTART IN STOCHASTIC LOCAL SEARCH: COMPUTING A MOST PROBABLE EXPLANATION IN... 5

Fig. 3. The dynamic programming algorithm that iteratively creates
backward trees for a BN and then executes the Viterbi algorithm
separately on each of these trees.

is an MPE estimate x̂x�. Experimentation is needed to evaluate
their quality, and we return to this in Section 5.

4 THEORETICAL FRAMEWORK FOR SLS

SLS algorithms often have highly variable runtimes
depending on the initial explanation and may also be
restarted at different points of their execution. In this
section, we carefully analyze SGS, in particular, with regard
to initialization and restart.

4.1 Fundamentals of SLS Search

A number of nonnegative random variables can be
introduced to characterize the (pseudo)random behavior
of SLS algorithms including SGS. Let, for a try, the number
of initialization operations applied be a random variable X
and the number of search operations (flips, either greedy or
noisy) applied be a random variable Y . The total number of
operations applied in a try is then a random variable
Z ¼ X þ Y .

While SGS contains an initialization portfolio II, we

investigate general initialization portfolios in a related article

[17] and focus here on homogenous initialization portfolios.

These portfolios, containing a single initialization algo-

rithms, have the form II ¼ fða1; 0Þ; . . . ; ðaj; 1Þ; . . . ; ða�; 0Þg,
which can be abbreviated II ¼ fðaj; 1Þg ¼ fða; 1Þg or SGS/a.

In addition, we want to make the value of the restart

parameter MAX-FLIPS ¼ m explicit. To reflect these two

points, we say Zða;mÞ and Y ða;mÞ rather than just Z and Y ,

respectively.1 We now obtain the expected number of

operations in a try

EðZða;mÞÞ ¼ EðXÞ þEðY ða;mÞÞ ¼ 1þ EðY ða;mÞÞ; ð5Þ

where the last equality holds for SLS algorithms that
perform exactly one initialization per try, as will be
assumed in the following. The notation m ¼ 1 means that
there is no restart.

SGS stops a try when an explanation x̂x� such that
Prðx̂x�Þ � ‘, which we abbreviate x̂x�‘ , is found or when the
cutoff MAX-FLIPS is reached. In the former case, we say
that the try is successful, and define success probability
psða;mÞ accordingly. For the latter case, we define failure
probability pfða;mÞ.
Definition 7 (Success, failure of try). Let MAX-FLIPS ¼ m.

The success probability of an SLS try is

psða;mÞ :¼
Xm

i¼0

PrðY ða;1Þ ¼ iÞ: ð6Þ

The failure probability is pfða;mÞ :¼ 1� psða;mÞ.

An MPE estimate x̂x�‘ might be computed without much
search, if initialization is strong relative to the problem
instance. Therefore, summation starts with i ¼ 0 in (6) to
capture the probability of finding an x̂x�‘ as a result of
initialization. When there is a good fit between a problem
instance and an initialization algorithm, PrðY ða;1Þ ¼ 0Þ
can in fact be substantial, as we will see in experiments in
Section 5.

The expected number of SGS operations executed,
EðZða;mÞÞ is characterized by the following result. The
assumption psða;mÞ > 0 made below is reasonable since if
psða;mÞ ¼ 0 then using MAX-FLIPS ¼ m is futile.

Theorem 4 (Expected number of operations). Suppose that
psða;mÞ>0 and let MAX-FLIPS ¼ m. The expected number of
SLS operations executed during a run, EðZða;mÞÞ, is given by

EðZða;mÞÞ ¼ mpfða;mÞ þ
Pm

i¼0 iPrðY ða;1Þ ¼ iÞ þ 1

psða;mÞ
: ð7Þ

Proof. We introduce an indicator random variable R, and
let R ¼ 1 mean SLS success in the first try while R ¼ 0
means SLS failure in the first try. Using conditional
expectation gives

EðZða;mÞÞ ¼ EðZða;mÞ j R ¼ 0ÞPrðR ¼ 0Þ
þEðZða;mÞ j R ¼ 1ÞPrðR ¼ 1Þ:

ð8Þ

First, we consider the case where SLS terminates in the
first try and obtain

EðZða;mÞ j R ¼ 1Þ ¼ 1þ
Xm

i¼0

iPrðY ða;1Þ ¼ iÞ
psða;mÞ

; ð9Þ

where the first term is due to initialization and the second
term is due to flips and is normalized using psða;mÞ since
we assume that SLS terminates in this try. Second, we
consider the case where SLS does not terminate in the first
try and obtain EðZða;mÞ j R ¼ 0Þ ¼ EðZða;mÞ þmþ 1Þ,
which by linearity is

EðZða;mÞ j R ¼ 0Þ ¼ EðZða;mÞÞ þmþ 1: ð10Þ

Substituting (9), (10), PrðR ¼ 0Þ ¼ pfða;mÞ, and PrðR ¼
1Þ ¼ psða;mÞ into (8) and then solving for EðZða;mÞÞ
gives the desired result for a run (7). tu
Results similar to Theorem 3 have been obtained and

discussed previously [28], [40]. Theorem 3 is novel in that we
account for all operations including initialization, not only
flips Y ða;mÞ as earlier [28], [40].2 This is important when
initialization makes up a significant part of total computa-
tion time, which is the case when small values of MAX-
FLIPS are optimal or close to optimal. In addition, previous
analytical results do not contain an explicit proof as stated
above [28], [40].

The distributions of Zða;mÞ and Y ða;mÞ are also known
as run length distributions (RLDs) [12].3 A related random
variable, which we will denote Cða;mÞ, measures wall-
clock time in, say, milliseconds, and is known as the
runtime distribution (RTD). Given the additional variability
introduced in RTDs, due to empirical measurements that
depend on the software and hardware used in addition to
the random number of SLS operations, we mainly use RLDs
in this paper.

The performance of SLS algorithms varies dramatically
as the value of the restart parameter MAX-FLIPS varies.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011

1. We could also have added SGS’s other input parameters to Z and Y ,
however, this would have made for a too tedious notation for the purpose
of this paper, where we focus on initialization and restart.

2. Notation used previously is slightly different from ours. Instead of
EðY ðmÞÞ, Parkes and Walser use E�;m, where � represents a problem
instance and MAX-FLIPS ¼ m [28]. Schuurmans and Southey say EðT Þ
with restart after t flips instead of EðY ðmÞÞ [40].

3. A more descriptive terminology for Y ðmÞ would perhaps be “flip
length distribution,” but we will use the more common “run length
distribution” in this paper.

How can MAX-FLIPS, then, be set such that SLS perfor-
mance is optimized? In answering this question, one needs
to consider what, exactly, to optimize. It is clearly reason-
able to minimize the expected number of SLS operations,
and we consequently introduce the following definition.

Definition 8 (Expectation-optimal MAX-FLIPS). Let MAX-

FLIPS ¼ m and let Zða;mÞ be the random number of SLS

operations. The expectation-optimal value m�o for MAX-FLIPS

is defined as

m�oðaÞ ¼ arg min
m2NN

EðZða;mÞÞð Þ; ð11Þ

with ��oðaÞ ¼ EðZða;m�oÞÞ, often abbreviated m�o and ��o,
respectively.

Occasionally, we minimize the expected number of SLS
flips EðY ða;mÞÞ instead of minimizing EðZða;mÞÞ as above,
and define m�fðaÞ in a similar manner to m�oðaÞ and also
define ��fðaÞ ¼ EðY ða;m�fÞÞ.

4.2 Finite Mixture Models of SLS

We now discuss finite mixture models, which have at least
two benefits in the SLS setting. First, finite mixture models
turn out to be a reasonable model of the multimodal nature
of SLS run length distribution in many instances [26].
Second, finite mixtures allow us to improve the under-
standing of the role of restarts in SLS.

4.2.1 General Case of Finite Mixture Models

In order to make further progress, and supported by
previous research [26] as well as experiments in Section 5,
we now introduce the assumption that an RLD maybe
characterized as a finite mixture of � components.

Definition 9 (SLS finite mixture model). Let MAX-FLIPS

¼ m, assume a homogenous initialization portfolio fða; 1Þg,
and let Fi (for 1 � i � �) be a cumulative distribution function.

An SLS finite mixture model of the RLD Zða;mÞ is defined as

F ðz; a;mÞ ¼ �1ða;mÞF1ðz; a;mÞ
þ � � � þ ��ða;mÞF�ðz; a;mÞ;

ð12Þ

where
P

�

i¼1 �iða;mÞ ¼ 1.

Without loss of generality, we assume that the distribu-
tions F1; . . . ; F� are ordered according to their respective
means: �1 � �2 � � � � � ��. Further, when no restart is used
we may say �iðaÞFiðz; aÞ and ZðaÞ, and when the initializa-
tion algorithm a is clear from the context or assumed fixed
we may say �iðmÞFiðz;mÞ and ZðmÞ.

An interesting special case of (12) is to model an SLS run
length distribution as a two-component finite mixture
distribution

F ðz; a;mÞ ¼ �1ða;mÞF1ðz; a;mÞ þ �2ða;mÞF2ðz; a;mÞ: ð13Þ

Now, for the case ‘ ¼ Prðxx�Þ, �1 and F1 represent initializa-
tions that are close to the MPEs XX�, while �2 and F2

represent initializations farther away from XX�. The char-
acteristics of �1, F1, �2, and F2 will depend on the RLD at
hand, which again depends on the BN, the SLS initialization
algorithm, and the other SLS parameters. The idea is that a
strong initialization algorithm yields a larger �1 and an F1

that is more skewed toward shorter run lengths compared
to a weak initialization algorithm.

The formalization above, using finite mixtures, improves
our understanding of the following well-known strategy:
Initialize and then run the SLS algorithm for a “small”
number of steps. If the initial explanation xx turned out to be
“close” to an optimum, then the SLS algorithm exhibits the
�1F1ðzÞ case. If the initial explanation xx turned out to be “far
away” from an optimum, then we have the �2F2ðzÞ case. In
(13), the term �1F1ðzÞ will in general be of greatest interest
to us since it represents successful initializations. Intui-
tively, the idea is to set MAX-FLIPS such that the SLS
algorithm uses, in (13), the F1 distribution repeatedly rather
than “wait around” till the F2 distribution takes effect.

4.2.2 Special Cases of Finite Mixture Models

The specific mixture models we discuss below are for
continuous random variables, while in Section 4.1, we
considered discrete random variables. Consequently, we
note that EðZðmÞÞ (see Theorem 3) can be approximated,
using continuous random variables, as

EðZðmÞÞ 	
m 1� F ðmÞð Þ þ

Rm
0 zfðzÞdzþ 1

F ðmÞ ; ð14Þ

where F ðzÞ is a cumulative distribution function and fðzÞ
the corresponding probability density function.

We now discuss finite mixtures of exponential distribu-
tions, which is of interest for several reasons. First, RLDs that
are close to exponential have been observed in experiments
[23], [26], [12]. For example, an empirical RLD for a hard SAT
instance containing 100 variables and 430 clauses was
generated using WALKSAT and found to be well approxi-
mated by an exponential distribution with �̂ ¼ 61; 081:5 [12].
Second, the exponential distribution, and its discrete
counterpart the geometric distribution, are memoryless.
Restarting SLS algorithms whose RLDs almost follow these
distributions is therefore of little use [40], and they are thus
interesting as bounding cases for restart. Third, it is
relatively easy to analyze the exponential distribution.

The exponential distribution has only one parameter and
its mode is at zero. The probability of finding xx�‘ within zero
or a few flips is, on the other hand, often extremely small (see
Figs. 4 and 6 for experimental evidence). For such situations,
the normal (or Gaussian) and log-normal distributions, and
their finite mixtures, maybe more suitable and are used
extensively in Section 5, see Tables 1 and 2. A random
variable is log-normal if its logarithm is normally distributed.
The normal and log-normal distributions both have two
parameters, controlling location and spread, making them
well suited to handling the type of right-shifting needed to
model the low-probability left tails that can be empirically
observed for SLS algorithms including SGS.

5 EXPERIMENTS WITH SLS

We now consider experimental results for SGS. Section 5.1
discusses our experimental approach. In Section 5.2, we
characterize the behavior of different SLS initialization
algorithms, including our novel Viterbi-based approach,
using finite mixture models and other techniques. In
Sections 5.3 and 5.4, we empirically investigate the effect of
restarts, and, in particular, vary and optimize the MAX-
FLIPS parameter in the context of different initialization

MENGSHOEL ET AL.: INITIALIZATION AND RESTART IN STOCHASTIC LOCAL SEARCH: COMPUTING A MOST PROBABLE EXPLANATION IN... 7

algorithms. We compare the performance of SGS and clique

tree clustering, a state-of-the-art exact method, in Section 5.5.

5.1 Experimental Methodology

The main purpose of the empirical component of this

research is scientific experimentation rather than competi-

tive experimentation [41].4 While we have highlighted the

importance of initialization and introduced a novel Viterbi-
based initialization approach, the purpose of our experi-
ments is not to show that this approach is faster than
existing algorithms on all problem instances (competitive
experimentation). Rather, we aim to complement the
discussion earlier in this paper (scientific experimentation),
and, in particular, provide further details regarding the
effect of using different initialization algorithms and
varying MAX-FLIPS.

There is evidence that a problem instance that is hard
for one SLS algorithms is also hard for other SLS
algorithms [24], therefore we here investigate one SLS
system in depth instead of performing superficial experi-
ments with a large number of SLS systems. The SLS system
used for experimentation was an implementation of SGS

[14], [15]. Initialization algorithms, discussed in Section 3,
were used in II, namely UN—based on uniform initializa-
tion; FS—based on forward simulation; BDP—based on
GRAPHBDP; and FDP—based on GRAPHFDP. Instance-
specific search portfolios SS were used in the experiments.
These SS always contained noisy search algorithms with
nonzero selection probabilities (see Definition 5.5), thus
SGS could always escape local but nonglobal maxima even
for MAX-FLIPS ¼ 1. Input parameters ‘ ¼ Prðxx�Þ, ee ¼ fg,
and MAX-TRIES ¼ 1 were given to SGS (except in
Section 5.5 where MAX-TRIES <1 was used). The benefit
of MAX-TRIES ¼ 1, often called the Las Vegas approach
[42], [43], [12], is that one does not confound empirical
results with the question of when to terminate. Using SGS,
at least 1,000 repetitions (with different random seeds)
were performed for each experiment reported here. In
some cases, up to 10,000 or 100,000 repetitions were run.

We investigate the performance of SGS on BNs from
applications; see elsewhere for synthetic BN results [17],
[18]. The 10 distinct application BNs considered, most of
which are taken from Friedman’s Bayesian Network
Repository, are shown in Table 5. (At the time of this
writing, the location of the Bayesian Network Repository is
at http://www.cs.huji.ac.il/labs/compbio/Repository/.)
We discuss in greatest detail the Munin1, Pir3, and Water
BNs. The Munin BNs are from the medical field of
electromyography. The Pir BNs perform information filter-
ing for the purpose of improving battlefield situation
awareness [44]. The Water BN models the biological
processes of water purification.

An Intel Pentium 4 2 GHz CPU with 1 GB of RAM,
running Windows XP, was used in the experiments.

5.2 Varying the Initialization Algorithm

The purpose of the initialization experiments was to study
in detail the effect, on empirical RLDs Ẑða;1Þ, or ẐðaÞ, and
Ŷ ða;1Þ ¼ Ẑða;1Þ � 1, or Ŷ ðaÞ, of using different initializa-
tion algorithms. Three variants of SGS/a, namely SGS/UN,
SGS/FS, and SGS/BDP, were used [14], [15]. Each SGS variant
was tested using three BNs—Munin1, Pir3, and Water—
giving a total of nine combinations. For each combination,
1,000 repetitions were executed. Following standard SLS
methodology, no restarts were done at this stage [26], [12].

Results of these experiments are presented in Fig. 4 and
Tables 1 and 2. Tables 1 and 2 were created using the WEKA

implementation [45] of the expectation maximization (EM)
algorithm. WEKA was used in two different modes, namely
1) to compute the optimal number of finite mixture

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011

Fig. 4. Varying the initialization algorithms for three BNs. For each BN,
three different variants of SGS are tested, namely SGS/UN, SGS/FS, and
SGS/DP. An empirical run length distribution is displayed for each
combination. Each BN has a best initialization algorithm, namely
(a) SGS/FS for Munin1, (b) SGS/BDP for Pir3, and (c) SGS/FS for Water.

4. Hooker, in fact, uses the term “testing” rather than “experimentation”
[41]; however, we here prefer the latter term.

components �� by means of cross validation (see Table 1)
and 2) to compute the mixture parameters for a fixed
number of mixture components (see Table 2). Since normal-
ity is assumed by this variant of EM, the ln-transformation
performed as indicated in Table 1 means that log-normality
is implied. These experiments are complementary to
previous experiments by Hoos, where finite mixtures were
used to model SLS performance on SAT instances from the
hard region [26]. In particular, Hoos’ experiments focused
on synthetic SAT instances rather than application BNs and
used at most two mixture components in experiments [26].

For the Munin1 BN, SGS/FS is the best performer. On
average, SGS/FS, uses only 32 percent of the flips required for
SGS/UN in order to find an MPE in these experiments. By
investigating the RLDs in Fig. 4, it becomes clear that SGS/FS

has a significant portion of much shorter searches than SGS/

UN and SGS/BDP. This is reflected in Table 1, where the
leftmost mixture component has for the raw data �̂1 ¼ 0:43,
�̂1 ¼ 21:84, and 	̂1 ¼ 21:84. For SGS/UN and SGS/BDP, there is
no similar effect of short search lengths. The 25th percentile is
87,215 flips for SGS/UN and 65,215 flips for SGS/BDP. In

Table 2, there is for SGS/FS and Munin1 a prominent drop in

the log-likelihood from � ¼ 1 to � ¼ 2, indicating that much

RLD probability mass is quite accurately accounted for when

there are two components in the mixture.
For the Pir3 BN, SGS/BDP is extremely strong. In fact, in

over 50 percent of the cases an MPE is found as a result of

initialization (zero flips). Table 1 reflects this strong

performance, with �̂1 ¼ 0:74 and �̂1 ¼ 0:46. In contrast, the

averages for Pir3 for SGS/UN and SGS/FS are EðŶ ða;1ÞÞ ¼
34; 469 flips and EðŶ ða;1ÞÞ ¼ 32; 249 flips, respectively.

Pir3’s backward tree-like structure appears to explain the

strong results for SGS/BDP.
For the Water BN, SGS/FS is on average approximately

twice as fast as SGS/UN and SGS/BDP. For SGS/FS, we see in

Fig. 4 a rapid increase in the empirical RLD until approxi-

mately 10 operations. In fact, for Water the first percentile is

three flips and the fifth percentile is six flips. Table 1 and

Table 2 reflect similar trends for SGS/FS compared to its

alternatives.
These experiments show that initialization algorithms can

have a major positive impact on the SGS inference time. For

each of these BNs, there is one initialization algorithm that

substantially outperforms the traditional approach of initi-

alizing uniformly at random, here implemented in SGS/UN.

For some initialization algorithms, a nontrivial percentage of

searches turned out to be relatively short as shown in Fig. 4.

For Pir3, SGS/BDP has a 99th percentile of nine flips; for

Munin1, SGS/FS has a 25th percentile of 21 flips; and for

Water, SGS/FS has a 25th percentile of 91 flips.
These experiments exhibit clear evidence of mixture

distribution behavior, aligning well with the discussion in

Section 4.2. We see in Table 1 that the optimized number of

mixture components, ��, ranges from 1 to 8. In particular, in

Table 1, the use of two or more mixture components was

found to be optimal in most cases: �� � 2 in 16 out of

18 rows in the table.

MENGSHOEL ET AL.: INITIALIZATION AND RESTART IN STOCHASTIC LOCAL SEARCH: COMPUTING A MOST PROBABLE EXPLANATION IN... 9

TABLE 1
Mixture Models Computed Using the EM Algorithm over SGS Run Length Data,

Using Three Different Initialization Algorithms and Three Different BNs

Cross-validation results for both raw data and ln-transformed data are displayed (Ln column), as are the number of mixture components (��), the
statistics for the one or two leftmost mixture components, as well as the log-likelihoods (LL�) and Akaike information criterion (AIC�) values.

TABLE 2
Mixture Models Generated Using the EM Algorithm over SGS

Run Length Data, Using Three Different Initialization Algorithms,
for the BNs Munin1, Pir3, and Water

Log-likelihoods (LLs) for � ¼ 1; 2; 3 mixture components are shown. The
two right-most columns show the number of mixture components �� and
log-likelihood LL� computed by cross validation.

5.3 Varying the Restart Parameter

The purpose of the restart experiments was to investigate the
effect, on empirical RLDs Ŷ ða;mÞ, of varying the SLS restart
parameter MAX-FLIPS. The MAX-FLIP parameter was set
to MAX-FLIPS ¼ 20, MAX-FLIPS ¼ 30, MAX-FLIPS ¼ 50,
MAX-FLIPS ¼ 100, and MAX-FLIPS ¼ 200, and for each
condition, the MPE was computed 1,000 times using SGS

while gathering statistics for RLD estimates Ŷ ða;mÞ.
In Fig. 5, the Ŷ ða;mÞ results for SGS/FS using the Munin1

BN are shown. Varying MAX-FLIPS has a major impact,
since for the unbounded case MAX-FLIPS ¼ 1 the RLD is
almost horizontal for RLD-values slightly greater than 0.4.
For the larger values of MAX-FLIPS, except for the
unbounded MAX-FLIPS case, we observe a stair-case-
shaped RLD, where steps get progressively smaller as the
number of flips increases. Clearly, the reason for this pattern
is the substantial probability mass in the left tail. This is also
shown in Table 1, where the leftmost mixture component has
for SGS/FS �̂1 ¼ 0:43, �̂1 ¼ 21:84, and 	̂1 ¼ 7:00.

Results for Ŷ ða;mÞ for SGS/FS using the Water BN are
shown in Fig. 5. While the effect here is not as dramatic as
for Munin1, MAX-FLIPS ¼ 20 gives, in general, visibly
better performance than the other MAX-FLIPS settings.
Again, this behavior reflects Table 1, where the leftmost
mixture component has for SGS/FS �̂1 ¼ 0:20, �̂1 ¼ 14:10,
and 	̂1 ¼ 11:58.

For Pir3, varying the restart parameter had a minimal
effect on Ŷ ða;mÞ, as one might expect given the similarity of
the RLD to an exponential distribution (see Fig. 4), and to
save space we do not report details.

In summary, we have seen that varying the MAX-FLIPS
parameter can have a substantial impact on SGS run lengths
for certain BNs. This leads to the following question. What

are the optimal or near-optimal values of MAX-FLIPS for
such BNs? This issue is what we turn to in the experiments
of the next section.

5.4 Optimization of Initialization and Restart

The purpose of the optimization experiments was to
empirically find optimal or near-optimal values m̂�f of
MAX-FLIPS, thus minimizing EðŶ ða;mÞÞ. The speedup
that can be obtained by optimizing both initialization and
restart was of interest. Compared to traditional optimiza-
tion, we note that SLS restart parameter optimization is
complicated by the noise in the objective function caused
by SLS randomization.

Based on pilot studies reported in Section 5.3, we
investigated optimization of SGS for Munin1, Pir3, and Water
in detail. Using SGS/FS and Munin1, MAX-FLIPS was varied
from MAX-FLIPS¼ 20 to MAX-FLIPS¼ 40. For each setting,
10,000 Las Vegas run length experiments were performed.
Both the number of flips and computation times were
recorded, and then the sample averages for number of flips
EðŶ ða;mÞÞ and execution times EðĈða;mÞÞwere computed.

Results from these Munin1 experiments are shown in
Fig. 7. Fig. 7 contains, in addition to the data points, fourth
order polynomial regression results. Similar results are
reported for Water BN. Given the approximate polyno-
mials above, one can find approximate optima by setting
the derivative to zero, f 0ðxÞ ¼ 0, and solving for x, giving
results that are very similar to those obtained using just
run length. Further insight and confirmation is provided
by Fig. 6 and Table 3, which show raw data along with
normal mixture models. Using the probabilistic approach
discussed in Section 4, in particular (14), these mixture
models were used to obtain estimates m̂�o(FS) as summar-
ized in Table 3.

A summary of the results for the different BNs is provided
in Table 4. The baseline SGS system is using uniform
initialization and no restart. Optimized SGS is using the best
initialization algorithm (for that particular BN) and an
optimized value for MAX-FLIPS (MF). For the Pir3 BN, the
mean of the baseline approach SGS/UN was 34,469 flips
while optimized SGS/BDP used 0.8621 flips. In terms of wall-
clock time, optimized SGS/BDP was 6,629 times faster than
unoptimized SGS/UN. There are similar, but less dramatic,
speedups for the Munin1 and Water BNs.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011

Fig. 5. Empirical RLDs for SGS when varying the restart parameter from

MAX-FLIPS ¼ 20 to MAX-FLIPS unbounded.

Fig. 6. Empirical run length distribution for SGS/FS for Munin1 along with
four mixture models, with varying number of mixture components.

Overall, the speedups obtained by carefully optimizing
initialization and restart are quite dramatic for these
application BNs. Initialization is more important than
restart, in the sense that strong performance can be obtained
for a particular initialization algorithm a for SGS/a even
without optimizing MAX-FLIPS.

5.5 Comparison to Clique Tree Clustering

The purpose of these experiments was to compare SGS with
clique tree clustering [6], [7], [33], [8] as implemented in the
state-of-the-art system HUGIN. Clique tree clustering is an
exact algorithm that consists of two phases, the clustering
phase and the propagation phase. The clique tree propaga-
tion phase operates on a clique tree, created from a BN by the

clustering phase. Clique tree size upper bounds treewidth, a
fundamental graph-theoretic parameter [46] of a BN.

Table 5 presents experimental results for 10 distinct
application BNs for both SGS and clique tree propagation.
In these experiments, where the SGS system was optimized
using our technique discussed earlier in the paper, we only
account for online runtime, not preprocessing time. For
HUGIN, preprocessing amounts to compilation of a BN into a
clique tree. For SGS, preprocessing amounts to optimizing the
parameters controlling search. The results in Table 5 have for
HUGIN been averaged over 50 runs, for SGS over 1,000 runs.

Total clique tree size and inference time, as computed by
clique tree clustering, is an indication of BN hardness.
Among these BNs, Munin1 has the largest total clique tree
size and the slowest execution time. SGS clearly outper-
forms CTP on Mildew, Munin1, Pigs, Pir2, and Water. CTP
is clearly superior to SGS for Munin3 and Munin4, as SGS

did not terminate within the allocated number of MAX-
TRIES for these BNs.

We now compare the performance of the novel initi-
alization algorithms proposed in this paper, BDP and FDP,
with FS. A key difference is that BDP and FDP are structure-
based, while FS is CPT-based. As a consequence, BDP and
FDP can be expected to perform very well for BNs that are
tree-structured or close to tree-structured, and not so well
otherwise. FS, on the other hand, does not rely on structure.
The experimental results confirm these qualitative state-
ments: Table 5 illustrates how BDP and FDP are the best
performers, relative to FS, for BNs with substantial tree

MENGSHOEL ET AL.: INITIALIZATION AND RESTART IN STOCHASTIC LOCAL SEARCH: COMPUTING A MOST PROBABLE EXPLANATION IN... 11

TABLE 4
Optimizing Performance of SGS for Three BN Instances

TABLE 5
Comparison of Performance of SGS and Clique Tree

Propagation on Different BN Instances

Fig. 7. Varying the MAX-FLIPS restart parameter for SGS/FS on the

BNs Munin1 (a) and Water (b). Average computation time is displayed

for each BN. Approximations using fourth order polynomials, based on

the experimental data points, are also shown.

TABLE 3
Mixture Models, with � ¼ 1 to � ¼ 4 Components, Generated Using the Expectation Maximization Algorithm

structure, reflected in a small ratio m=n for a BN � ¼ ðXX, EE,
PP Þ, where n ¼ jXXj and m ¼ jEEj.

In summary, these experiments clearly show that our
Stochastic Greedy Search algorithm—specifically SGS/FS,
SGS/BDP, and SGS/FDP—performs very well on nontrivial
BNs. In particular, these experiments show competitive
performance on BNs that are not trivial for clique tree
clustering, a state-of-the-art algorithm for BN inference.

6 DISCUSSION AND FUTURE WORK

Stochastic local search algorithms provide, for certain classes
of applications and problem instances, an appealing trade-
off of accuracy for speed and memory requirements.
Specifically, SLS algorithms require little memory and are
very fast for certain problem instances, but are incomplete
and may produce suboptimal results. By focusing on
computing most probable explanations in Bayesian net-
works, we have, in this paper, presented algorithmic,
analytical, and experimental results regarding SLS initializa-
tion (where to start search?) and the SLS restart parameter
(when to restart search?). In particular, we have discussed
Viterbi-based initialization algorithms, an analytical frame-
work for SLS analysis, an analysis of SGS specifically, and
finally SGS’s competitive performance relative to clique tree
clustering. By carefully and jointly optimizing the initializa-
tion algorithm and the restart parameter MAX-FLIPS for SGS,
we improved for application BNs the search performance by
several orders of magnitude compared to initialization
uniformly at random with no restart (or MAX-FLIPS ¼ 1).

We now consider, for SGS, the optimization of the
initialization algorithm a and the MAX-FLIPS parameter.
This optimization—which is reflected in the progression of
Sections 5.2, 5.3, and 5.4—is a heuristic preprocessing step.
First, as discussed in Section 5.2, one typically optimizes the
selection probabilities in the initialization portfolio II. This
optimization is partly informed by the structure of the BN,
such that the probability of picking FDP (say) from the
initialization portfolio is set higher for a BN that is close to
having a forward tree structure. The probabilities are then
gradually adjusted, as one sees the impact of the different
initialization algorithms on the progress of the stochastic
search process, until one is left with a homogenous
initialization portfolio SGS/a. After a has been identified,
the emphasis typically shifts to the optimization of the
MAX-FLIPS parameter, utilizing the mixture distribution
properties of the run length distributions identified in this
paper. Empirical aspects of this optimization are investi-
gated in Sections 5.3 and 5.4.

Our results appear to create new research opportunities
in the area of adaptive and hybrid SLS algorithms. One
opportunity concerns the development of new initialization
algorithms. For example, it would be of interest to
investigate more fine-grained hybrid algorithms, where
different initialization algorithms may be applied to create
different subexplanations. Another question is whether SGS

performance can be further improved by automatically
optimizing the input parameters. Finally, additional work
on finite mixture models appears useful. Most current
approaches assume, as we have done here, homogenous
mixtures. We speculate that heterogenous mixture models,
where one distribution function F1 is (say) normal while
another distribution function F2 is (say) exponential, could
provide improved fits for certain run length distributions,
and would be useful in other contexts as well.

ACKNOWLEDGMENTS

This material is based, in part, upon work by Ole J.

Mengshoel supported by NASA award NCC2-1426 as well

as the US National Science Foundation (NSF) grants CCF-

0937044 and ECCS-0931978. Ole J. Mengshoel and David C.

Wilkins gratefully acknowledge support in part by ONR

grant N00014-95-1-0749, ARL grant DAAL01-96-2-0003, and

NRL grant N00014-97-C-2061. Dan Roth gratefully acknowl-

edges the support of NSF grants IIS-9801638 and SBR-

987345. David Fried and Song Han are acknowledged for

their codevelopment of the Raven software, used in

experimental work reported here. Comments from the

anonymous reviewers, which helped improve the paper,

are also acknowledged.

REFERENCES

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[2] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor Graphs
and the Sum-Product Algorithm,” IEEE Trans. Information Theory,
vol. 47, no. 2, pp. 498-519, Feb. 2001.

[3] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP Estimation via
Agreement on (Hyper)Trees: Message-Passing and Linear Pro-
gramming Approaches,” IEEE Trans. Information Theory, vol. 51,
no. 11, pp. 3697-3717, Nov. 2002.

[4] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky, “Tree-Based
Reparameterization Framework for Analysis of Sum-Product and
Related Algorithms,” IEEE Trans. Information Theory, vol. 49, no. 5,
pp. 1120-1146, May 2003.

[5] A. Darwiche, “A Differential Approach to Inference in Bayesian
Networks,” J. ACM, vol. 50, no. 3, pp. 280-305, 2003.

[6] S. Lauritzen and D.J. Spiegelhalter, “Local Computations with
Probabilities on Graphical Structures and Their Application to
Expert Systems (with Discussion),” J. Royal Statistical Soc. Series B,
vol. 50, no. 2, pp. 157-224, 1988.

[7] S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen, “HUGIN—
A Shell for Building Bayesian Belief Universes for Expert
Systems,” Proc. 11th Int’l Joint Conf. Artificial Intelligence, vol. 2,
pp. 1080-1085, Aug. 1989.

[8] C. Huang and A. Darwiche, “Inference in Belief Networks: A
Procedural Guide,” Int’l J. Approximate Reasoning, vol. 15, pp. 225-
263, 1996.

[9] B. Selman, H. Levesque, and D. Mitchell, “A New Method for
Solving Hard Satisfiability Problems,” Proc. 10th Nat’l Conf.
Artificial Intelligence (AAAI ’92), pp. 440-446, 1992.

[10] B. Selman, H.A. Kautz, and B. Cohen, “Noise Strategies for
Improving Local Search,” Proc. 12th Nat’l Conf. Artificial Intelligence
(AAAI ’94), pp. 337-343, 1994.

[11] P.W. Gu, J. Purdom, J. Franco, and B.W. Wah, “Algorithms for the
Satisfiability SAT Problem: A Survey,” Satisfiability Problem: Theory
and Applications, pp. 19-152. Am. Math. Soc., 1997.

[12] H.H. Hoos and T. Stützle, Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann, 2005.

[13] K. Kask and R. Dechter, “Stochastic Local Search for Bayesian
Networks,” Proc. Seventh Int’l Workshop Artificial Intelligence and
Statistics, Jan. 1999.

[14] O.J. Mengshoel, “Efficient Bayesian Network Inference: Genetic
Algorithms, Stochastic Local Search, and Abstraction,” PhD
dissertation, Dept. of Computer Science, Univ. of Illinois at
Urbana-Champaign, Apr. 1999.

[15] O.J. Mengshoel, D. Roth, and D.C. Wilkins, “Stochastic Greedy
Search: Computing the Most Probable Explanation in Bayesian
Networks,” Technical Report UIUCDCS-R-2000-2150, Dept. of
Computer Science, Univ. of Illinois at Urbana-Champaign, Feb.
2000.

[16] F. Hutter, H.H. Hoos, and T. Stützle, “Efficient Stochastic Local
Search for MPE Solving,” Proc. 19th Int’l Joint Conf. Artificial
Intelligence (IJCAI ’05), pp. 169-174, 2005.

[17] O.J. Mengshoel, “Understanding the Role of Noise in Stochastic
Local Search: Analysis and Experiments,” Artificial Intelligence,
vol. 172, nos. 8-9, pp. 955-990, 2008.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011

[18] O.J. Mengshoel, D. Roth, and D.C. Wilkins, “Portfolios in
Stochastic Local Search: Efficiently Computing Most Probable
Explanations in Bayesian Networks,” J. Automated Reasoning,
published online 14 Apr. 2010.

[19] J.D. Park and A. Darwiche, “Complexity Results and Approxima-
tion Strategies for MAP Explanations,” J. Artificial Intelligence
Research, vol. 21, pp. 101-133, 2004.

[20] B. Selman and H. Kautz, “Domain-Independent Extensions to
GSAT: Solving Large Structured Satisfiability Problems,” Proc.
Int’l Joint Conf. Artificial Intelligence (IJCAI ’93), pp. 290-295, 1993.

[21] R. Lin, A. Galper, and R. Shachter, “Abductive Inference Using
Probabilistic Networks: Randomized Search Techniques,” Tech-
nical Report KSL-90-73, Knowledge Systems Laboratory, Nov.
1990.

[22] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, vol. 77, no. 2,
pp. 257-286, Feb. 1989.

[23] H.H. Hoos and T. Stützle, “Towards a Characterisation of the
Behaviour of Stochastic Local Search Algorithms for SAT,”
Artificial Intelligence, vol. 112, nos. 1-2, pp. 213-232, 1999.

[24] H.H. Hoos and T. Stützle, “Local Search Algorithms for SAT: An
Empirical Evaluation,” J. Automated Reasoning, vol. 24, no. 4,
pp. 421-481, citeseer.ist.psu.edu/hoos99local.html, 2000.

[25] D. Mitchell, B. Selman, and H.J. Levesque, “Hard and Easy
Distributions of SAT Problems,” Proc. 10th Nat’l Conf. Artificial
Intelligence (AAAI ’92), pp. 459-465, 1992.

[26] H.H. Hoos, “A Mixture-Model for the Behaviour of SLS
Algorithms for SAT,” Proc. 18th Nat’l Conf. Artificial Intelligence
(AAAI ’02), pp. 661-667, 2002.

[27] I.P. Gent and T. Walsh, “Easy Problems are Sometimes Hard,”
Artificial Intelligence, vol. 70, nos. 1-2, pp. 335-345, 1994.

[28] A.J. Parkes and J.P. Walser, “Tuning Local Search for Satisfiability
Testing,” Proc. 13th Nat’l Conf. Artificial Intelligence (AAAI ’96),
pp. 356-362, citeseer.ist.psu.edu/parkes96tuning.html, 1996.

[29] C.P. Gomes, B. Selman, and H. Kautz, “Boosting Combinatorial
Search through Randomization,” Proc. 15th Nat’l Conf. Artificial
Intelligence (AAAI ’98), pp. 431-437, 1998.

[30] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and D.
Chickering, “A Bayesian Approach to Tackling Hard Computa-
tional Problems,” Proc. 17th Ann. Conf. Uncertainty in Artificial
Intelligence (UAI ’01), pp. 235-244, 2001.

[31] Y. Ruan, E. Horvitz, and H. Kautz, “Restart Policies with
Dependence among Runs: A Dynamic Programming Approach,”
Proc. Eighth Int’l Conf. Principles and Practice of Constraint
Programming, pp. 573-586, 2002.

[32] Y. Ruan, E. Horvitz, and H. Kautz, “Hardness-Aware Restart
Policies,” Proc. 18th Int’l Joint Conf. Artificial Intelligence (IJCAI ’03)
Workshop Stochastic Search Algorithms, 2003.

[33] A.P. Dawid, “Applications of a General Propagation Algorithm
for Probabilistic Expert Systems,” Statistics and Computing, vol. 2,
pp. 25-36, 1992.

[34] E. Shimony, “Finding MAPs for Belief Networks is NP-Hard,”
Artificial Intelligence, vol. 68, pp. 399-410, 1994.

[35] A.M. Abdelbar and S.M. Hedetnieme, “Approximating MAPs for
Belief Networks is NP-Hard and Other Theorems,” Artificial
Intelligence, vol. 102, pp. 21-38, 1998.

[36] A. Viterbi, “Error Bounds for Convolutional Codes and An
Asymptotically Optimal Decoding Algorithm,” IEEE Trans.
Information Theory, vol. 13, no. 2, pp. 260-269, Apr. 1967.

[37] M. Henrion, “Propagating Uncertainty in Bayesian Networks by
Probabilistic Logic Sampling,” Uncertainty in Artificial Intelligence,
vol. 2, pp. 149-163, Elsevier, 1988.

[38] R. Dechter and I. Rish, “Mini-Buckets: A General Scheme for
Bounded Inference,” J. ACM, vol. 50, no. 2, pp. 107-153, 2003.

[39] R. Dechter, “Bucket Elimination: A Unifying Framework for
Reasoning,” Artificial Intelligence, vol. 113, nos. 1-2, pp. 41-85,
citeseer.nj.nec.com/article/dechter99bucket.html, 1999.

[40] D. Schuurmans and F. Southey, “Local Search Characteristics of
Incomplete SAT Procedures,” Artificial Intelligence, vol. 132, no. 2,
pp. 121-150, citeseer.ist.psu.edu/article/schuurmans00local.html,
2001.

[41] J. Hooker, “Testing Heuristics: We have It All Wrong,”
J. Heuristics, vol. 1, pp. 33-42, 1996.

[42] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
Univ. Press, 1995.

[43] B.A. Huberman, R.M. Lukose, and T. Hogg, “An Economics
Approach to Hard Computational Problems,” Science, vol. 275,
no. 3, pp. 51-54, 1997.

[44] P. Jones, C. Hayes, D. Wilkins, R. Bargar, J. Sniezek, P. Asaro, O.J.
Mengshoel, D. Kessler, M. Lucenti, I. Choi, N. Tu, and J.
Schlabach, “CoRAVEN: Modeling and Design of a Multimedia
Intelligent Infrastructure for Collaborative Intelligence Analysis,”
Proc. IEEE Int’l Conf. Systems, Man, and Cybernetics, pp. 914-919,
Oct. 1998.

[45] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, second ed., Morgan Kaufmann, 2005.

[46] H.L. Bodlaender, “A Tourist Guide through Treewidth,” Acta
Cybernetica, vol. 11, pp. 1-21, citeseer.nj.nec.com/bodlaender93
tourist.html, 1993.

Ole J. Mengshoel received the undergraduate degree in computer
science from the Norwegian Institute of Technology (now, NTNU) and
the PhD degree in computer science from the University of Illinois,
Urbana-Champaign. He is currently a senior systems scientist with
Carnegie Mellon University (CMU), Silicon Valley, and also is affiliated
with the NASA Ames Research Center, Moffett Field, California. Prior to
joining CMU, he was a senior scientist and research area lead at USRA/
RIACS; a research scientist in the Decision Sciences Group at Rockwell
Scientific; and in the Knowledge-Based Systems Group at SINTEF,
Norway. At NASA, he has a leadership role in the Diagnostics and
Prognostics Group in the Intelligent Systems Division, where his current
research focuses on reasoning, machine learning, diagnosis, prognosis,
and decision support under uncertainty—often using Bayesian net-
works—with aerospace applications of interest to NASA. He is a
member of the IEEE, the AAAI, and the ACM, and has numerous times
served as reviewer and on Program Committees. He has published
more than 50 articles and papers in journals, conferences, and
workshops, and holds four US patents.

David C. Wilkins received the PhD degree from the University of
Michigan in 1987. His PhD dissertation research was carried out in the
Department of Computer Science at Stanford University between 1982
and 1987. His current affiliations at Stanford are with the Symbolic
Systems Program, which focuses on a science of the mind, and the
Stanford Center for Creativity in the Arts (SICa), where he serves on an
Advisory committee. He has a senior research affiliate position at the
Institute for the Study of Learning and Expertise (ISLE) in Palo Alto.
Prior to returning to Stanford, he was on the faculty at the University of
Illinois at Urbana-Champaign from 1988-2005, with faculty appointments
in Computer Science, Psychology, Aviation Institute, and Beckman
Institute. His research area within artificial intelligence and cognitive
science is computational models of human learning, decision making,
and expertise. His research specialty is interactive learning environ-
ments, especially apprenticeship learning systems for learning and
teaching expert decision making, and his research projects typically
involve faculty collaborators from psychology, computer science, or
linguistics.

Dan Roth received the BA degree with Summa cum laude in
mathematics from the Technion, Israel, and the PhD degree in computer
science from Harvard University in 1995. He is a professor in the
Department of Computer Science and the Beckman Institute at the
University of Illinois at Urbana-Champaign. He is the director of the DHS
funded center for Multimodal Information Access & Synthesis (MIAS)
and has faculty positions also at the Statistics and Linguistics
Departments and at the graduate School of Library and Information
Science. He is a fellow of the AAAI, and has published broadly in
machine learning, natural language processing, knowledge representa-
tion, and reasoning and learning theory. He has developed advanced
machine-learning-based tools for natural language applications, includ-
ing an award winning Semantic Parser. He has given keynote talks in
major conferences, including the AAAI, the Conference of the American
Association of Artificial Intelligence, EMNLP, the Conference on
Empirical Methods in Natural Language Processing, and ECML &
PKDD, the European Conference on Machine Learning and the
Principles and Practice of Knowledge Discovery in Databases. He was
the program chair of CoNLL’02 and of ACL’03, and is or has been on the
editorial board of several journals in his research areas. He is currently
an associate editor for the Journal of Artificial Intelligence Research and
the Machine Learning Journal. He is a member of the IEEE.

MENGSHOEL ET AL.: INITIALIZATION AND RESTART IN STOCHASTIC LOCAL SEARCH: COMPUTING A MOST PROBABLE EXPLANATION IN... 13

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	February, 2011

	Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks
	TKDE-2007-05-0237-2 1..13

