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A method for generalizing bond-percolation problems to include the possibility of infinite-range
(equivalent-neighbor) bonds is presented. On Bravais lattices the crossover from nonclassical to clas-
sical (mean-field) percolation criticality in the presence of such bonds is described. The Cayley tree
with nearest-neighbor and equivalent-neighbor bonds is solved exactly, and a nonuniversal line of
percolation transitions with exponents dependent on nearest-neighbor bond occupation probability is
observed. Points of logarithmic and exponential singularity are also encountered, and the behavior
is interpreted as dimensional reduction due to the breaking of translational invariance by bonds of
Cayley-tree connectivity.

I. INTRODUCTION

The percolation problem is related to a number of phys-
ical phenomena such as vulcanization, gelation of poly-
mers, ' and localization, and has been extensively stud-
ied. ' There is a close connection between percolation
and critical phenomena. The method of Hamiltonian
minimization, originally introduced in the context of sta-
tistical mechanics, is extended to percolation in this paper.
We describe a method for studying bond-percolation prob-
lems with both short-range and infinite-range bonds (con-
necting any pair of sites). On Bravais lattices, any
nonzero probability of infinite-range bonds changes the
nature of the percolation transition to mean field, s' and
the crossover between short-range and infinite-range criti-
cality is described. On the Cayley tree, on the other hand,
when the entire lattice (and not just the interior as in the
Bethe-Peierls approximation) is considered, there is a
nonuniversal line of transitions, with the exponents
describing critical quantities such as percolation probabili-
ty varying with the short-range bond occupation probabil-
ity. Range-dependent percolation has been studied by
other authors.

The connection between percolation and the q —+1 limit
of Potts models provides a means of applying methods of
statistical mechanics to the study of percolation. The
Hamiltonian minimization method has been used to gen-
eralize a number of Ising models by introducing infinite-
range interactions. ' " In Sec. II this method is extend-
ed to Potts models. In particular, we describe how the
bond-percolation problem, with both nearest-neighbor and
equivalent-neighbor bonds possible, can be studied. In
Sec. III percolation on d-dimensional Bravais lattices in
the presence of infinite-range bonds is considered. On
these lattices any possibility of infinite-range bonds
changes the critical behavior from short range (nonclassi-
cal) to classical mean field (infinite range). The crossover
phenomena between critical behaviors governed by short-

range and infinite-range bonds is studied. Moreover, the
one-dimensional problem is solved exactly.

By contrast, on the Cayley tree (Sec. IV) introduction of
the infinite-range bonds does not lead to mean-field per-
colation. In this case there is a novel line of percolation
transitions, where the critical exponents are nonuniversal
and depend on the probability of bond occupation. In this
model, in the absence of any nearest-neighbor bonds all
sites are equivalent, while the presence of such bonds
breaks this "translational symmetry" and places the sites
in the hierarchical structure of the Cayley tree. As the
probability of nearest-neighbor bond occupation is in-
creased, the mean-field critical behavior is modified by
logarithmic corrections at some point. Then the line of
continuously varying criticality, mentioned earlier, is en-
countered, and terminates at a point of exponential criti-
cal singularity. This unusual behavior is interpreted as a
form of dimensional reduction due to the breaking of
translational symmetry.

II. INFINITE-RANGE BOND PERCOLATION

The connection between percolation and the q~1 limit
of Potts models is well known and provides a means of
extending methods from statistical mechanics to the study
of percolation. In the Potts model, at each site of the lat-
tice there is a spin s; = 1,2, . . . , q, and the Hamiltonian is

A lkT =E g—5, . , +h g 5,. t .
(ij ) i

The cluster-size generating function for percolation is re-
lated to the t1~1 limit of the free energy f(K,h) of the
Potts model by

G(p, h)= g n, (p)e
s=1 q

where the bond-percolation probability is p =I—e
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(g ~0), 1 —e " (h &0) is the ghost bond probability, '

and n, (p) is the mean number of clusters of size s divided
by the total number of sites. The percolation probability
p(p) and the mean finite-cluster size S(p) are related to
derivatives of 6 by

p(p)=I+ „6(p,o+), S(p)= „,(p,0+).a 5'6

We also note, for future purposes, that the definition of 6
1

[Eq. (2)] lmplles tllat,

( —1)"
Bh b o+

is a positive quantity. With the use of the method of
Hamiltonian minimization, the Potts Hamiltoiiian [Eq.
(1)] can be generahzed to mclude infinite-range mterac-
tions. This procedure has been used in the context of Is-
ing models, ' "and is easily generalized to Potts models.
We consider a system of N Potts spins I s; I and evaluate

—(NJ/2)x 2Z= f g (dx e ) +exp K g 5, , + g[(h+Jx, )5,, , + +Jx 5, ]
a= ]. (s f &ij& i

Evaluating the Gaussian integral first and ignoring terms of order (lnN)/N in the exponent, we obtain

Z= g exp X g 5,. , +h +5, , + g(5, ,5, , + +5, ,5, , )
I

J=+exp I~ g5, . , +h+5, . , + +5,. ,

where f is the free energy of the original Potts model,
with an additional equivalent-neighbor interaction J/N.
If the summation over spins in Eq. (4) is carried out first,
the result is

Z = x xzexp —NJ 2 x ~+ +xq

Nfo(E, h +—Jxi, . . . , Jxq)],

where fo(K,h+Jx, , . . . , Jx ) is the free energy of the
nearest-neighbor Hamiltonian in magnetic fields
h I ——h +Jx ], . . . , hq =Jxq. In the thermodynamic limit
X—+ ac, the saddle-point method relates the free energies
in Eqs. (5) and (6) by

minimization. For E=O, the pure equivalent-neighbor
Potts model is obtained. In this case
fo —in[e'i™+b——+(q —1)], and Fq. (9) results in the
familiar mean-field expression for Potts models. ' To
make the connection with percolation the q~l limit of
Eq. (9) has to be considered. The nearest-neighbor bond
occupation probability is p, = 1 —e, while the
equivalent-neighbor bond occupation probability is
2pi/N =I—e =(J/N) (N~go), implying that on
avcragc @IX cgulvalcnt-nclghbol bonds arc occuplcd.
Also,

lim fo(IC, h +qJm) = —Jm —h — K
q —+1

(Nb is the number of bonds), and Eq. (2) implies

6(psip&~h) = —min[pi(m —1)2 Go(ps~h +2p—im)]m .

+ fo(IC, h +Jxi, . . . , Jxq)
(x„)

Therefore, in principle, the free energy is obtained by a q-
parameter minimization. This is, however, considerably
simplified by noting that x are the magnetizations of the
Potts model' [x =((I/N) +,. 5,. )], and hence we can
choose a parametrization

xi ——1/q+(q —1)m, x2 —— . ——x~ =1/q —m .

Equation (7) can now be rewritten as

Equation (10) is the main result that will be used to gen-
eralize percolation problems to include infinite-range
bonds. The case X =0 of infinite-range percolation has
been studied by Wu. In this case

and the cluster-size generating function is

6 = —min[pi(m —1) —e ' ]

f(K,J,h) = — +min Jm +J Jq (q —1) 2
APE

2g 2

+ fo(SC,h +qJm)

It is therefore sufficient to do just a one-parameter

which is the result previously obtained. The value of m
that minimizes the above expression (denoted m ) is
indeed the percolation probability I'. We now apply Eq.
(10) to study cases with both nearest-neighbor (short-
range) and equivalent-neighbor (infinite-range) bond occu-
pation possible.
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III. BRAVAIS LATTICES

The percolation problem has only been solved exactly for a number of one-dimensional systems. ' ' In particular, the
one-dimensional bond-percolation problem can be solved easily using the connection to Potts models. The free energy of
the q-state Potts model [Eq. (1)],calculated in one dimension by the transfer-matrix method, is

fo(K,h)=ln2 —ln(q —2+e (1+e")+l [(q —2)+e (1—e")] +4(q —1)e"I'~ ) .

Differentiating fo with respect to q at q = 1, we obtain the generating function [Eq. (2)]

(1—p, )'
Go(p„h) =

h

(13)

(14)

The generating function for the one-dimensional problem with nearest-neighbor and equivalent-neighbor bond percola-
tion is now obtained using Eq. (10) as

(1—p, )
G(p. pl. h) = —min pl(m —1)2—

8+2 (15)

The parameter m corresponds to the percolation probability, and is thus confined to the range zero to one. We consider
below the case of zero ghost bond probability (h =0). Close to the percolation threshold m =P(p„pr ) is a small quanti-
ty, and it is sufficient to make an expansion in m as follows:

1+@, 4p( m 1+4p, +p,
G(p„pr, 0)=1—p, —pr —min prm 1 —2pr + +O(m )

1 —A 3 (1—p)
(16)

There is a percolation transition when the coefficient of
the m term changes sign at

1 —ps =~0 '(p. ) .
1 +pg

l

range percolation for Bravais lattices of arbitrary dimen-
sion. For p, &p (percolation threshold of the short-range
model) it is possible to make an expansion as in Eq. (16),
and

The "phase diagram" is indicated in Fig. 1(a). The pure
one-dimensional problem (pr =0) percolates only for
p, = 1, while pure equivalent-neighbor percolation (p, =0)
takes place for pr & —,'. The expression in Eq. (16) is
similar to a Landau expansion of the free energy in spin
models. However, the presence of the cubic term does not
imply that the transition is first order. This is because the
variable m is confined to the range zero to one, and nega-
tive values of m are meaningless. The percolation transi-
tion is continuous, and the critical behavior is determined
by balancing the m and m terms as follows:

T

0, t&0G""g- '
3 t&0,

{a)
0.5

I's

0, t(0
I'=m —, 0,t, t& {b)

s-t-',
where t =2prSO(p, ) —1. The critical exponents a= —1,
P=1, and y= 1 are characteristic of mean-field percola-
tion. '

For higher-dimensional lattices, the exact solution to
Go(p„h) is not known. However, certain properties of
Go(p„h) are known, and it is possible to make general
statements about the behavior in the presence of long-

FIG. 1. Phase diagrams for percolation with nearest-
neighbor and equivalent-neighbor occupation probabilities p,
and 2@~/X for (a) the one-dimensional lattice (exact result) and
(b) a higher-dimensional lattice (schematic).



G(p„pI, O)= —pI+Go(p„O) —minIptm2[1 —2pISo(p, )]+ ', p—I Uo(p, )m3+0(m~) j

where

(19)

is the mean size of finite clusters in the nearest-neighbor model, and

The percolation transition occurs for 2pI ——So(p,), and the critical behavior is governed by mean-field exponents [Eq.
(18)]. A representative phase diagram is given in Fig. 1(b). For p, =O, the cluster size So(0)=1 and pI ———, of the
equivalent-range model is recovered. The line terminates at the percolation point of the short-range model since
So(p') ' =0. The crossover phenomena in the vicinity of the short-range percolation transition can also be studied. In
this neighborhood there are two scaling exponents, y, and y~, corresponding to the thermal and magnetic directions in
the Potts model. ' For prm ))(p' —p, )I', where p=yI, /y, =-p+y is the crossover exponent, the expansion of Eq. (19) is
no longer valid. The correct expansion gives

G (p„p1,0)= pI +Go—(p*,O) —min[p&m —c (2p&m) "] (20)

where c is a positive constant. The percolation probability in this region is p =I -pP, independent of p, . For
p, —p -pt there is another crossover to a region where the percolation probability of the pure short-range model is
I1011zcl'o, and fol p —p ))pI thc pl'opcl cxpa1181011 18

G(p„p1,0)=—pI+Go(p„O) —minI 2pIP&(p,—)m+pI[1 —2p SI(po, )] I+0(m )j (21)

where Po(p, ) is the percolation probability of the short-
range model. In this regime m=P&(p, )/[I —2pISo(p, )].
Figure 2(a) shows the behavior of I as a function of p,
for pt close to zero. Similarly, the crossover phenomena
encountered for the finite-cluster size S is depicted in Fig.
2(b). The crossover behavior is very similar to that en-

I

countered in the Ising model with equivalent-neighbor in-
teractions.

IV. CAYI.EY TREE

Various forms of percolation have been studied on Cay-
ley trees ' ' [Fig. 3(a)]. Cayley trees are special cases of

p )/y
/

2pgSo-)~ "~pj
p+

P~p P~P~ P

0
8

FIG. 2. Crossover phenomena for a small eqmvalent-
neighbor occupation probability pl in (a) the percolation proba-
bility P and (b) the mean finite-cluster size S.

FIG. 3. (a) Phase diagrams for the Cayley tree vrith z =3 (in-
set). {h) The dependence of the exponents a and P on the
nearest-neighbor bond occupation probability.
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hierarchical lattices' ' with no loops present. An impor-
tant feature of the Cayley tree and of all hierarchical lat-
tices is its lack of translational symmetry. As a result
such properties as local magnetization and percolation
probability will also be site dependent. In the Bethe-
Peierls approximation ' this site dependence is ignored
and a uniform magnetization (or percolation probability)
is assumed. The results are valid only for sites at the
center of the Cayley tree. However, a finite fraction of
the total number of sites lies at the surface of the tree and
drastically affects the thermodynamic behavior. Such
quantities as the net magnetization (or the percolation
probability averaged over all lattice sites) are very dif-
ferent from the local properties obtained for the central
sites by the Bethe-Peierls approximation. 2' The correct

I

Go(p„h ) = Go (P„O)+ [Pp(p, ) —1]h

h' — h'+O(h4),So(p, ) U, (p, )
(22)

where

thermodynamic behavior was obtained by Muller-
Hartmann and Zittartz for the Ising model on the Cay-
ley tree, and was extended later on to general Potts
models (including percolation).

We now briefly review the properties of the cluster-
generating function Gp(p„h) on a Cayley tree of coordi-
nation number z. For p, &PBI ——1/(z —1), the Bethe-
Peierls percolation threshold Gp(p„h) is analytic in h and
can be expended as

Go(p. o)=1—P, ,

Po(p, ) =o

8 Go (1+p, )
So(ps) =

2
=

2 [ps &P2 ——( —1) ' ],Bh I, p 1 —p (z —1)

(23)

8 GO
Uo(p, )=-

t=o
p, (1+p, )'

2+[1—p, (z —1)]

[P, &P3 ——(z —1) ] .

(1—p, )[1+2p, +2p, (z —1)+p, (z —1)]
[1—p, (z —1)][1—p, (z —1)2]

(1+p, )[1+2p,'(z —1)]
X ps+

1 —p, (z —1)

For p, ) 1/(z —1), there is an additional singular term,

Go s(ps, h) = Ah
h~0+

(24)

lytic terms in Gp(p„h). However, the exponent b, is
larger than 3, and the leading terms in the expansion for
Gp(p„pt, 0) will be

where the exponent 6 varies continuously with p, as

ln(z —1)
ln[(z —1)p, ]

(25)

Furthermore, when h(p, ) equals an integer n, the leading
singularity is modified by a logarithm as follows:

Gp'"s(p„h) —a„h "ln(1/h) .
h —+0+

To examine the behavior of the percolation problem on
the Cayley tree with equivalent-neighbor bonds, the form
of Gp(p„h) from Eqs. (22)—(26) can be substituted into
Eq. (10). As for Bravais lattices, the percolation threshold
occurs for 2pt ——Sp(p, ) ', and is given by

T

1 —p, (z —1)

2pt = (1+&")'
(27)

Ps &P2

where p2 ——(z —1) '~. The critical boundary for z=3 is
given in Fig. 3(a). The critical line can be divided into the
following segments.

(i) For p, &psp ——1/(z —1), the expansion of Gp(p„h)
is analytic in h, and the critical properties will be mean-
field-like (a = —1, P= 1, y = 1 ).

(ii) For PB~ &p, &p3 ——(z —1),there will be nonana-

1 1 z —2
2 ln(z —1) z —1

3
(z —1)'"+1
(z —1)'~ —1

)

(30)

is a negative constant. For t =2P~So(p, ) —1 negative m is
zero, while for positive t it behaves as

m -t/lnt,
while the generating function behaves as

G""s(P„P~,O)-t /(lnt)

(31)

(32)

Similar modifications of classical criticality by logarithms
have been indicated for percolation at the upper critical

G(p„pt, O)=1 —p, —pi —minI pim [1—2ptSp(p, )]

+—', pi Up(p, )m

resulting in classical criticality, although there will be
nonclassical corrections in higher-order derivatives.

(iii) As p, ~p3, the third-order derivative Up(p, )
diverges, and at p, =p3,

G(p„pt, 0)= 1 —
pg pt—

—minI pim [1—2prSo(p, )]

a 3 (2ptm )»( 1 /2ptm ) ] (29)

where
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dimension.
(iv) For p3 &p, &p2, the exponent b, is less than 3, and

the leading expansion in m gives

G(p„p~,0)=l —p, —pt —mint ptm [1 2p—tS0(p. )]
—A (2ptm) (33)

a= , P=4—6 1

2—5 ' 5—2
(34)

vary continuously with the probability p, . Nonuniversal
critical behavior has been encountered in vertex and Ising
models, but is a new result in percolation problems
(there are one-dimensional models with exponents depen-
dent on the range, ' ' but not on the magnitude of the
percolating bonds).

(v) As p, —+p2, the cluster size S0(p, ) diverges, and for
p, =p2 the proper expansion is

G(p, pt, 0)=1—p. —pi

—min[p&m —az(2plm) 1n(1/2ptm)]~,

(35)

where

(V'z —1+1)'
(z —1)ln(z —1)

is positive. The behavior of critica1 quantities as pI ~0 is

1
fn exp

402pI.
6 g-expSlQ 1

202p
(36)

The exponential singularity of critical quantities is
characteristic of spin systems at their lower critical
dimensionality. ' The reason it is not encountered in
one-dimensional percolation [Eq. (14)] is that the conven-
tional choice for the small deviation from criticality is
1 —p, rather than e

(vi) For p, &pz, the exponent b, is less than 2, and

G(pg apt&0)=1 —pt —
p&

—min[ptm —A (2p~m) ]~

For 1~6&2,
8 G0

=A(b, —1)Ah &0,
h =0+

which implies A &0. The system is now percolating for
pi ~0, while as pi —+0, the critical quantities behave as
m-pI and G""s-pt, where

4—3A 6—1a=, P=
2 —6 ' 2 —6 (38)

with 3 negative. This is a consequence of the fact that
for 2&6&3,

BG
=Ah, (b, —1)(b —2)h &0,

Bh a o+

which implies A &0. For t &0, the expression (33) gives
m —t~ and G""s t-, where the exponents

These exponents are also nonuniversal as 4 varies with the
probability p, [Eq. (25)]. In this model the exponent y al-
ways retains its mean-field value of unity. The exponents
a and P are plotted in Fig. 3(b). As in the Ising model on
a Cayley tree, we expect the amplitude A [Eqs. (24),
(33), and (37)] to equal a constant plus a numerically
small periodic function of ln(2p~m). This will cause small
but rather interesting modifications in the critical
behavior.

The results obtained above are analogous to those ob-
served for the Ising model on the Cayley tree with
equivalent-neighbor interactions. " For p, =0 all sites are
identical and connected by equivalent-neighbor bonds, and
the classical percolation transition at pt ———, is that of an
infinite-dimensional system. Increasing p, breaks the
translational invariance between the sites and places them
in the hierarchical structure of the Cayley tree. As p, is
increased the classical percolation transition is modified
by logarithms (resembling percolation at the upper critical
dimension of six), then there is a line of continuously
varying exponents terminating in a point of exponential
singularity (characteristic of spin systems at the lower
critical dimension). ' Thus breaking the translational
invariance by bonds of Cayley-tree connectivity appears to
have effects on the critical percolation behavior which are
similar to the lowering of spatial dimensionality on Bra-
vais lattices. This is precisely the conclusion reached in
the Ising problem, " and will also be extended to other
Potts models.

Again, in this case we must emphasize the meaning of
the percolation probability P(p„p~)=m, as an auerage
and not a local percolation probability. Owing to the lack
of translational invariance, the local percolation probabili-
ties P;(p„pt) are site dependent. For p, &pBp= 1/(z —1)
the probability that the sites at the center of the tree be-
long to an infinite cluster is finite (and given by the
Bethe-Peierls approximation), while due to the large
number of surface sites, the average percolation probabili-
ty P=(l/X)Q, . P; is zero. Thus for p, &pBP there is a
finite probability of an infinite cluster on the tree.

V. CONCLUSION

Using the relation between percolation and the q~1
limit of Potts models, we describe a method for general-
izing and solving exactly a number of percolation prob-
lems. In this paper the bond-percolation problem. in the
presence of infinite-range bonds was studied on Bravais
lattices and on the Cayley tree. The absence of translation
symmetry between the sites of the Cayley tree causes per-
colation criticality dramatically different from Bravais
lattices, and leads to a nonuniversal line of percolation
transitions, Such nonuniversal transition lines have been
encountered in problems in statistical mechanics. The
procedure described in this paper can be further general-
ized by the Hamiltonian minimization method to include
the possibility of bonds simultaneously connecting three
or more sites. In the language of Potts models these
would correspond to interactions connecting three or more
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spins in an equivalent-neighbor fashion. In such general-
ized problems percolation transitions with "first-order"'
or even "tricritical" type of criticality might be encoun-
tered. The application of Eq. (9) to general Potts models
on Bravais and Cayley-tree lattices also leads to a number
of interesting results which will be discussed elsewhere.
Percolation and Potts models on another hierarchical lat-
tice, the diamond, will be discussed in Ref. 30.
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