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* Cirrus clouds (235-185¥, up to 40% 4aVaEEE)
— Climate effect : "Ny 25
* Large & uncertain effect (ipcc, ArR4, 2007) . T t’ﬂ '
\Warming or cooling (Chen et al. 2000) - " "

Difference NH vs. SH, anthropogenic activities, inAIboF Voke? "
Microphysical properties (ice crystal number and size ) -
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Instrumentations and dataset

Instruments

— Water vapor: the VCSEL hygrometer (accuracy 6%)

— Temperature: Rosemount temperature probe (+ 0.5 K)

— Ice crystal number density: 2DC and 260X 2DC probes (25 um, 10 um)

HIPPO 1 to 5 deployments

— HIPPO1 did not have ice measurements

Uncertainties

Relative humidity with respect to ice (T <-40 C)

RHI= e/es « e: water vapor partial pressure
* e, saturated ice vapor pressure

Example of RHi uncertainty

Water vapor mixing ratio: 6%
Temperature: 0.5 K
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Clear sky

RHi distribution in NH and SH

Ovarlez et al., 2000
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Cloudy sky

RHi distribution in NH and SH

Ovarlez et al., 2000

Punta Arenas In-cirrus

Peaks at ~¥95% (NH) and ~94% (SH)
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Clear sky

lce supersaturation (ISS) distribution in NH and SH

ISS magnitude

ISS vertical distribution
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Clear sky
ISS frequency density in NH and SH

Bin by 25 mb*10 degrees Total RHi observations
ISS frequency density In clear sky

100 100 -

200 200
=) =
£ 300- £ 300+
(O] (O]
= =
7 3
© 400+ o 400
o o

500 - 500

—
0.0 0.2 0.4 0.6 0.8 1.0
600 - ISS frequency 600 -
I I I I | I
-50 0 50 -50 0 50
Latitude (degree) Latitude (degree)

ISS frequency density between two hemispheres
NH has higher frequency of ISS for clear sky



RHi (%)

Cloudy sky
ISS distribution in NH and SH

ISS magnitude

160 o
E
150 1 2 3 4 5 é
HIPPO deployment 1
140 ¢ )
:

130 g - o B

= B g B

= o H Eu =
120— -
B ' E %_ w5
110- ; E iR
100 - % — & L ,%

Latitude (degree)
HIPPO1 has no ice probe

ISS magnitude between two hemispheres
NH has higher ISS

Pressure (mb)

ISS vertical distribution

w N

o (&)

o o
| |

350
400

450

500

]| asl -
| o
F = oo g
-
. DE:

1 2 3 4 5
HIPPO deployment

[ T [ T [ T [
-40 0 40 80
Latitude (degree)

# of ISS between two hemispheres
NH has more # ISS in observations



Pressure (mb)

Cloudy sky
1SS frequency density in NH and SH
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Ice supersaturated regions (ISSRs) and ice clouds

ISSRs: spatially continuous region where RHi > 100%,
with or without ice crystals

Outside ISSR: subsaturated environment

Pathlength, RH ISR N
ice crystal number :
RHi > 100%

Cirrus: 2DC or 260X 2DC Cirrus clouds

ice number density > 0 /\
> aircraft track

ISS magnitude is highly related to the formation and
evolution of cirrus clouds

During which phase of cirrus cloud evolution does NH has
higher ISS than SH? — Nucleation? Removal?

How can we separate out different evolution phases of
cirrus clouds?

aircraft track




Spatial ratio between ISSRs and cirrus clouds
Spatial ratio=A /B
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Spatial ratio of cirrus clouds

Spatial ratio of ice supersaturation

ISSR
RHi > 100 %

ISSR
RHi > 100 %
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RHi (%)

Phase 1 Clear sky ISSRs
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RHi (%)

Phase 2+3+4 Cirrus cloud growth
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RHi (%)

Phase 5 Cloud sedimentation and evaporation
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Conclusions
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Upersaturation in NH and SH'with global in situ HIPPO data
— PDEof RHi' | |, 'shiftsto ,|" | -\ than SH for both in-cloud and clear sky
— ISS frequency density

* Clear sky NH > SH

* |n-cloud no difference

~ * 2. Evolutions from ISSR to cirrus clouds 3
= — Proposedaschemeto - - = .. ofcirrus clouds byin situ, quasi-
= Eulerian samplin | =

— Link large scale fﬁ'r)JJH*f—*IJ"—* Lo cloud microphysics =

o

* 3. Mechanism of cirrus cloud formationinNHandSH

— Separateout " ‘cloudsfrom clouds e
=
— NH vs. SH have similar mean RHi value at each L),JJ d.L)J ition:

— NH has broader range of RHi at each phase
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