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F. Sabatié,9 M. S. Saini,15 J. Salamanca,18 C. Salgado,30 A. Sandorfi,41 J. P. Santoro,44,8,41 V. Sapunenko,41 D. Schott,14

R.A. Schumacher,7 V. S. Serov,21 Y.G. Sharabian,41 D. Sharov,39 N.V. Shvedunov,39 E. S. Smith,41 L. C. Smith,45

D. I. Sober,8 D. Sokhan,12 A. Starostin,5 A. Stavinsky,21 S. Stepanyan,41 S. S. Stepanyan,26 B. E. Stokes,15,16 P. Stoler,35

K.A. Stopani,39 I. I. Strakovsky,16 S. Strauch,16,40 M. Taiuti,1 D. J. Tedeschi,40 A. Teymurazyan,24 A. Tkabladze,33,16

S. Tkachenko,34 L. Todor,37 C. Tur,40 M. Ungaro,35,11 M. F. Vineyard,42 A. V. Vlassov,21 D. P. Watts,12 X. Wei,41

L. B. Weinstein,34 D. P. Weygand,41 M. Williams,7 E. Wolin,41 M.H. Wood,40 A. Yegneswaran,41 M. Yurov,26 L. Zana,29

J. Zhang,34 B. Zhao,11 and Z.W. Zhao40

(CLAS Collaboration)

1Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy
2Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405, USA

3Argonne National Laboratory, Argonne, Illinois 60439, USA
4Arizona State University, Tempe, Arizona 85287-1504, USA

5University of California at Los Angeles, Los Angeles, California 90095-1547, USA
6California State University, Dominguez Hills, Carson, California 90747, USA

7Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
8Catholic University of America, Washington, D.C. 20064, USA

9CEA-Saclay, Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
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We report on the results of the first measurement of exclusive f0ð980Þ meson photoproduction on

protons for E� ¼ 3:0–3:8 GeV and �t ¼ 0:4–1:0 GeV2. Data were collected with the CLAS detector at

the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the

�þ�� channel by performing a partial wave analysis of the reaction �p ! p�þ��. Clear evidence of

the f0ð980Þ meson was found in the interference between P and S waves atM�þ�� � 1 GeV. The S-wave

differential cross section integrated in the mass range of the f0ð980Þ was found to be a factor of about 50

smaller than the cross section for the � meson. This is the first time the f0ð980Þ meson has been measured

in a photoproduction experiment.

DOI: 10.1103/PhysRevLett.102.102001 PACS numbers: 13.60.Le, 11.80.Et, 14.40.Cs

The spectroscopy of low-lying scalar mesons is a topic
of high interest in hadronic physics. Experimental and
theoretical evidence indicates that these states make a
full SUð3Þ flavor nonet. However, the mass spectrum order-
ing of the �, �, f0ð980Þ, and a0ð980Þ mesons disfavors the
naive q �q picture. The most natural explanation for this
multiplet with an inverted mass spectrum is that these
mesons are diquark-antidiquark bound states with correct
mass ordering [1,2]. Recent advances in the application of
chiral effective field theory with dispersion relations [3–6]
has led to extensive investigation of the subject.

So far, scalar mesons have been observed in hadron-
hadron collisions, �� collisions in decays of various me-
sons such as �, J=�, D and B while very few studies with

electromagnetic probes were attempted. Their cross sec-
tions are relatively small compared to the dominant pro-
duction of vector mesons; however, S-wave parameters can
be extracted by performing a partial wave analysis and
exploiting the interference with the dominant Pwaves. The
dependence of the cross section on the momentum transfer
t and resonance mass might shed light on the peculiar
structure of these mesons. For example, the authors of
Ref. [7] suggest that a compact q �q system is expected to
be observed as a peak in the invariant mass distribution of
the resonance decay products, while a diffuse state, e.g., a
meson molecule, would more likely appear as a dip.
The dominant decay mode for most of the light scalar

mesons is the �� channel. Up to now the most compre-
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hensive analyses of �þ�� photoproduction at few GeV
energies were performed at DESY [8,9], SLAC [10,11] and
Jefferson Lab [12]. These measurements showed the domi-
nance of the � resonance. In the analysis of the SLAC data,
the angular dependence was parametrized in terms of P
wave alone, and no attempt was made to extract S-wave or
higher partial waves. More recently, the HERMES
Collaboration investigated the interference of the P wave
in �þ�� electroproduction (with Q2 > 3 GeV2) with the
S and D waves [13].

In this work we focus on �þ�� photoproduction at
photon energies between 3.0 and 3.8 GeV in the range of
momentum transfer squared�t between 0.4 and 1:0 GeV2

and present the first analysis of the S-wave photoproduc-
tion of pion pairs in the region of the f0ð980Þ.

The present measurement was performed using the
CLAS detector (CEBAF Large Acceptance Spec-
trometer) [14] at Jefferson Lab in experimental Hall B
with a bremsstrahlung photon beam produced by a primary
electron beam of energy E0 ¼ 4:0 GeV hitting a gold foil
of 10�4 radiation lengths. A bremsstrahlung tagging sys-
tem with an energy resolution of 0.1% E0 was used to tag
photons in the energy range 3:0–3:8 GeV. The target con-
sisted of a 40-cm-long cylindrical cell containing liquid
hydrogen at 20.4 K. The high-intensity photon flux
(�107�=s) was measured by dedicated devices with a
systematic uncertainty of 10%

Outgoing hadrons were detected and identified in CLAS.
Charged particle trajectories were bent by a toroidal mag-
netic field (�0:5 T), which is generated by six supercon-
ducting coils. Momentum information was obtained via
tracking through three regions of multiwire drift chambers.
The CLAS momentum resolution for charged particles is
approximately 0.5%–1% (�) depending on the kinematics.
The detector geometrical acceptance for each positive
particle in the relevant kinematic region is about 40%.
Time-of-flight scintillators were used for hadron identifi-
cation. The interaction time of the incoming photon in the
target was measured by detecting the outgoing particles in
the Start Counter [15]. Coincidences between the photon
tagger and two charged particles in the CLAS detector
triggered the recording of the events.

The exclusive reaction �p ! pf0ð980Þ was measured
via the most sizable f0ð980Þ decay mode (f0ð980Þ !
�þ�� with �ð��Þ=½�ð��Þ þ �ðK �KÞ� � 75% [16]). The
final state was selected requiring detection of both the
proton and the �þ in CLAS and reconstructing the ��
using the missing-mass technique [17]. In this analysis
the momentum transfer �t was limited to the range
0:4–1:0 GaV2 where the product of the detector acceptance
and the reaction yield is larger. About 40 M events were
identified after all selection cuts. Calibrations of all detec-
tor components were performed, achieving a precision of a
few MeV in the invariant dipion mass determination. An
experimental resolution of a similar magnitude was eval-
uated from Monte Carlo simulation.

The data analysis consisted of two main steps:
(i) extraction of moments hYLMi of the dipion angular
distributions; (ii) fit of the moments with a parametrization
of the partial waves. In the following, we briefly outline the
procedure, referring to a more comprehensive paper [18]
for analysis details.
Moments YLMð��Þ are defined as the projection of the

production cross section on spherical harmonics with de-
fined angular momentum L and z component M:

hYLMiðE�; t;M��Þ ¼
ffiffiffiffiffiffiffi
4�

p Z
d��YLMð��Þ

� d�

dtdM��d��

; (1)

where E� is the photon energy, t the invariant momentum

transfer to the dipion system squared, and M�� its mass.
The decay angles�� ¼ ð��;��Þ are the polar and azimu-
thal angles of the �þ in the helicity rest frame.
The extraction of the moments from data requires that

the measured angular distributions are corrected by accep-
tance. The CLAS acceptance and reconstruction efficiency
were evaluated with Monte Carlo simulations. Events were
generated according to three-particle phase space in the
same photon energy range as the experiment, processed by
a GEANT-based code that included knowledge of the detec-
tor geometry and response to traversing particles, and
reconstructed using the same analysis procedure that was
applied to the data. Moments were expanded in a model-
independent way in two sets of basis functions and, after
weighting with Monte Carlo simulations, they were fitted
to the data by maximizing a likelihood function built on an
event-by-event basis. In the first case, the parametrization
was given in terms of amplitudes, while in the second,
moments were directly used [19]. In both cases the num-
ber of basis functions was limited for practical reasons. In
the kinematic range 3:0< E� < 3:8 GeV, 0:4<�t <

1:0 GeV2 and 0:4<M�� < 1:4 GeV, moments with L �
4 and jMj � L were calculated as an average of results
obtained with the two parametrizations.
Detailed systematic studies were performed using both

Monte Carlo simulations and real data to ensure the valid-
ity of the approximations and to study possible effects
related to the basis truncation and the detector acceptance.
The comparison of results obtained by the different meth-
ods was used to estimate the systematic uncertainty related
to the analysis procedure. We found that the variation in the
moments obtained from the different procedures is larger
than the statistical uncertainty and larger than other sources
of systematic uncertainty, such as event selection cuts,
detector resolution and inefficiency. The final uncertainty
was then obtained by summing in quadrature the fit uncer-
tainty given by MINUIT, the uncertainty associated with the
photon flux determination, and the above-mentioned un-
certainty on the moment extraction procedure.
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The plots in Fig. 1 show the moments hY00i, hY10i and
hY11i in a selected E� and t bin. Moment hY00i corresponds
to the differential cross section d�=dtdM��. As expected
this is dominated by the contribution of the � meson in the
P wave shown by the prominent peak atM�� � 0:77 GeV.
In moments hY10i and hY11i, the contribution of the S wave
is maximum and enters via interference with the dominant
P wave.

The second step of the analysis consisted of extracting
the partial wave amplitudes from the angular moments.
These can be expressed as bilinear in terms of the ampli-
tudes alm ¼ almð�; �0; ��; E�; t;M��Þ with angular mo-

mentum l and z projection m (in the chosen reference
systemm coincides with the helicity of the dipion system):

hYLMi /
X

l0m0;lm;�;�0
Cðl0m0; lm; LMÞalma�l0m0 ; (2)

where � and �0 are the initial and final nucleon helicity,
respectively, �� is the helicity of the photon, and C are

Clebsch-Gordan coefficients. Each amplitude was ex-
pressed as a linear combination of �� amplitudes of fixed
isospin, alm;I with I ¼ 0, 1, 2. The number of waves was

reduced restricting the analysis to jmj � 1, since m ¼ 2
waves are expected to be small in the mass range under
investigation.

Using a dispersion relation [20], the helicity amplitude
alm;I was expressed in terms of the scattering matrix ele-

ments of �� scattering, chosen to reproduce the known
phase shifts, inelasticities [6,16], and the isoscalar (l ¼ S,
D), isovector (l ¼ P, F) and isotensor (l ¼ S, D) ampli-
tudes in the range 0:4 GeV<

ffiffiffi
s

p
< 1:4 GeV. With this

approach, our ignorance about the production process is
gathered in a reduced amplitude, ~alm;I, which does not have

singularities for s > 4m2
� and can be expanded in a poly-

nomial function. This was chosen to be of second order and
its coefficients are the partial wave analysis parameters that
were extracted by the simultaneous fit of the angular mo-
ments defined in Eq. (2). All amplitudes but the scalar-
isoscalar are saturated by the �� state. For the scalar-
isoscalar amplitude, the K �K channel was also included.
A detailed discussion of the approximations used in the
analysis and of the dispersion relation equation are re-
ported in Ref. [18].

Partial waves alm up to l ¼ 3 (F wave) were determined
fitting all moments hYLMi with L � 4 and jMj �
minðL; 2Þ. Results of the fit are shown as a gray band in
Fig. 1 on top of the experimental angular moments hY00i,
hY10i and hY11i in a selected E� and t bin. As stated above,

the contribution of the S wave is maximum in moments
hY10i and hY11i. In particular the large structure at the �
mass in hY11i is due to the interference of the S wave with
the dominant, helicity-non-flip wave, Pm¼1 (�� ¼ 1 !
m ¼ 1). In moment hY10i the same structure is due to the
interference with the Pm¼0 wave, corresponding to one unit
of helicity flip (�� ¼ 1 ! m ¼ 0). A second dip near

M�� ¼ 1 GeV is clearly visible and corresponds to the
direct production of a resonance that we interpret as the
f0ð980Þ. The mass and width of this structure are compat-
ible with the PDG values (M ¼ 980� 10 MeV and � ¼
40–100 MeV [16]).
It should be noted that moments of the �þ�� angular

distribution can be affected by baryon resonances decaying
to �þp and ��p. These contributions represent a back-
ground for our analysis but, having a smooth depen-
dence on the di-pion mass, they cannot create narrow
structures in these observables. In addition, they are ex-
pected to be small for low moments and limited values of
M�� (&1:1 GeV) that are the focus of this analysis.
The P and S partial wave differential cross sections

d�=dtdM�� are shown in Fig. 2. As expected, the
S-wave photoproduction is suppressed compared to the P
wave, which is dominated by the � meson.
The S wave shows a clear variation in the vicinity of the

f0ð980Þ. However, the resonance component seems to be
embedded in a coherent background. The evidence of the
f0ð980Þ signal in the S wave is a sign that photoproduction
may indeed be a good tool for accessing meson resonances
other than vector meson states. The total S-wave differen-
tial cross section d�=dt in the region of the f0ð980Þ was
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FIG. 1. Selected angular moments in the photon energy bin
3:2<E� < 3:4 GeV and momentum transfer 0:5<�t <

0:6 GeV2. Error bars include the systematic uncertainty related
to the photon flux normalization and the moment extraction
procedure. The gray band shows the result of the fit of the
moments in terms of partial wave amplitudes.
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obtained integrating the M�� mass in the range 0:98�
0:04 GeV. Differential cross sections d�=dt in E� ¼
3:4� 0:4 GeV for S wave (open circles), obtained as
described above, and P wave (solid dots), integrated in
the � mass range (M�� ¼ 0:4–1:2 GeV), are shown in
Fig. 3. The S-wave cross section is found to be a factor
of about 50 smaller than the cross section for the P wave.

The solid line is a prediction for the S wave of a model
based on Regge exchanges [21,22]. This was normalized to
DESY KþK� photoproduction data [23] and was able to
reproduce the S-wave measured in the same channel at
Daresbury [24]. The agreement of the calculation with our
data suggests that the �þ�� S-wave cross section ex-
tracted here is consistent with the measurement in the
KþK� channel. It also indicates that the present data can
be used in phenomenological analyses that, exploiting the
pointlike nature of photon interactions, will provide infor-
mation about the resonance structure and production
mechanisms.
In summary, we measured �þ�� photoproduction in

the photon energy range E� ¼ 3:0–3:8 GeV and momen-

tum transfer range 0:4 GeV2 <�t < 1:0 GeV2 perform-
ing a partial wave analysis. Moments of the dipion angular
distribution were parametrized in terms of production am-
plitudes, expressed as bilinear in the partial waves, and
fitted to the experimental data. The systematic uncertainty
related to the whole procedure was estimated performing
the analysis using different procedures and approxima-
tions. As expected, the dominant partial wave was found
to be the one associated with the helicity-non-flip �ð770Þ
production. The interference between P and S waves at
M�� � 1 GeV clearly indicates the presence of the
f0ð980Þ resonance. This is the first time the f0ð980Þ meson
has been measured in a photoproduction experiment.
We would like to acknowledge the outstanding efforts of

the staff of the Accelerator and the Physics Divisions at
Jefferson Lab that made this experiment possible. This
work was supported in part by the Italian Istituto
Nazionale di Fisica Nucleare, the French Centre National
de la Recherche Scientifique and Commissariat à l’Energie
Atomique, the U.S. Department of Energy and National
Science Foundation, and the Korea Science and
Engineering Foundation. Jefferson Science Associates,
LLC, operates Jefferson Lab for the United States
Department of Energy under U.S. DOE contract DE-
AC05- 060R23177.
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0:8 GeV2, indicative of a possible interference between different
production mechanisms. In the case of � photoproduction this
effect was also seen at higher energies [25].
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FIG. 2. Partial wave cross sections in the same kinematic bin
as Fig. 1. The top and bottom panels show the P and the S wave,
respectively. The width of the bands represents the uncertainty
estimated as explained in the text.
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