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A B S T R A C T

Background: The purpose of the present study was to determine the presence and magnitude of seasonal var-
iation in daily physical activity (PA) in those with heart failure (HF).
Methods: Retrospective study and dynamic factor analysis (DFA) of Patient Activity data from Medtronic
implanted cardioverter defibrillator and cardiac resynchronization devices (ICD/CRTs).
Results: In a data set of 435 patients, distinct states/trends were identified by DFA including a classic, sinusoi-
dal pattern of seasonal variation and a pattern of decline over the course of 12 months, which were associ-
ated with specific clinical characteristics. Overall, model fitting was good.
Conclusions: Those with low comorbidities, better NYHA Class, higher BMI, no hospitalization, and male sex
demonstrated greater seasonal variation of at least 40 min per day between winter (lowest PA) and spring/
summer (highest PA). Those with female sex and hospitalization demonstrated overall downward trajecto-
ries of approximately 40 and 80 min, respectively, over the course of the year.

© 2021 Elsevier Inc. All rights reserved.
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Introduction

In individuals with heart failure (HF), daily physical activity (PA) is
associated with many important clinical endpoints including actual
and predicted mortality risk,1�4 aerobic capacity,1 health-related
quality of life,5�7 sympathetic nervous system activity,8,9 hospital-
ization10�13 and ability to participate in activities of daily living.5�7

Additionally, amount of sedentary time is a better predictor of HF-
related prognosis and mortality than is exercise testing.4 Improving
daily PA is therefore an important clinical outcome. However, inter-
ventions that are consistently demonstrated to be effective in objec-
tively improving daily PA are elusive14 as daily PA is a health
behavior that is resistant to change in individuals with HF.13,15

Interventions for increasing PA can be directed at increasing exer-
cise (i.e. structured PA), increasing all other activities of daily living/
decreasing sedentary time (i.e. unstructured PA), or increasing total
daily energy expenditure16 (i.e. the sum of unstructured and struc-
tured PA, termed “daily PA” in the present manuscript). Similar to
that found in individuals with chronic lung disease,17�20 a potentially
significant confounding factor in research studies investigating inter-
ventions to improve daily PA in individuals with HF is seasonal varia-
tion of daily PA.21 Seasonal variation of daily PA is an increase in daily
PA/total energy expenditure with warmer temperatures and greater
daylight hours (spring and summer months) followed by reductions
in daily PA with colder weather and less daylight (winter months),
and is not limited to interventions that are conducted outside. In
patients with HF, Shoemaker et al21 observed that seasonal variation
may have confounded the effect of interventions to improve daily PA
due to rolling enrollment throughout the year. To our knowledge, no
prior study has successfully accounted for the potentially confound-
ing effect of seasonal variation in daily PA in studies investigating
interventions to improve daily PA in individuals with HF.

Regarding the presence and magnitude of seasonal variation in
daily PA in individuals with HF, there are conflicting results and dif-
ferent methods used between studies. There were no observed differ-
ences in a study comparing pedometer counts between different
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groups of subjects for each season1 or in a longitudinal study of daily
PA measured using the Short-form International Physical Activity
Questionnaire.13 Two studies22,23 using longitudinal data single-axis
accelerometer data recorded from Medtronic implanted cardioverter
defibrillator and cardiac resynchronization devices (ICD/CRTs) dem-
onstrated a seasonal pattern of daily PA of 20�24 min per day. How-
ever, when adjusting for overall activity level and number of
comorbidities, those who were more active (greater than 2.2 h per
day) and had fewer comorbidities (8 or less) had a seasonal difference
of 42 min per day vs 6 min per day for those who were inactive and
had a greater number of comorbidities.23 This suggests that there
may be a heterogenous effect of season on daily PA.

The effect of season on daily PA may have implications beyond its
impact on clinical trial design and interpretation. Seasonal changes in
sympathetic nervous system activity (a significant component of the
neuroendocrine dysfunction in HF) may increase during the winter
months which may in part be responsible for increased hospitaliza-
tions during the winter months,10�13 in addition to increased hyper-
tension, increased rates of respiratory disease and influenza, higher
depression, and pollution.11 This was seen in various regions including
more temperate climates like Brazil, but has mostly been studied in
regions with colder winters and greater seasonal variations in temper-
ature. Although Levin et al11 observed a 30% increase in hospital
admission secondary to HF during the winter months in Brazil, their
study did not observe a statistically significant effect of temperature.
Whether interventions to increase or preserve daily PA during the
winter months results in reduced hospitalization has not been studied.

Given that seasonal variation in daily PA in patients with HF has
the potential to confound clinical trials investigating interventions to
improve daily PA, may account for alterations in sympathetic activ-
ity-mediated increases in wintertime hospitalizations, and has yet to
be definitively established and quantified, the purpose of the present
study was to: (1) more definitively estimate the magnitude of daily
PA seasonal variation in individuals with HF and ICD/CRT devices, (2)
identify the clinical characteristics of those who have the greatest
seasonal variation in daily PA, and (3) to triangulate the results of
Shoemaker et al.22,23 using a similar sample in a different year using
raw daily PA and advanced time series statistical modeling.

Methods

Study design and measure of daily physical activity

The present study was a retrospective chart review of patients in
West Michigan with HF and Medtronic ICD/CRT devices. The objective
was to examine the presence and magnitude of seasonal change in daily
PA between November 1, 2016-October 31, 2017. The primarymeasure-
ment/source of data was the Patient Activity measure from Medtronic
ICD/CRT devices, which “include a single-axis accelerometer that
records daily PA in one-minute increments for every minute a patient is
moving at an equivalent of 70�80 steps per minute.”23 The total num-
ber of minutes of activity per day is stored in ICD/CRT device for a rolling
14-month period. Although strong correlation with and agreement
between the triaxial accelerometer and Patient Activity measures has
previously been demonstrated,24 the ICD/CRT-based measure of daily
PA does not account for intensity of activity.

Patient selection

Potentially eligible patients were identified by generating a list of
patients with HF managed by the Spectrum Health Cardiac Device
Clinic who had one of the five most common devices (Protecta, Evera,
Viva, Viva Quad, and Claria MRI series models) and had an in-clinic
device interrogation between November 1, 2017 and December 31,
2017. Given the rolling 14-month data storage, use of this date range
would identify patients likely to have Patient Activity data for the

entire one-year target sampling period. The data for these potentially
eligible subjects was securely transmitted by Medtronic following
execution of a data sharing agreement.

Patients were included if they: (1) had a diagnosis of HF due to
ischemic or non-ischemic cardiomyopathy, (2) were New York Heart
Association (NYHA) Class I-IV, (3) were managed by the health sys-
tem’s medical group, and (4) had a Medtronic ICD/CRT device.23

Exclusion criteria were: (1) incomplete Patient Activity data for the
entire sampling frame (November 1, 2016-October 31, 2017), (2)
documented conditions that limited ambulation including wheel-
chair use, severe orthopedic condition, stroke or other neurologic dis-
ease, or amputation, (3) history of left ventricular assist device
implantation, (4) greater than five hospitalizations for any reason, or
(5) major cardiovascular or orthopedic surgical procedure during the
sampling frame, including coronary artery bypass grafting, aortic
aneurysm repair, joint replacement, amputation, or spinal surgery.1

Data collection procedures

Patient Activity data were cleaned to remove any patient who did
not have complete Patient Activity data for the entire 1-year sampling
frame. The remaining potentially eligible patient records were then
imported into a secure web-based data collection repository.25 The
investigators then reviewed electronic medical records to determine
the remaining patients who met the inclusion and exclusion criteria. If
included, the investigators recorded clinical characteristics [age, sex, eti-
ology of cardiomyopathy, NYHA Class, device type, left ventricular ejec-
tion fraction, Charlson Comorbidity Index, number and length of
hospitalizations (based on local/in-system electronic health record
data), and nearest weather reporting station (based on home
address)].23

Meteorological data including daily average temperature, average
wind speed, relative humidity, precipitation, and snow for the
November 1, 2016-October 31, 2017 period were obtained from the
Local Climate Dataset26 and total daylight hours were obtained from
the United States Naval Observatory.27 Given that West Michigan
experiences significant variations in average daily temperature
(0�85°F), precipitation (0�2.5 inches), snow fall (0 to up to 30
inches), daylight (8�16 h), and wind speed (0�30 mph) over the
course of a year, it was important to account for the effect of these
meteorological variables in the time series analyses described below.
The study protocol was approved by the health system’s Institutional
Review Board (Protocol #2018�187).

Statistical analysis

The Multivariate Auto-Regressive State Space package available
for R Statistical Software was used to implement Dynamic factor
analysis (DFA).28,29 DFA is a type of dynamic linear model following
the form presented in Zurr et al.:30

yt ¼ Zat þ c þ Dxt þ et

The model is intended to use linear combinations and factor load-
ings, with offsets, to identify common underlying trends in multivari-
ate Patient Activity time series data (Zat + c), while accounting for
clinical characteristics as explanatory covariates (Dxt) error/noise (et).
In the present analysis, DFA was used to identify common states (pat-
terns) among different combinations of seven dichotomized clinical
characteristics/explanatory covariates (therefore a total of 14 time
series) along with meteorological data as covariates to help reduce/
explain as much noise in the data as possible. The seven clinical char-
acteristics (age, sex, body mass index, NYHA Class, comorbidities,
hospitalization, and baseline activity level) and their associated cut-
off values used in the modeling were the median values with one
exception: Patient Activity was dichotomized using a previously
established value of 132 min per day which differentiated between
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those with low and high levels of daily PA and which were associated
with prognosis.3 Each of the 14 time series parameters were stan-
dardized to have a mean of zero and standard deviation of one. As
noted above, meteorological variables (daylight hours, average tem-
perature, average wind speed, snow, and precipitation) were gath-
ered from four weather reporting stations (MKG, GRR, TVC, AZO).
Weather data from the closest station to each subject was used to
ensure the most accurate weather data. However, the data were very
similar between the four reporting stations and were therefore aver-
aged together for each variable.

DFA models were run for a number of m hidden states between 2
and 5, as well as various meteorological variables as covariates.
Akaike’s Information Criterium was used to select the final model
covariates and number of states. Varimax rotation was then applied
to the fitted model to maximize the difference in factor loadings
between the distinct states.

The fits obtained from the DFA models were then compared
against the observed values, and the residual sums of squares were
computed for each of the 14 time-series to scrutinize the model fit-
ting. The covariance matrix of the observation error from the final fit-
ted model was transformed into a dissimilarity matrix based upon
Euclidian distance (root sum-of-squares), from which multidimen-
sional scaling was applied to evaluate relationships in covariance
amongst the 14 time-series. A Generalized Additive Model with a
thin-plate spline function was applied to display the observed and fit-
ted lines for each of the 14 time-series from the seven dichotomized
clinical variables to assess model fitting and to identify the way in
which each factor contributed to the underlying states. Lastly, simple
non-parametric correlation coefficients (Kendall’s Tau), adjusted for
multiplicity using the Bonferroni-Holm method, were calculated to
compare which of the hidden states correlated most strongly with
the meteorological explanatory variables.

Fig. 1. Patient Inclusion/exclusion flow chart.

Table 1
Descriptive statistics.

All Subjects
n = 435

Subjects without
Hospitalization
n = 368

Subjects with �1
Hospitalization
n = 67

Age 69 (11.6) 68.7 (11.8) 70.8 (10.6)
Sex (% male) 76.6% 76.6% 76.1%
BMI (kg/m2) 31.1 (7.0) 31.0 (6.8) 31.4 (7.9)
LVEF (%) 37.1 (13.7) 37.3 (13.7) 35.3 (13.5)
Charlson Comorbidity
Index (score)

2.23 (1.6) 1.9 (1.4) 3.8 (1.7)*

Charlson Comorbidity Index �2 (%) 62.8% 69.3% 26.9%*
Overall Activity Level (mins) 167.4 (109.5) 174.6 (111.5) 127.8 (88.2)*
Etiology (% Ischemic) 59.1% 58.4% 62.7%
Device Type (% Bi-V) 64.4% 34.5% 41.8%
NYHA-FC

I 45.1% 47.8% 29.9%*
II 36.6% 34.0% 50.7%*
III 17.5% 17.4% 17.9%
IV 0.9% 0.8% 1.5%

Hospitalizations
1 or more (%) 15.9% � �
Hospitalizations (number) � � 1.4 (0.78)
Length of Stay (days) 6.5 (5.9) � 5.3 (0.65)

P<0.05 between patients with and without hospitalizations; Abbreviations: BMI, Body Mass Index;
LVEF, Left Ventricular Ejection Fraction; NYHA-FC, New York Heart Association-Functional Class; Bi-
V, Bi-Ventricular pacemaker (vs implanted cardioverter defibrillator or other pacemaker function
only).
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Univariate analyses with independent t tests and Chi Square were
used to compare patient groups based upon relevant clinical charac-
teristics identified by the DFA.

Results

A total of 1013 records were identified for patients with Protecta,
Evera, Viva, Viva Quad, and Claria MRI series models. Of those, 547

had complete Patient Activity data for the entire one-year observa-
tion period, with 435 ultimately meeting all inclusion/exclusion cri-
teria (Fig. 1). Descriptive statistics of the sample are provided in
Table 1. A summary of the meteorological variables is presented in
Fig. 2.

For the overall sample, a sinusoidal pattern was observed with a
peak seasonal difference of 35.3 min per day. The lowest activity lev-
els occurred during late December-late January (lowest average was

Fig. 2. Meteorological variables.
Y-axis for the upper panel uses standardized z scores; Lower panel Y-axis units are: Daylight (hours), Precipitation (inches), Snow (inches), Temperature (degrees Farenheit),

Wind (miles per hour).
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151.1 min per day) and the highest activity levels mid-to-late May
(highest average 186.4 min/day).

DFA revealed three distinct underlying states/patterns of Patient
Activity (Fig. 3). State 1 demonstrated a sinusoidal pattern of Patient

Activity with the lowest activity levels in January and February, and
the highest activity levels in May. State 2 demonstrated a decline in
activity throughout the winter that largely stabilized in April through
October but with a transient decrease in October. State 3

Fig. 3. Dynamic factor analysis-derived underlying states.

Fig. 4. Dynamic factor analysis factor loadings.
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demonstrated a sinusoidal pattern similar to State 1 but with less of a
decline in the winter and a peak in July.

Factor loadings for the three distinct states that emerged with
Varimax rotation are presented in Fig. 4. For State 1, the contributions
to the model were fairly similar for all factors/clinical characteristics
except female sex and hospitalization. The model for State 2 was pre-
dominantly influenced by hospitalizations, female sex, and low over-
all activity level. The model for State 3 contains no time series with
factor loadings greater than 0.4, and it is speculated to be most useful
as a linear combination with States 1 and 2.

Given that States 1 and 2 were the most different, especially in
regard to hospitalization, univariate analyses were used to compare
clinical characteristics of patients with and without hospitalizations
(Table 1). Those individuals with hospitalizations had significantly
greater comorbidity, lower overall activity level, and disproportion-
ately fewer individuals with NYHA Class I HF.

Assessment of the simple correlation coefficients and evaluation
of multidimensional scaling also reveal a unique pattern within the
model structure. Regarding the influence of meteorological variables
on daily PA models (Table 2), there were strong positive correlations
between the daylight and temperature covariates and State 1 and a
negative correlation between snowfall and State 1. This pattern
appears to be inverted when looking at correlations with State 2,

with negative correlations with daylight and temperature, and a posi-
tive correlation with snowfall.

Multidimensional scaling (Fig. 5) revealed stark clusters of similar
covariance patterns between the 14 different time series of Patient
Activity based on dichotomized clinical characteristics. Low comor-
bidities, low NYHA Class, low BMI, non-hospitalized, young age, and
male sex time series illicit a cluster, meaning that the Euclidian dis-
tance between these time series is small, and they share similar
observation errors within the model. By contrast, the time series rep-
resenting the PA of individuals who were older, hospitalized, high
comorbidities, and low overall physical activity created a looser clus-
ter but still indicate that these time series also share similarities in
their observation errors within the model. Lastly, the time series rep-
resenting the physical activity of females and NYHA Class II/IV show
very little similarity of observation errors to other factors/clinical
characteristics.

Similarly, the time series for the female and hospitalized factors/
clinical characteristics have the highest factor loadings in State 2 and
the highest sums of squares error (Fig. 4 and Table 3) indicating that
the model fit more poorly relative to the others. The time series rep-
resenting the median Patient Activity of non-hospitalized, low
comorbidity, high physical activity, and male individuals yielded the
lowest sums of squares error, indicating, at least superficially, a better
model fit when compared to the other time series.

In considering the fit of the DFA modeling for each factor/clinical
characteristic (Fig. 6), each factor had considerable variability but
overall good fitting of the models. In consideration of the way in
which the magnitude of seasonal variation in daily PA may be
impacted by each clinical characteristic, low comorbidities, low
NYHA Class, higher BMI, non-hospitalized, and male sex each demon-
strated greater seasonal variation/sinusoidal wave heights of
40�80 min per day. Fig. 6 also demonstrates, as previously noted,
individuals with hospitalization declined in activity over the course
of the year.

Table 2
Correlation coefficients between latent states and meteorological variables.

Daylight Temperature Snow Wind Precipitation

State 1 0.331** 0.2337** �0.2703** �0.0258 �0.0454
State 2 �0.5268** �0.4702** 0.3381** 0.1377* 0.0009
State 3 0.4301** 0.2606** �0.1197* �0.0217 0.0148

Kendall’s Tau Correlation coefficients.
** p < 0.01;.
* p < 0.05; p-values adjusted for multiple testing using Bonferroni-Holm

adjustment.

Fig. 5. Multidimensional scaling of covariance matrix.
Converting the covariance matrix to a dissimilarity matrix and applying multidimensional scaling, allows for the visualization of interactions in variability between the clinical

characteristics not captured by the states identified in Dynamic Factor Analysis. Points in close proximity indicate high correlation and therefore a large amount of shared informa-
tion not captured by the states or the associated explanatory variables.

PA, Patient Activity; BMI, body mass index; Hosp, hospitalizations; Cmbds, Comorbidities measured by the Charlson Index.
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Discussion

The present study sought to triangulate previous research findings
on seasonal variation in daily PA in individuals with HF using DFA, a
more advanced, comprehensive statistical analysis approach for time
series data. DFA holds a unique place in time series analysis, in that it
allows for a thorough examination of autoregressive multivariate
data while allowing consideration for explanatory variables. More-
over, it can serve to address and simplify the high dimensionality of
multivariate time series. This allows researchers to answer the ques-
tion “What is going on?” when simultaneously comparing multiple
time series.30 Using this approach, we were able to triangulate the
presence and magnitude of seasonal variation of daily PA while pro-
viding insight into the clinical characteristics that influence the
extent to which season impacts daily PA.

Presence and magnitude of seasonal variation

The present study reveals seasonal variation with an average dif-
ference of 35.3 min per day with lowest activity levels during late
December to late January and highest activity levels in mid to late
May. With regard to the magnitude and timing of seasonal variation,
these results for the overall sample are similar to previous studies. In
a small pilot study of 18 patients,22 daily PA was lowest in January/
February, highest in July and October, with a difference of 18�22 min
per day. In another larger sample of 168 patients,23 the lowest levels
of PA occurred in February, the highest levels occurred during June,
with a difference of 24 min per day.

Association between clinical characteristics and seasonal change in daily
PA

The present study provides several novel observations about the
way in which clinical characteristics and meteorological variables
influence seasonal variation of daily PA in individuals with HF. First,
those with male sex, low comorbidities, higher baseline daily PA, no
hospitalizations, and a lower (better) NYHA Class demonstrated a sea-
sonal, sinusoidal pattern of daily PA. This is based upon the multidi-
mensional scaling, correlations, and factor loadings which identified
this population as those who were associated most strongly with State
1. This is similar to findings of a previous study23 where individuals
with higher baseline activity and fewer comorbidities had the greatest
seasonal variation. That study, however, used a more basic statistical
approach not ideally suited for time series data while accounting for
various combinations of clinical characteristics or controlling for mete-
orological data. The present study used a larger sample size and a
more robust statistical approach and thus defines a population
expected to bemost prone to seasonal variation in studies of daily PA.

A second novel observation made by the present study is that dif-
ferent combinations of clinical characteristics may influence seasonal
variation in more complex ways than just simply obtunding the mag-
nitude of seasonal differences. Indeed, States 2 and 3 suggest two

Table 3
Factor loadings and sum of squares for fitted model.

Factor Loadings Sum of Squares

Time-Series State 1 State 2 State 3
P

ty
2
it

P
te

2
it 1� ðPte

2
it=
P

ty
2
itÞ

Male 0.078 0.039 0.004 364 138.193 0.620
Female 0.041 0.052 0.024 364 242.761 0.333
Class I/II 0.076 0.036 0.009 364 140.288 0.615
Class III/IV 0.067 0.026 0.033 364 199.738 0.451
Hosp. No 0.075 0.020 0.018 364 136.849 0.624
Hosp. Yes 0.018 0.080 0.002 364 214.930 0.410
Cmbds <=2 0.082 0.036 0.003 364 148.553 0.592
Cmbds >2 0.065 0.022 0.004 364 190.826 0.476
PA<=132 0.077 0.052 0.002 364 161.627 0.556
PA>132 0.077 0.027 0.011 364 143.452 0.606
Age.young 0.067 0.016 0.014 364 177.172 0.513
Age.old 0.066 0.033 0.011 364 174.606 0.520
BMI.low 0.058 0.027 0.013 364 166.192 0.543
BMI.high 0.083 0.032 0.016 364 145.783 0.599

PA, Patient Activity; BMI, body mass index; Hosp, hospitalizations; Cmbds,
Comorbidities measured by the Charlson Index.

Fig. 6. Dynamic factor analysis for fitted estimates vs observed values for each of the 14 factors.
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other patterns of daily PA over the course of a year: One which dem-
onstrates a decline over the course of a year with a slight rebound in
the Fall (State 2), and another which demonstrates a stepwise decline
(State 3). Regarding State 2 and a pattern of declining daily PA over
the course of a year, previous research is conflicting. One previous
study failed to find evidence of decline in daily PA using cluster anal-
ysis, however, that study did not utilize activity data from a single
year for all subjects which precluded the use of season, meteorologi-
cal data, and varying combinations and clinical characteristics for
identifying patterns in the time series data.3 However, another
observed that those individuals with greater comorbidities declined
by 20 min per day over the course of the year.23

In the present study, DFA modeling for each factor/clinical charac-
teristic (Fig. 6) revealed that those with female sex and hospitaliza-
tion demonstrated overall downward trajectories of approximately
40 and 80 min, respectively, over the course of the year. Indeed, indi-
viduals characterized by State 2 were those with female sex, low
baseline daily PA, and those who were hospitalized. Twenty three of
the 59 patients who were hospitalized had their first stay during the
first four months of the observation period (during the winter), and
therefore might account for a failure to recover or continue decline in
daily PA, especially those 17 subjects who had multiple hospitaliza-
tions. However, it is unclear why the present study failed to replicate
the Shoemaker et al.23 results with regard to comorbidities, although
it may be due to the fact that the 2019 study used a simple count of
comorbidities and the present study used the Charlson Comorbidity
Index. It also is important to note that DFA point-estimates are calcu-
lated as linear combinations of all latent states. Therefore, the pres-
ence of an obscure state may not necessarily represent any
meaningful clinical trend independently, but rather reduce model
variation synergistically while in concert with other states.

Regarding State 3, it can be noted that the apparent pattern in
Fig. 3 is different than in Fig. 4. The reason for this difference is that
Fig. 4 reflects the results of varimax rotation which was performed
on the factor loadings to maximize the differences between states.
This is common procedure and allows for easier interpretation in dis-
cussing differences in factor loadings between states. Characterizing
the individuals represented in State 3 is difficult as the factor loadings
for clinical characteristics are quite low.

Relationship between meteorological variables and daily PA

A fourth novel observation made by the present study was in
regard to the apparent disparate relationship between meteorologi-
cal variables and daily PA states identified by DFA. The primary pur-
pose of the present study was not to examine this relationship as this
has been well-studied in the elderly and reported elsewhere,31�34

where temperature and daylight appear to drive the seasonal differ-
ences in daily PA. Rather, inclusion of meteorological variables was
used to help reduce noise in the data by controlling for these varia-
bles, and the associations analyzed were between meteorological
variables and the time series patterns (i.e. the States), not directly
with daily PA. However, some findings regarding the meteorological
variables are worth noting and may be hypothesis-generating. For
example, the final fitted DFA model minimized AIC with a binary
weekend variable, daylight, temperature, and precipitation values as
explanatory variables. Yet, precipitation does not correlate with any
of the latent states. It may be that precipitation’s effect on daily PA is
not apparent when considering daily PA over the course of a year,
but may be important to control for when measuring daily PA during
shorter time frames (1 to 2 weeks).

Implications for future research and clinical practice

Given that clinically meaningful changes in daily PA are approxi-
mately 1 h,2 changes of up to 80 min per day that result from season

alone could significantly exaggerate or mask treatment effects
depending on the timing of baseline and follow-up measurement of
daily PA. This has relevance for both clinicians and researchers for
considering and/or controlling for the confounding effect of season
(e.g. daylight and temperature). This is especially true for those sub-
jects/patients characterized by State 1 (male sex, low comorbidities,
higher baseline daily PA, no hospitalizations, and a lower (better)
NYHA).

As noted above, sympathetic activity-mediated increases in win-
tertime hospitalizations may be associated with wintertime reduc-
tions in daily PA. However, given that those who declined over the
one-year period were characterized by having one or more hospital-
izations, it is unclear whether lower daily PA is a cause or conse-
quence of hospitalizations, or whether there are other significant
confounding variables not accounted for in the present paper. Clini-
cally, these individuals comprising State 2 may be the more impor-
tant individuals to further study and understand as they may also
have the overall worse clinical outcomes and may need the most
intensified medical management. It is not clear whether these indi-
viduals are good candidates for clinical trials investigating interven-
tions to improve daily PA (i.e. whether daily PA be refractory to
intervention or whether it would result in improved clinical out-
come).

Limitations

The present study overcame several limitations of similar prior
studies in that it had a significantly larger sample size, used the raw
daily Patient Activity data (vs. weekly averages or visually estimated
bi-monthly averages), and used advanced statistical techniques to
account for the influence of a variety of variables on time series data
modeling. There are, however, several limitations. First, the DFA
model was performed by sub-setting the same sample of subjects
into dichotomous time series. While the initial sample of subjects
was quite large, and the utility of DFA quite flexible, any assumption
of independence between these 14 time-series cannot be assured.
Additionally, due to the nature of 14 time series data used by DFA,
individual variability of daily PA may be ignored as the daily PA over
time is averaged in each category of demographic characteristics.
However, assessing changes in PA at the individual level was not a
focus of this analysis. Rather the intent was to integrate a novel anal-
ysis method to better understand the overall temporal trends in an
aggregated patient population. Therefore, by examining the median
PA levels for each of the 14 time series, we can gain greater insight as
to the effects of meteorological variables and temporal evolution of
PA in conjunction with one another. Therefore, the results of this
analysis do not reflect the change in PA over time for one individual,
but a large sample of similar individuals. Future work could focus on
tailoring this analytical approached to examine individual variability
more closely.

Second, although the meteorological data from each station were
similar, averaging the meteorological data from each station may
have resulted in missing important associations meteorological varia-
bles, daily PA, and clinical characteristics. Further, the results may not
be generalizable to individuals living in different climates or individ-
uals with HF without ICD/CRT devices.

Given that hospitalization emerged as a clinical characteristic that
appeared to have an influence on seasonal variation in daily PA, a
third limitation of the present study is that we were unable to
account for hospitalizations that did not occur within the large
regional quaternary care health system in which the study was con-
ducted.

A fourth potential limitation was the use of the median to dichot-
omize BMI and the CCI, rather than slightly different and more clini-
cally relevant cut-offs of < 25 kg/m2 and score of �4,35�39

respectively. The clinically relevant cut-offs would have resulted in a

M.J. Shoemaker et al. / Heart & Lung 50 (2021) 754�762 761



smaller group size that may have been less robust/more prone to out-
liers. Despite this risk, performing DFA with the more clinically rele-
vant cut-offs resulted in nearly identical results. However,
presentation and interpretation of those results is significantly more
complex and less intuitive and therefore not presented in the present
paper.

Lastly, because the present study was a retrospective study, we
could not account for extended periods of travel to regions with a dif-
ferent climate for extended periods of time if there was not evidence
in the clinical documentation of such travel.

Conclusions

Seasonal variation in daily PA is present in some individuals with
HF and ICD/CRT devices, where those with low comorbidities, low
NYHA Class, higher BMI, no hospitalization, and male sex demon-
strated greater seasonal variation of at least 40 min per day. How-
ever, those with female sex and hospitalization demonstrated overall
downward trajectories of approximately 40 and 80 min, respectively,
over the course of the year. Accordingly, clinicians and researchers
using interventions to improve daily PA should account for seasonal
variation and should determine whether those individuals who are
at risk for decline should be studied separately and whether they are
able to improve in daily PA to prevent hospitalizations and/or decline
in daily PA.
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