Villanova University Charles Widger School of Law

From the SelectedWorks of Michael Risch

1999

How Can Whelan v. Jaslow and Lotus v. Borland
Both be Right? Re-Examining the Economics of
Computer Software Reuse

Michael Risch, Villanova University School of Law

Available at: https://works.bepress.com/michael risch/10/

http://www1.villanova.edu/villanova/law.html
https://works.bepress.com/michael_risch/
https://works.bepress.com/michael_risch/10/

HOW CAN WHELAN v. JASLOW AND
LOTUS v. BORLAND BOTH BE RIGHT?
REEXAMINING THE ECONOMICS OF
COMPUTER SOFTWARE REUSE

by MicHAEL RiscuHT

ABSTRACT

The various circuit courts of appeal have been unable to agree on
the appropriate method of determining when one computer program in-
fringes the copyright in another computer program. This article traces
the differences among the circuits, proposes a model to explain what
courts are doing, asserts a set of factors that simplify the analysis of
determining copyright infringement, and tests those factors against
seemingly irreconcilable cases. Finally, the article applies the analysis
to unresolved computer software issues of today in order to predict
likely outcomes.

I. INTRODUCTION

The basic economic goal of copyright law is to balance an author’s
incentive to create with his or her ability to build on prior work in order
to maximize social wealth. This balance is extremely important for com-
puter software. On the one hand, software is often expensive to create
and companies therefore need protection in order to recoup their invest-
ment. On the other hand, software is often expensive to create and com-
panies can save costs by reusing pre-existing work.l Quite often, the
same companies that want to protect their software also want to use pre-

T Michael Risch is an associate with Russo & Hale, L.L.P., Palo Alto, CA. J.D., The
University of Chicago (high honors); A.B., Stanford University. Mr. Risch practices intel-
lectual property law, including civil litigation, intellectual property, computer law and li-
censing. The author wishes to thank Professors Kenneth Dam and William Landes at The
University of Chicago for their invaluable comments during the preparation of this article.
Email address: mrisch@computeriaw.com. © 1999 Michael Risch.

1. Peter Coffee, Don’t Measure Reliability by Costs, PC WEEK, Oct 21, 1996, at 24
(“Technologies of software reusability can only get you ahead for a little while: in the long
run, they’re what you need just to stay competitive).

511

512 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

existing work.?

As a result of the competing costs and benefits of copyright protec-
tion and the general complexity of computer software, the state of copy-
right law with respect to computer software has been in flux since the
early 1980’s and is still not settled. As discussed in detail below, it ap-
pears that federal courts have been able to determine efficient economic
outcomes based on the cases before them, but they have been unable to
settle on a rule that definitively determines how much reuse to allow in
each case.

How should a court go about deciding when reuse should and should
not be allowed? While case law and traditional economic analysis pro-
vide general solutions, they do not guide courts in specific cases. This
paper analyzes the problem that courts face in computer software copy-
right cases, presents an economic model that describes this problem, and
presents a set of economic based factors that can be used by courts to
obtain efficient solutions in each case.

II. TERMINOLOGY

The following is a discussion of the key copyright, computer, and eco-
nomic terminology as used in this paper.

A. CopryYRIGHT TERMINOLOGY

Copyright doctrine is the set of general legal principles that courts
use to decide all copyright cases. An example of a copyright doctrinal
tool is the Feist facts doctrine,® which holds that “pure facts” are not
copyrightable.

Copyright rules are applied to specific types of copyrighted works by
courts. For example, courts apply the “forms” rule,* which states that
blank forms are not copyrightable unless they convey information. This
rule is a specific application of several doctrinal tools, including the idea/
expression dichotomy® and the originality requirement.6 Rules may be
methods of analysis as well. Admittedly, there may be little difference
between doctrine and rules in many cases, but the distinction becomes
important in computer software cases because different circuits are us-

2. William M. Landes and Richard A. Posner, An Economic Analysis of Copyright
Law, 18 J. LEcaL Stup. 325, 348 (1989).

3. Feist Publications, Inc. v. Rural Tel. Serv., 499 U.S. 340, 349 (1991).

4. See e.g., Bibbero Sys., Inc. v Colwell Sys., Inc., 893 F.2d 1104, 1106-07 (9th Cir.
1990). :

5. Under 17 U.S.C. §102(b) (1980), expression is copyrightable, but ideas are not. Un-
less otherwise noted, all code references are to the Unites States Copyright Act, 17 U.S.C.,.
as amended.

6. Under §102(a), a work must be original to be copyrighted. Under Feist, the level of
originality required is minimal. Feist, 499 U.S. at 345.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 513

ing the same doctrinal tools to create differing rules. Current legal rules
specific to computer software are inefficient, but doctrinal tools can be
used to achieve efficient solutions.”

B. CompuTER TERMINOLOGY

A program element is any part of a program that can be reused. This
may include the entire program or a tiny portion of the program.

A computer program’s source code is the text that a computer
programmer writes to create a program.® A computer program’s object
code is what the end user typically thinks of as the program; it is a “com-
piled” form source code that actually manipulates the computer’s
microprocessor, random access memory, and hard disk.

A program’s user interface is the portion of the program that the
user sees and otherwise interacts with. The user interface includes both
explicit elements (such as windows, icons, and graphics) and implicit ele-
ments (such as structure, sequence, and organization).

The literal elements of a program are its source code and object code.
A program’s non-literal elements are essentially every other part of the
program, with the possible exception of certain parts of explicit user in-
terface. For example, a picture of a person in the user interface would be
a literal element. However, a certain type or style of window (such as a
grid in a spreadsheet program) would be a non-literal element. The line
between literal and non-literal elements in the explicit user interface is
often difficult to define, and makes decision-making based on that crite-
ria complicated and fact intensive.

Computer software reuse is simply the incorporation of a preexisting
element, whether literal or non-literal, in a new program. Reuse in-
cludes outright copying of part or all of a program, but also includes use
of similar structure, sequence, and organization. Reuse is a more neu-
tral and less pejorative term than “copying” and is favored in the discus-
sion here. '

C. Econowmics TERMINOLOGY

Transaction costs are costs involved among parties transacting or
not transacting, as the case may be. A typical transactions cost in copy-
right is the cost of negotiating licenses to use another party’s copyrighted
work. Administrative costs are the costs incurred by society in running a

7. Richard Armstrong Beutel, Software Engineering Practices and the Idea/Expres-
sion Dichotomy: Can Structured Design Methodologies Define the Scope of Software Copy-
right?, 32 JurmmeTrics J. 1, 32 (1991)(notes that regardless of rule methodology in a
particular case, well recognized copyright doctrine is used to determine the level of com-
puter copyright protection.)

8. A classic example of BASIC language source code is: PRINT “Hello World.”

514 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

copyright system. This includes court costs and legal fees. Administra-
tive costs are a specialized form of transaction costs.

~ An economic incentive makes a person more likely to take a certain
action to improve his or her utilify. In general, economic incentives
mean that a person will select the alternative that makes the most
money. Sometimes this means no action, if the alternative is to lose
money. Sometimes this also means actions that increase other forms of
happiness that are not monetary based. Those who make laws usually
attempt to provide individuals with incentives to make efficient deci-
sions. While economic incentives arguably do not apply to all copy-
righted works (such as fine art or unpublished poetry), they certainly
apply to computer software.

An efficient decision is a decision that maximizes societal wealth.
There are two ways to look at efficiency. The first is unconstrained effi-
ciency, which means that a decision can be implemented in such a way to
maximize wealth to the exclusion of all other solutions. With uncon-
strained efficiency, it is usually assumed that the parties involved will _
agree to redistribute assets among themselves,? so that decisions to max-
imize wealth are made without regard to who gets what; the parties will
decide how to divide assets among themselves in order to maximize
wealth. ,

Constrained efficiency occurs where one or more factors limit the
ability of the parties to reach unconstrained efficiency. A typical con-
straint in copyright is high transaction costs. Unconstrained efficiency
might dictate that copyright owners agree to license their works to
others in exchange for a royalty. If transactions costs are higher than
expected royalties, however, the copyright owner will not have an incen-
tive to enter into a license, and constrained efficiency will result: given
high transactions costs, it is more efficient to not license the software.

Economic-based solutions, therefore, have two goals. The first is to
reduce the number of constraints that limit unconstrained efficiency.
The second is to maximize constrained efficiency given the constraints
that could not be removed.

III. THE PROBLEM

Courts have, to date, struggled with the proper way to handle copy-
right infringement suits relating to computer software. None of the cir-
cuits appears to apply the exact same rule.l® The cases can be divided
into two categories: bright line rules that are overreaching and decision

9. See generally RicHARD A. PosNER, EcoNnomic ANaLysts oF Law §1.1 and §1.2 (Lit-
tle, Brown & Co. 1992). :
10. But see generally Mark A. Lemley, Convergence in the Law of Software Copyright?,
10 Hicr TecH. L.J. 1 (1995).

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 515

methodology rules that do not provide enough guidance to lower courts
or authors.1? '

The leading case is Computer Associates International, Inc. v. Altai,
Inc.,'2 in which the Second Circuit determined whether to impose copy-
right infringement liability using the “abstraction-filtration-comparison”
method. Using this method, a court first determines the level of “ab-
straction” to analyze. The appropriate level may be source code, object
code, structure and sequence, individual user interface elements, or total
“look and feel” of the program.!® The court then removes—"filters”—
from consideration the non-copyrightable elements of the first computer
program. Finally, the court compares the remaining copyrighted ele-
ments with the allegedly infringing program.14

There are several problems with the Computer Associates rule.
First, it does not follow universally accepted copyright doctrine that
states that a work as a whole must be compared before the filtration of
non-protected elements.’5 Filtration was created to determine the
amount of the infringement; copyrightability of the whole work should be
considered before filtration because of the value created by putting un-
protected elements together in an original way.'®

The second problem is that courts applying Computer Assoctates still
do not know how much reuse of each of the program element to allow. As
Judge Easterbrook points out in Nash v. Columbia Broadcasting System,
“he ‘abstractions test’ is not a test at all . . . [ilt does little to help resolve

11. See, e.g., Linda Skon, Note, Copyright Protection of Computer User Interfaces: “Cre-
ative Ferment” in the Courts, 27 Ariz. St. L.J. 1063, 1082 (1995) (recent court decisions in
Lotus v. Borland and Engineering Dynamics v Structural Software do not provide guidance
in determining which aspects of a computer program are copyrightable); John T. Soma, et.
al., Software Interoperability and Reverse Engineering, 20 RUTGERS Computer & TECH. L.dJ.
189, 254 (1994) (concluding that reverse engineering case law regarding software inter-
operability is uncertain). '

12. Computer Assocs. Int’], Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992).

13. See Jack Russo and Jamie Nafziger, Sofiware “Look and Feel” Protection in the
1990s, 15 Hastings Comm. & Enr. L.J. 571 (1993), (discussing the definition and history of
“look and feel” protection).

14. Computer Assocs., 982 F.2d at 706-11.

15. See Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 54-56 (24 Cir. 1936) (L.
Hand, J.); CCC Info. Serv. v. Maclean Hunter Market Reports, 44 F.3d 61, 72-73 (2d Cir.
1994) (holding that entire compilation of facts is protectable). Note that, as discussed be-
low, other circuits have corrected this deficiency.

16. Id. See also Atari Games Corp v Oman, 979 F.2d 242, 245-46 (D.C. Cir. 1992)
(“Breakout” game composed of geometric shapes may be protected by copyright); Kenneth
W. Dam, Some Economic Considerations in the Intellectual Property Protection of Software,
24 J. LEcaL Stup. 321, 341 (1995); Anthony L. Clapes, Confessions of an Amicus Curiae:
Technophobia, Law and Creativity in the Digital Arts, 19 U. Dayron L. Rev. 903, 970
(1994).

516 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

a given case . . . "7 Computer Associates does not offer significant gui-
dance on what features should actually be filtered out in any given case.
Courts don’t even agree whether the test should apply to literal ele-
ments, non-literal elements, or both.18

The third problem is that, while the filtering rules are not clearly
defined, they are generally less protective of software, and therefore may
not provide enough incentive to create.19

Other circuits have applied or rejected the Computer Associates test
with regard to different parts of a program, and have disagreed as to
which parts should be subject to the test.

. A. OverreAcHING DEcisions: Courts Taat Do NoT FoLrow
ComPuTER ASSOCIATES

In general, courts that have not followed Computer Associates have
propounded over-broad rules that have been criticized by others. The
decisions make bright line rules that cannot possibly cover the myriad of
computer software cases that come before courts.20

In Whelan Associates, Inc. v Jaslow Dental Laboratory Inc., which
predates Computer Associates, the Third Circuit held that the only un-
protected “idea” of a computer program is the program’s purpose, and
that everything else is protectable expression as a whole.2! Whelan set a
precedent of broad protection that was originally widely approved by
courts and has since been criticized thoroughly by many courts and com-
mentators.22 Despite criticism of the announced rule, it is clear that the
Whelan court was attempting to achieve a balance between the incen-
tives given to software authors and the ability to create in the future.23

In Lotus Development Corp. v. Borland International, Inc., the First
Circuit rejected Computer Associates, indicating that the Lotus menu
structure as a whole was uncopyrightable as a system of operation simi-
lar to buttons on a VCR, and that Computer Associates should not be
extended to apply to literal elements such as menus and screen dis-

17. Nash v. Columbia Broad. Sys., 899 F.2d 1537, 1540 (7th Cir. 1990).

18. Bateman v. Mnemonics, Inc., 79 F.3d 1532,1545 (11th Cir. 1996).

. 19. Brett A. Carlson, On the Wrong Track: A Response to the Manifesto and a Critique
of Sui Generis Software Protection, 37 JurRIMETRICS J. 187, 191 n.33 (1997).

20. Dennis M. Carleton, Note, Lotus Development v. Borland International: Determin-
ing Software Copyright Infringement is Not as Easy as 1-2-3, 56 U. Prrr. L. Rev. 919, 945
(1995) (noting that the test by district court in Lotus v. Borland is flawed as compared to
“abstraction-filtration-comparison” test).

21. Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1236 (3d Cir.
1986).

22. Jack E. Brown, “Analytical Dissection” of Copyrighted Computer Sofsware—Com-
plicating the Simple and Confounding the Complex, 25 Aryz. St. L.J. 801, 814 (1993).

23. Whelan, 797 F.2d at 1235.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 517

plays.2¢ In Plains Cotton Cooperative Assn v. Goodpasture Computer
Service, Inc.,25 the Fifth Circuit held that the nature of the cotton indus-
try created the need for similar programs. The Plains Cotton decision
explicitly rejects Whelan, and provides a test that looks at the work as a
whole as well as industry requirements, which is different from the Com-
puter Associates test.

The overreaching problem is not confined to computer software
cases. In BellSouth Advertising and Publishing Corp. v. Donnelley Infor-
mation Publishing, Inc.,26 a telephone yellow pages copying case, the
court made an arguably efficient decision by allowing some copying of
business name and telephone information from the plaintiff's yellow
pages. At the same time, however, the court stated: “Ultimately, the dis-
trict court erred by extending copyright protection to the collection of
facts . . . based on the uncopyrightable formative acts used to generate
those listings.”7 Under the stated rule, virtually no yellow pages infor-
mation could be protected because all collections of facts would be un-
copyrightable, even though the selection of which facts to find, as well as
which facts to print, might be original and protectable as a whole. The
court later diluted its statement, but still leaves the impression that
original selection of facts is not enough to protect against infringement.28
Such a result cannot possibly be what the court intended. Even the
Supreme Court in Feist?? indicated that a telephone book with creatively
selected but unoriginal underlying facts could be protected as a whole.

B. Not Enxovaer Guipance: Courts THAT MODIFY
CompPuTER ASSOCIATES

Some courts have rejected bright line rules in favor of a modified
Computer Associates rule. These courts disagree about when and how to
apply the “gbstraction-filtration-comparison” method. Regardless of the
rule applied, however, lower courts and software authors following these
decisions lack guidance about how to decide any given case.

In Gates Rubber Co. v. Bando Chemical Industries, Ltd., the Tenth
Circuit expanded Computer Associates by adding what has been called
an initial holistic comparison.3° The court reasoned that examination of

94. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 814-15 (1st Cir. 1995), aff'd by
an equally divided court, 516 U.S. 233 (1996).

95. Plains Cotton Coop. Ass'n v. Goodpasture Computer Serv., Inc., 807 F.2d 1256,
1262 (5th Cir. 1987). :

96. BellSouth Advertising and Publ’g Corp. v. Donnelley Info. Publ’g, Inc., 999 F.2d
1436, 1445 (11th Cir. 1993).

27. Id. at 1441,

28. Id. at 1445.

99. Feist Publications, Inc. v Rural Tel. Serv., 499 U.S. 340, 349, 362 (1991).

30. Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 832-33 (10th Cir. 1993).

518 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

both programs in their entirety, prior to filtration, would reveal any pat-
terns of copying.3! The Gates court noted that Whelan is too broad in
holding that a program can only have one idea, but is otherwise sound as
to its holding that the structure and sequence of a program may be copy-
righted.3? This appears to be contrary to Computer Associates.

In Engineering Dynamics, Inc. v. Structural Software, Inc., the Fifth
Circuit adopted Computer Associates as expanded by Gates, and at-
tempted to reconcile its application of Computer Associates and Gates
with its earlier Plains Cotton decision.33

In Apple Computer, Inc. v. Microsoft Corp., the Ninth Circuit essen-
tially adopted the Computer Associates methodology, but added that a
compilation of uncopyrightable elements could be protected from whole-
sale or virtually identical copying.34 Under this rule, the court performs
“analytical dissection” to determine which program elements are pro-
tected. After the dissection, the court grants either broad (if most ele-
ments are protectable) or narrow (if most elements are unprotectable)
protection to the work as a whole, and compares the two works as a
whole.

In Bateman v. Mnemonics, Inc., the Eleventh Circuit adopted yet an-
other form of the Computer Associates/ Gates test.35 However, just a few
months later, in MiTek Holdings, Inc. v. Arce Engineering Co., the court
appears to have applied instead the threshold test from Lotus v. Borland
to determine whether the single reused element was copyrightable, but
at the same time appears to have criticized the rule promulgated in Lo-
tus.36 Despite apparently applying a threshold test and finding the ele-
ment uncopyrightable, the MiTek court also applied the methodology
from Apple by comparing the works as a whole even though only one
element was allegedly copied.3” Finally, the court applied the Bateman
test to the programs after uncopyrightable elements, including the pri-
mary element at issue, had been removed.38 The Eleventh Circuit prob-
ably understands its methodology perfectly well, and it may in fact be
the best methodology available given the procedural posture of that spe-
cific case, but parties reading MiTek will have a difficult time deci-

31 Id

32. Id. at 836, 840.

33. Engineering Dynamics, Inc. v. Structural Software, Inc., 26 F.3d 1335, 1342 (5th
Cir. 1994).

34. Apple Computer Inc. v. Microsoft Corp., 35 F.3d 1435, 1442 (9th Cir. 1994)(noting
that the court’s methodology was similar to the Computer Associates rule, not an adoption
of it).

35. Bateman v. Mnemonics, 79 F.3d 1532, 1544-45 (11th Cir. 1996).

36. MiTek Holdings, Inc. v. Arce Engineering Co., 89 F.3d 1548, 1557 (11th Cir. 1996).

37. Id. at 1558-59.

38. Id.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 519

phering it. This is an example of how imprecise language in computer
copyright cases can create confusion and conceivably lead to a misread-
ing of what the court’s opinion really means.

Some guidance beyond the methodology suggested by these cases is
important for courts and software authors. This is because many cases
are decided on summary judgment or after a bench trial. Further, juries
can be expected to make better decisions if they are given more concrete
guidelines.

C. CONSEQUENCES OF THE PROBLEM

Courts have been unable to create generalized computer software
rules that lead to an optimal amount of reuse in each case. While bright
line cases such as Whelan and Lotus v. Borland arguably allow for pre-
dictable results, the rules lead to inefficient outcomes and courts have
not blindly applied them. Lower courts are caught between a rock and a
hard place.3? They must either follow the rule and make an inefficient
decision, or they must distinguish appellate decisions from most cases at
bar. o

If every case must be distinguished, however, computer software
companies will not be able to make decisions for the future. The maxim
that “hard cases make bad law” is proven here, because all cases are
“hard” and consequently circuits disagree on the proper rule.40 As a con-
sequence, the classification a court selects for a particular computer pro-
gram may reflect the case’s result rather than deliberative reasoning.4!

Uncertainty and instability in the law creates problems for software
companies deciding to invest in new products. Intellectual property is
similar to other property,42 and poorly defined property rights have sev-
eral disadvantages.

First, clearly defined property rights give the parties an incentive to
contract for use of assets, if necessary.43 It would be wasteful for compa-
nies to negotiate for use of software elements that may be freely reused
without a license.

Second, without clear property rights, the number and cost of dis-

39. See, e.g., William F. Patry, Copyright and Computer Programs: It’s All in the Defi-
nition, 14 Carbozo Arts & Ent. L.J. 1, 4 (1996) (arguing that courts have “overreacted”
and propounded inconsistent definitions of “originality” and “computer program” thus mak-
ing consistent and efficient decision making difficult).

40. Brown, supra note 22, at 804 (the number and types of rules applied by courts to
computer software is extremely complex and error-prone).

41. Id.

49. Frank H. Easterbrook, Cyberspace and the Law of the Horse, 1996 U. Cur LecaL F.
207, 207-08 (1996).

43. Dam, supra note 16, at 354, 365 (gains from contract require that a follow-on firm
not be able to copy outright); Posner, supra note 9, at §3.1.

520 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

putes increases,** with the potential side effect of running small compet-
itors out of the market.#5 This is not always true because extremely high
litigation costs may force competitors to contract with each other even if
they need not under the law. One way or the other, however, the effect is
an inefficient market. :

Third, clearly defined property rights allow software developers to
select an efficient amount of investment. If companies do not know how
much protection their software will receive, they will not be able to de-
cide how much to spend creating the product or which measures of pro-
tection to use.*6 Further, uncertainty may create a “chilling effect”
which causes authors to reuse less than they might be allowed by law
due to a fear of lawsuit.47 .

This paper proposes a solution to make each case less difficult to
decide in the future and to give authors guidance before going to court.

IV. THE ECONOMIC MODEL

The economic model proposed here differs slightly from the tradi-
tional analysis in the literature, but more accurately explains what
courts have been doing.

A. Tue TRADITIONAL ANALYSIS

Copyright creates societal benefits by giving authors an incentive to
create original works. At the same time, copyright makes it more diffi-
cult to create new works because the later works might be considered an
infringing copy of earlier works. Societal wealth is maximized by weigh-
ing incentives to create against access costs at varying levels of copyright
protection.#® Landes and Posner suggest that the very same companies
that want copyright protection also want to use prior works as building

44. Dam, supra note 16, at 364 (uncertainty means that litigation would be required to
resolve disputes); Jonathan E. Retsky, Computer Software Protection in 1996: A Practi-
tioner’s Nightmare, 29 J. MarsuaLL L. Rev. 853, 854 (1996) (no uniform precedent makes
copyright practice unpredictable).

45. . Clapes, supra note 186, at 963 (summary Jjudgement is extremely important to small
software companies).

46. There are a number of protection alternatives other than copyright. See Landes
and Posner, supra note 2, at 329-31.

47. Matthew P. Larvick, Note, Questioning the Necessity of Copyright Protection for
Software Interfuces, 1994 U. Irv. L. Rev. 187, 203 (1994).

48. Landes and Posner, supra note 2, at 342-43. But see Glynn S. Lunney, Jr., Reexam-
ining Copyright’s Incentives-Access Paradigm, 49 Vanp. L. Rev, 483, 492-93 (1996), who
points out that broad protection of copyright diverts creative resources from other produc-
tive work by creating incentives for “over-creativity,” and copyright should therefore be
limited regardless of the need for access. It is not clear how this argument would apply to
works with more functional characteristics, such as computer software.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 521

blocks for future works.4?

The traditional economic analysis is ex ante based. That is, the par-
ties make decisions about the appropriate level of protection at some
early point in time prior to action. Ex ante analysis is necessarily based
on averages, or expected value5© of benefits and costs; the level of copy-
right protection and allowed reuse is determined so that it will maximize
social benefits in the broad range of cases, even if some specific cases do
not maximize wealth. The administrative costs of deciding each case
outweigh the costs of a few inefficient applications of the rule.

After an efficient level of reuse is determined, the parties then de-
cide how much software to create and what to reuse. They also decide
what they should reuse freely and what they should license from others.

Because the level of allowed reuse creates incentives to make effi-
cient decisions, the decisions made by individual authors maximize so-
cial wealth. A key empirical question is exactly how much benefit society
gains by the reuse decisions of authors.5! Theoretically, this could be
measured through data gathering. Practically, however, courts must
make this determination using the evidence in the cases before them and
without any extensive cost and benefit research. Therefore, appellate
courts and commentators have set forth general rules based on the eco-
nomic analysis that are intended to guide lower courts in their decision
making. These same general rules are intended to grant the efficient
level of protection and thus induce efficient decisions by authors.

1. Problems with Traditional Analysis: Misguided Proposals

As a result of the traditional economic analysis, many commentators
incorrectly suggest eliminating protection as soon as the copyright owner
recoups his or her costs.52 This suggestion does not comport with either

49. But see Pamela Samuelson and Robert J. Glushko, Comparing the Views of Lawyer
and User Interface Designers on the Software Copyright “Look and Feel” Lawsuits, 30
JurmeTrics J. 121, 125-26 (1989), who conclude that 79% of software designers oppose
broad “look and feel” protection for software. The problem with this survey is that the
software designers are not paying their own salaries to create software nor do they see all
of the benefits of protection. Thus, on the whole, they prefer to reuse more often. The
parties bearing the costs and realizing the benefits may respond to such a survey quite
differently.

50. Expected value is essentially the sum of future possibilities weighed by the
probability that each possibility will occur. More technically, the formula for expected
value E(x) is £ f(x)xdx where x is a possible outcome, f{x} is the probability of that outcome,
and x falls in {y,z], the range of possible outcomes. :

51. See, e.g., Mark A. Lemley & David W. O’Brien, Encouraging Software Reuse, 49
Stan. L. Rev. 255, 264-65, 277-84 (1997) (examining costs and benefits of reuse and argu-
ing that limited copyright and patent protection is best way to encourage reuse).

52. See, e.g., Barron Yanaga, Note, An Economic Analysis of Computer Software Copy-
right: A Welfare Model of Intellectual Property Rights, 11 Comrputer/L.J. 173, 179 (1991)

522 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

the traditional or the proposed economic analysis. The problem is that
companies do not know whether a product will be successful or not prior
to creating the computer program. Thus, authors base their decisions on
the expected value of future revenues.

If protection were eliminated as soon as revenues outweighed costs,
then companies would not create software because the truncated ex-
pected value of revenues might never exceed expected costs.53 Essen-
tially, profits would be capped at breakeven or just above, yet could—in
many states of the world—be negative. A second problem with this anal-
ysis is that courts have never limited copyright in any work simply be-
cause the author earned a large amount of money.5¢ Finally, it is an
unrealistic solution because copyright laws as applied are the norm, and
it is unlikely that such a limited application would ever be used.55

The only solution for misguided proposals is further discussion,
analysis, and avoidance of such proposals.

2. Problems with Traditional Analysis: Unknown Variables

As the discussion below shows, the courts noted above each made an
efficient decision yet propounded inefficient rules. There are several pos-
sible reasons for this “do as we do, not as we say” message sent by the
circuit courts. At bottom, however, is the notion that due to the broad
range of facts that comes before courts, the administrative cost of finding
the exact and most efficient general rule to propound is higher than the
administrative cost of making an efficient decision in a single given case.
While courts attempt to make efficient decisions generally, they are un-
able to consider (or internalize) all of the social costs of their opinions,
especially when they are given a fixed set of facts in a given case.56

(“The goal of software copyright law, therefore, is to award the innovator a right that is
equal to the software’s marginal value to society.”).

53. If w equals expected value, then courts would allow complete copying when w is
earned. Some amount above w, called u, would be earned, but u would be small due to
nearly costless competition from the low marginal cost of creating copies. Under this rule
E’ (x) would equal [*** f(x)xdx which is less than E(x) in all cases.

54. Brown, supra note 22, at 836 (stating that commercial success should not bar
copyrightability).

55. Jane C. Ginsburg, Four Reasons and a Paradox: The Manifest Superiority of Copy-
right Over Sui Generis Protection of Computer Software, 94 Corum. L. Rev. 2559, 2562
(1994) (arguing that copyright is the norm, so it makes liftle sense to propose sui generis
protection); Greg S. Weber, The New Medium of Expression: Introducing Virtual Reality
and Anticipating Copyright Issues, 12 Computer/L.J. 175, 190 (1993) (noting that fact/ex-
pression dichotomy unlikely to change).

56. But see Mark A. Lemley, 10 supra note 10, at 19 (“To some extent, the differing
outcomes courts have reached in applying the filtration test may simply reflect their polit-
ical predispositions towards ‘high’ or ‘low’ protectionism.”).

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 523

Problems with ex ante analysis have been noted before in other areas
of law. Oliver Williamson notes: ,

Although it is instructive and a great analytical convenience to assume
that agents have the capacity to engage in comprehensive ex ante con-
tracting (with or without private information) the condition of bounded
rationality precludes this Accordingly, the ex post side of a contract
takes on special economic importance. The study of structures that fa-
cilitate gap filling, dispute settlement, adaptation and the like thus be-
come part of the problem of economic organization. Whereas such
institutions play a central role in the transaction costs economics
scheme of things, they are ignored (indeed, suppressed) by the fiction of
comprehensive ex ante contracting.57

Likewise, Easterbrook and Fischel state:

Yet it is costly for the parties . . . to ponder unusual situations and

dicker for the adoption of terms Court systems have a comparative

advantage in supplying answers to questions that do not occur in time

to be resolved ex ante. Common law systems need not answer questions

unless they occur. This is an economizing device; it avoids working

through problems that do not arise. The accumulation of cases dealing

with unusual problems then supplies a level of detail that is costly to

duplicate through private bargaining.58

In copyright law, and especially in computer software, copyright au-
thors cannot know whether their particular use of a prior work will con-
stitute illicit copying. Further, the state of copyright law, as noted
above, does not give enough guidance to yield decisive ex ante conclusions
because an appropriate “level of detail” is not present in current circuit
decisions. The economic model and decision factors proposed in this pa-
per seek to unleash the economic power of ex post analysis envisioned by
Williamson and Easterbrook and Fischel, while avoiding the costs of de-
tailed case by case determination.

B. Tur Prorosep Economic MODEL

The proposed economic model is relatively simple, and is based on a
theory that courts maximize the change in net social benefits in the cases
before them.5® The change in social benefits is calculated from the facts
as they stand just prior to reuse. While courts under the proposed model
also consider future behavior, the decisions courts make are based on the

57. OLvER E. WiLLamson, TransacTion Cost EcoNomics, reprinted in FOUNDATIONS
oF CorporaTE Law 12, 13 (Roberta Romano ed. 1993).

58. Frank H. EasterBrook and DanteL R. Fiscuer, THE STRUCTURE OF CORPORATION
Laws: TaE CorPORATE CONTRACT, reprinted in Founpations oF CORPORATE Law 101, 108
(Roberta Romano ed. 1993).

59. Ginsburg, supre note 55, at 2559 (stating that software industry is thriving, so
current copyright law must be doing something well).

524 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

facts before them in addition to the potential future behavior.60

The model is similar to a game theory problem of software creation.
Because the relevant facts are determined after creation of the first pro-
gram, but before reuse in the second program, courts will maximize so-
cial benefits at the time of the decision to reuse. Thus, the first author
will make an investment decision based on an estimate or guess about
what others will do in various states of the world. Then, the second au-
thor will make a decision about reuse based on the likely outcome based
on the state of the world at the time of the decision to reuse. The goal of
the court is to encourage new works at both periods of time, and if social
benefits are maximized only before the first work is created, this dual
maximization may not occur because of unknown facts at that time of
creation.

1. Differences From Ex Ante Analysis

Perhaps the best way to describe the model presented here is to de-
scribe how it differs from traditional ex ante analysis. In general, courts
seeking to maximize the change in social wealth based on facts as the
reuser sees them, or ex post, may come to different decisions than courts
trying to maximize wealth generally with some predefined, or ex ante,
rule that is assumed to affect the behavior of all parties in the past, pres-
ent, and future.6!

The intuitive reason for this difference is that lawmakers and eco-
nomic analysts examine behavior prior to making or proposing laws,
while courts must interpret and make rules with a specific case in mind.
A more rigorous explanation for the difference is that there are some
facts that cannot be estimated beforehand.62 Because of this, determin-

60. For an interesting example, see Advanced Micro Devices, Inc. v. Intel Corp., 9 Cal.
4th 362, 370-71 (1994), where the California Supreme Court upheld an arbitrator imposed
license to copyrights and patents in an arbitration relating to breach of contract in order to
stop current and future disputes between the parties which were not before the arbitrator.

61. See, e.g., Landes and Posner, supra note 2, at 341-43 (optimizing ex ante welfare
based on ex ante level of protection).

62. Symbolically, the expected social benefits under the traditional model are:

1! f, w, x, ¥ 2)B, w, %, y, 2)dvdwdxdydz where v, w, x, and y are facts, z is the
level of copyright protection, fis the density/probability function of each combina-
tion of facts and levels of protection, and B is the level of social benefits for each set
of facts and the level of copyright protection. Under this model, the court sets the
level of copyright protection, and the parties can select or estimate the facts that
maximize expected benefits based on the level of protection.

On the other hand, expected social benefits under the proposed model are:
Ifelo, w x B |v, w, x, ¥)dz where the facts (v,w,x,y) are given, and the court
can only optimize expected social benefits by changing the level of copyright pro-
tection in the given case. Under this model, the parties have already chosen the
facts, and the court can only pick an optimal outcome by varying the level of pro-
tection. To a lesser extent, the court can set a level of protection that will en-
courage an efficient selection of facts in the future.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 525

ing the expected values in an ex ante calculation'does not yield optimal
results in many cases before courts.

An example from tort law is the determination of negligence. In gen-
eral, no negligence will be found where the defendant could not have
learned certain facts without expending costs that exceed the costs of the
accident. Thus, the court is left to determine after the fact, or ex post,
whether the costs of learning the information exceed the costs of the acci-
dent. While ex ante analysis creates the general rule, the court must ex
post determine whether the defendant wasted societal resources by not
learning the necessary facts. ‘

The current lack of clarity in copyright rules promulgated by the
various circuits implies that some variables are not estimable before-
hand. Therefore, the differences between an ex ante and an ex post anal-
ysis will occur primarily where facts could not reasonably be determined
or estimated beforehand, and therefore cannot be used to make efficient
rules beforehand. While ex ante analysis will provide a broad framework
for general rules, a court cannot make a final determination until it re-
views the facts of each case. The model should have the following effects
on incentives as compared to ex ante analysis: '

a. To the extent that ex ante likelihood of a case outcome can be
estimated, the incentives of the first author should not be affected.
Whether courts consider social benefits prior to creation or prior to re-
use, the first authors will consider ex ante expected value because that
is all they know at the time of the decision to create.

b. Ifex ante rules do not present an accurate or estimable view of
how reuse will be treated by courts, then incentives to create the first
work will change, but should become more efficient if the ex post facts
can be estimated. This is because estimation of ex post facts will be
more accurate than if considered ex ante due to improved information.
Accuracy should lead to efficient decision-making if the law creates in-
centives for efficiency. ‘

c. If ex post facts cannot be estimated, then incentives to create
the first work should not change, because the first authors will have no
more information than in the ex ante analysis.

d. Incentives to reuse may change, but should move in a direction
that increases social wealth. Because the reuser can now consider the
facts at the time of the decision whether to reuse, the probability that
reuse will be allowed can more accurately be determined than if the rule
is based on a variety of facts that may or may not be present at the time
of the reuse decision, but were expected or guessed at the time of crea-
tion of the first work. If the reuser can more accurately determine the
likelihood of winning or losing in potential litigation, the reuser will be
more likely to make the social benefit maximizing decision at the time
of reuse. '

526 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

In many cases the outcome will be the same under ex ante and the
proposed ex post approach, but the results may differ in some cases, and
those differences lead to the economic factors proposed in this article. If
the results were always the same, then it is unlikely that the problems
with rules promulgated by the circuits would exist at all.

2. An Example of the Differing Analyses

An example of the differences between the models may also be help-
ful in describing how the proposed model operates. In Gracen v. Brad-
ford Exchange the plaintiff won a contest by painting a picture that best
captured the “essence” of Dorothy from The Wizard of 0z.63 However,
the plaintiff and defendant were unable to agree on a contract, so the
defendant had an employee “clean up” the painting to publish on a deco-
rative plate.6* Applying traditional ex ante economic analysis, Judge
Posner reasoned that the administrative cost of determining infringe-
ment was high in cases where a new work closely reuses a large portion
of a pre-existing work owned by the alleged infringer; here the defendant
had rights to Dorothy’s image and the plaintiffs work was also based on
Dorothy’s image. He thus denied copyright protection, requiring a
greater showing of originality.65

This outcome was efficient ex ante because the author would in gen-
eral receive payment for her work and thus have an incentive to create,
even if copyright did not inhere. Further, a small incentive is all that
would be necessary because of the small degree of creativity required to
re-create the image of Dorothy. In addition, the administrative cost of
determining the original elements for copyright protection in derivative
works based on live people, photographs, or motion pictures would be
high in most cases.

Under the ex post analysis, however, a judge would note that in this
case the author in fact did not get paid for her work, and thus it would
improve the net social benefits to require payment for the reuse; other-
wise, people might stop creating new designs that might be used on deco-
rative plates. Also, the administrative costs described above did not even
exist in the case at bar, as copying was virtually admitted. Finding in-
fringement would have been efficient ex post because it would have cre-
ated incentives to not breach economic relationships with little offsetting
administrative or other social costs.66

63. Gracen v. Bradford Exch., 698 F.2d 300 (7th Cir. 1983).
64. Id. at 301-02.
65. Id. at 304-05.

66. As noted below, breach of an economic relationship is one of the factors that courts
should consider to determine the level of protection to grant.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 527

Gracen is an extreme example of ex ante analysis making a rule that
is ostensibly efficient for all cases in the future, on average, without re-
gard to the current case. The ex post model will often lead to conclusions
similar to the ex ante model, but a focus on the facts at bar may also
allow a focus on “unexpected” behavior that might occur.

3. The Symbolic Function and Its Implications

The basic symbolic function facing the court is:

AS = AB — AC where S is net social wealth, B is total social benefits, and

C is total social costs.

This can be expanded into:

AS = (4B, - AC,) + (4B, - AC,) + (4B, - AC,)
where the subscripts p, r, and s represent benefits and costs to producers,
software reusers, and the rest of society respectively. The court seeks to
maximize AS, the change in social wealth at the time of the choice
whether to reuse with its decision to allow or disallow reuse.

There are two important implications of this formulation. The first
implication is that sometimes courts are unable to increase S by inter-
vention and the parties may not sue because they have nothing to gain.
If this is so, then the reuse “market” will be stable and in equilibrium at
the time of reuse, and the parties will not litigate. This does not always
mean that social benefits are maximized. It instead means that courts
do not get the chance to improve things; the status quo is a constrained
efficient outcome. If the ex ante rules are efficient (either constrained or
unconstrained) and people follow them, then litigation would never
arise.%7

However, if a court can improve one party’s wealth, someone will sue
and the court must perform an ex post analysis. This is a form of market
failure. If the court finds infringement and does not allow software re-
use, then the judge has determined that he or she cannot do any better
than what already existed before the market failure.®® If however, the
court finds that allowing reuse will improve net social benefits, then it
will allow at least some reuse.5®

The second implication is that courts do not face a continuous social
benefit function as is often assumed in ex ante analysis. This means that
courts sometimes do not fully maximize the change in social benefits (un-

67. Compare this with the familiar argument that there is no negligence in the world
because everyone exercises efficient care knowing that they will have to pay if they do not
exercise efficient care.

68. Technically, this follows from the fact that AS is roughly equal to the derivative of
S. Thus, if the court can do no better than the status quo, then 4S will equal zero, satisfy-
ing the mathematical maximization requirement that the derivative of S equal 0. In other
words, anything other than the status quo reduces net social benefits,

69. Technically, this means that the court will allow some reuse whenever AS > 0.

528 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

constrained efficiency) because they are unable to tailor a precise solu-
tion. In other words, courts must sometimes settle on a second best or
even a third best solution because their choices are constrained to the
facts and parties before them. Rulemakers considering an ex ante eco-
nomic analysis, however, may often assume that these constraints do not
exist and therefore may recommend different outcomes than would be
actually efficient at trial.

C. JustiFviNG THE MobDEL: MarRkET EQUILIBRIUM

A good test of whether the model describes decisions made by the
courts is whether the model describes or predicts behavior of parties who
have chosen not to litigate. If the model describes market equilibrium,
then it can be used to describe both market failures and the public’s per-
ception of what courts are actually doing. The following are several ex-
amples where the parties did not seek a court determination because the
court could do no better than the status quo or because the parties could
not gain.

1. Object Oriented Programming

One example of market equilibrium in computer software reuse is
“Object Oriented Programming” (“OOP”). With OOP, a computer
programmer can write or use pre-written “objects” that are self-con-
tained units which perform certain programmatic tasks. A recent appli-
cation of OOP is Microsoft’s ActiveX (also known as “OCX”) technology.
With ActiveX, programmers can execute specific tasks from different
computer languages, from World Wide Web pages, or even from word
processor macro scripts.?0

Objects can usually only be reused by wholesale copying; nonethe-
less, object authors in general neither bring suit nor charge other pro-
grammers for reuse when the object is redistributed to many end users
so long as the first use of the object is licensed by the programmer. In
many cases, object writers do not charge for reuse at all. For example,
Borland’s Delphi compiler uses “visual components” that are used as ele-
ments to create programs. There are a very large number of such compo-
nents available at no charge or minimal charge with unlimited
distribution rights so long as the component is embedded into another
program and not resold individually.

The reason court intervention is not generally sought with object ori-
ented programming is that courts cannot improve the economic standing
of any individual. Societal benefits are large when new programs are

70. A macro is a mini-program written in a computer application program’s special
language.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 529

created. Further, costs to new developers are lowered if preexisting ob-
jects can be used.”™

Most importantly, the authors of the objects benefit when others use
objects; broad use of objects can ensure further revenues or distribution
of some base program. This is an application of positive network exter-
nalities?? that benefit the first author as well as society. A paradigm
example of this type of network externality is Microsoft’s free distribu-
tion of Internet Explorer, its World Wide Web browser. Program users
gain increased compatibility with their operating system and increased
consistency with web content because developers have an incentive to
“develop to” Microsoft’s version of the World Wide Web.78 Microsoft
gains through the purchase and use of other Microsoft products, such as
Windows95, WindowsNT (including a World Wide Web server), and html
(web page) authoring and managing tools. A company using this strat-
egy hopes to “tip” the market in order to remove the competition because
no user would want to use the competing programs.”*

Microsoft’s practice has been questioned by the United States De-
partment of Justice as a monopoly practice due to the large gain
Microsoft has made in this area in such a short time.”® A key question in
the debate is whether consumers benefit as well as Microsoft, and
whether free distribution (or more appropriately, forced distribution)
limit competition and thus eliminate innovation.”®

This type of positive externality also exists for “smaller” objects as
well as for third party authors. Continuing the Delphi example, Borland
was able to create a large market share by encouraging third party com-

71. But see Soma, supra note 11, at 193 (“There are no off-the-shelf interchangeable
software components that can be used to build, improve or repair a software application.”).
It appears that the expansion of object oriented technology since 1994 may have proved
this statement wrong.

72. See Peter S. Menell, An Analysis of the Scope of Copyright Protection for Applica-
tion Programs, 41 Stan. L. Rev. 1045, 1066 (1989) (“‘network externality’ describes a class
of goods for which the utility . . . derived from the good’s consumption increases with the
other persons consuming the good”). See also Dam, supra note 16, at 345 (arguing that
these benefits and costs should not be called “network” externalities bécause there is no
actual connection between machines). Regardless of terminology, these are clearly a social
and private benefit under the economic model proposed here.

73. Dam, supra note 16, at 352-53 (calls this contractual attachment development).

74. James Boyle, Intellectual Property Policy Online: A Young Person’s Guide, 10
Harv. J.L. & Tech. 47, 50 (1996) (noting that even pirated programs may help a company’s
market position).

75. Id. (interestingly, the author uses free distribution of Microsoft’s primary competi-
tor, Netscape, as his example of this phenomenon only one year earlier).

76. See United States v. Microsoft Corp., 980 F. Supp. 537, 540 (D.D.C. 1997) rev’d 147
F.3d 935 (D.C. Cir. 1998)(issuing injunction and appointing special master to advise on
factual issues). While the injunction was reversed, at the time of publishing Microsoft is at
trial on this very issue.

530 JOURNAL OF COMPUTER & INFORMATION LAW = [Vol. XVII

ponent developers to share their components. Component developers
had a vested interest in sharing the components because other develop-
ers would write new Delphi programs, and sales of Delphi would be suffi-
cient to ensure further support and improvements by Borland.”’?” In
addition, users of the generalized components gained by not having to
recreate those components and by writing standardized applications.”8
Finally, society gains through increased competition and productivity.”

At market equilibrium, such as the Delphi case, software companies
gain enough to not challenge reuse and threaten positive network exter-
nalities. Menell notes, however, that benefits are lost if software compa-
nies ignore externalities in order to maximize their own revenue through
broad copyright protection.8? For example, Baird, et. al., argue that Lo-
tus 1-2-3 was such a dominant product that its menu hierarchy created a
negative network externality.®! People had no incentive to use other
programs due to the cost of learning a new menu system, and Lotus had
no incentive to allow others to use its menu system because people were
continuing to buy Lotus 1-2-3. Under the model, therefore, courts would
be expected to improve on the status quo and allow reuse where a large
potential benefit exists by allowing reuse.

2. File Translation and Compatibility

Another example of market equilibrium is file translation and com-
patibility. There are two types of reuse relating to file translation: filter-
ing and plug-compatibility. With filtering, one computer program will
translate or convert the format of a file created in another program to be
used with that program. For example, the Corel WordPerfect word
processing program includes a filter that will convert a Microsoft Word
word processing program file into WordPerfect’s default file format.

Sometimes programs read and write in the same file format by de-
fault and without translation programs. With plug-compatibility, multi-
ple programs are able to use files created by another program author as
their own. For example, Links and Microsoft Golf are two popular com-
puter golfing games. Each of these programs has several different golf
course designs that are stored in program files. Each of the programs,

77. Delphi is now about 7 years old and in its fourth revision.

78. See Jamie Lewis, Tool Portability is Key for Future Net App, PC WEEK, Feb. 3,
1997, at 82 (“Portability of the skill sets and tools in which you invest, then, is just as
important as the portability of the applications you write.”).

79. See Coffee, supra note 1, at 24 (“Pretty soon everyone was doing better, but only
able to keep up with a new standard of competence. . . . And with more software being
reused, more of the developer’s work will be design, rather than reverse engineering and
defect resolution. . . . The quality of software product will rise. . . .”).

. 80. Menell, supra note 72, at 1068-71.
81. BAIRD, ET. AL., GAME THEORY AND THE Law 212-213 (1994).

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 531

however, can read the golf course design files of the other. Therefore,
owners of each program can use golf courses designed for either, and
course designers can sell to owners of either program. In addition, all
World Wide Web browser programs read and interpret HTML#2 format
files, although there are certain codes that only certain browsers can in-
terpret. Finally, numerous database programs use the dBase IV (.dbf)
formats for their database files.

File translation and compatibility is quite arguably copyright in-
fringement; it is a copying of original expression created by the first au-
thor.83 Despite this, cases relating to file translation and compatibility
are almost unheard of.8¢ The model explains why parties often litigate
regarding executable program compatibility,®5 but not for file transla-
tion. The model suggests that in cases of file translation, the user may
have large switching costs,3¢ due to loss of use of existing files, such that
inability to translate files would not allow competitors to enter the mar-
ket. Without competition, social benefits would be reduced, and the first
-author can be relatively sure that a court would allow reuse.

Further, the first software authors do not bring suit because they
are able to create their own filters for competitive programs and there-
fore do not have an incentive to eliminate their use.8” However, in the
case of executable program compatibility such as compatible video
games, no reciprocal use exists, so companies are more likely to litigate.

3. Free Software Foundation

Another market-based solution is the “copyleft” policy of the Free
Software Foundation (“FSF”).88 The programmers associated with the
FSF believe that all software should be freely available and modifiable,
and they make all software created by them available in both object code

82. HyperText Markup Language.

83. See MAI Systems Corp. v. Peak Computer, Inc., 991 F.2d 511, 519 (9th Cir. 1993)
(holding that loading a program into memory is the creation of a copy).

84. But see Engineering Dynamics v. Structural Software, 26 F.3d 1335, 1347 (re-
manding case to district court to hear evidence on the extent that program input and out-
put formats are determined by market requirement).

85. See; e.g., Atari Games Corp. v. Nintendo of America Inc., 975 F.2d 832 (Fed. Cir.
1992); Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).

86. Switching costs are the costs users must expend fo switch from one program to
another, including training. Where expensive computer hardware is required to run
software, the costs of purchasing hardware may be so high relative to the value of switch-
ing as to constitute “lock in.” Dam, supra note 16, at 346-47.

87. See, e.g., Lotus Dev. Corp. v. Paperback Software, Inc., 740 F. Supp. 37, 78 (D.
Mass. 1990) (despite suing for infringement, “Lotus itself has written such a capability for
translating macros among different-language versions of 1-2-3.”).

88. See GNU's Not Unix! <http:/www.gnu.org> All information discussed here is avail-
able at this World Wide Web site.

532 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

and source code form. However, because copyright allows protection of
derivative works, the FSF copyrights its software and requires that any
improvements to the software must be made available in both source
code and object code, so that others may use, understand, and modify
it.89 In other words, the FSF uses copyright law to create a market-
based solution to achieve its own ends.

This market-based solution is one that requires no court interven-
tion so long as users of FSF code adhere to the license agreement, FSF
creates new software, which is a social benefit, without maximized prof-
its as the primary goal. Users of the software are free to modify and
improve the software, another social benefit. Because the FSF authors
and users have personal incentives to create without monopoly profit,
the court can do no better than let the status quo continue.

If, however, a user breached the license agreement, the court would
be able to improve societal benefits by finding infringement or specifi-
cally enforcing the agreement. If the FSF were unable to enforce its in-
terests through copyright law—for example if a party received the
software from a third party and not subject to the FSF’s license agree-
ment—its authors might not have the same incentive to create new
software and thus social benefits would decline.

An interesting question is whether the availability of free software
decreases the incentive for others to create competing software due to
lack of demand at any price above zero. This is a viable concern, but once
again it would be impossible for courts to improve the situation. Parties
are free to enforce copyright law as they wish, and the court could take
no action, under current law at least, to improve on the market equilib-
rium. In addition, the FSF encourages authors to charge whatever price
they can get in the market; thus price competition by new entrants is
still a possibility under the FSF agreement. As an empirical matter, the
availability of free software appears to have done little to affect software
innovation. If anything, free software may in fact spur innovation, as
discussed below regarding World Wide Web browsers.

V. APPLICATION OF THE MODEL: DECISION FACTORS

While it is important to describe cases generally and discuss current
market equilibrium, it is also important to use the model to guide future
decisions. The set of decision factors proposed below applies the model in
~ a way that is practically useful.

89. It is extremely rare for a commercial software publisher to distribute source code.
Netscape’s Navigator and Network Associates Pretty Good Privacy are two of the few
exceptions.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 533

A. Way Usk DecisioNn FacTors

Thus far, the proposed economic model is simply an after the fact
descriptive tool and implies that decisions must be made on an ad hoc
basis. Ad hoc decisions are not unusual given the wide variety of com-
puter software copyright cases and the number of different doctrinal
tools that might apply in any given case.?? As the Supreme Court notes
in Campbell v. Acuff-Rose Music, Inc.,°* copyright cases should be de-
cided on a case by case basis because the Copynght Act does not favor
the victim or the reuser.

At a minimum, however, a solution based on the economic model
should be broad and general, yet guided enough for courts and software
authors to use in practice. Concrete guidelines for lower courts, rather
than abstract economic principles, are important for at least four rea-
sons. First, summary judgment is extremely important in copyright in-
fringement cases.92 Second, reuse is quite often admitted or undisputed,
in which cases the judge might likely determine what is reusable as a
matter of law and what standards a jury should consider when determin-
ing illicit copying. Third, cases are often heard in a bench trial when
statutory damages are at issue. Fourth, programs as a whole may be
strikingly or substantially similar in the eyes of a jury, yet more specific
guidelines may be needed to determine if some elements of the first pro-
gram may not be reused.

A set of factors, rather than single rule, is an appropriate compro-
mise in computer software copyright.-cases. It is true that a set of factors
is'administratively more costly than bright line rules, but given that the
supposed bright line rules promulgated by courts are uncertain and inef-
ficient if rigidly applied in practice, a set of factors is better than the
status quo and perhaps the most certain that can be achieved by copy-
right law. A set of factors incorporating the economic model should pro-
vide guidelines that will achieve efficient economic goals.

The factors proposed below should be specific enough to guide both
lower courts and computer software authors. This is not the first article
to propose factors, but this article builds on prior decision-making meth-
odology and provides a finer resolution to apply to different circum-
stances. For example, Dam suggests that the economic analysis boils
down to (a) whether allowing reuse will substantially advance the state

90. See Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir.
1960). See also William H. Wright, Note, Litigation as a Mechanism for Inefficiency in
Software Copyright Law, 39 UCLA L. Rev. 397, 436 (1991) (“But copyright law is not well
suited to per se rules. [Analysis] should be performed on the basis of the facts of each
dispute.”).

91. Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 577 (1994).

92. Clapes, supra note 16, at 963.

534 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

of technology, and (b) the effect of reuse on authors’ incentives.?3 Others
have made the analysis and suggest applying patent-like standards to
copyright in order to encourage innovation.24 Still others would look at
design methodology or behavior.95

What the literature does not provide, however, is guidance in deter-
mining whether technology actually has been advanced, whether a pro-
gram is innovative enough to meet a patent-like standard, or whether
the program’s design or behavior warrants protection in any given case.
Dam’s simplification, for example, works well in theory, but is difficult to
apply in practice because some facts point toward technological progress
while others point toward non-progress. Each possible test Dam
presents is offset by considerations which show that the test may not be
efficient.96

The court must weigh more finely granulated factors to determine
how to actually dispose of a case. For example, in Atari v. Nintendo, the
court had to consider (a) reverse engineering for competition, (b) a poten-
tial monopoly, (c) wrongfully obtained source code, and (d) a product that
arguably caused technological progress, all before determining that the
reuser was liable for copyright infringement.®? In another difficult case,
Vault Corp v. Quaid Software, Ltd.,?8 the court ruled that a program
that defeated a software “lock” was not a copy because it performed the
opposite “unlocking” function. This result would understandably affect
incentives to create both locking software and software generally, but
might spur development of better locking programs. The goal of the fac-
tors is to make cases like these easier to decide.

B. Dzeriving THE FACTORS

In each of the factors below, analysis of the model essentially leads
to the same conclusion: societal benefits are either increased or de-
creased, and the costs and benefits to the parties are roughly equal.
While this truism might make the factors appear worthless, the opposite
is true. Because societal benefits go up or down under each and every

93. Dam, supra note 16, at 363-64.

94. Mark A. Lemley, The Economics of Improvement in Intellectual Property Law, 75
Tex. L. Rev. 989, 1083 (1997); Menell, supra note 72, at 1095,

95. See Dennis M. Carleton, Note, A Behavior-Based Model for Determining Software
Copyright Infringement, 10 Hice Trcu. L.J. 405 (1995) (arguing for broad protection of
computer software based on “behavior” of each computer program); Beutel, supra note 7
(stating that copyright scope should be defined by the software design phase, giving more
protection to elements that are added later in the design process).

96. See, e.g., Dam, supra note 16, at 364 (“Even if this approach might lead one to
permit copying. . . two important considerations point in the opposite direction.”). Dam
notes that case by case determination may lead to uncertainty in property rights.

97. Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 834 (Fed. Cir. 1992).

98. Vault Corp. v. Quaid Software, Ltd., 847 F2d 255, 268 (5th Cir. 1988).

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 535

case the court hears, it is that much more important to be able to distin-
guish cases (or fact patterns within a case) where societal benefits in-
- crease and where societal benefits decrease. The factor-based analysis
becomes even more important when multiple factors appear in the same
case, and the court must weigh each factor against the others.

Each of the factors is essentially a categorization and generalization
of certain facts which are not knowable before creation of the first work,
but are important and known at the time reuse occurs. A key question is
why the generalizations do not simply lead to new ex ante rules that af-
fect incentives to create. The answer is that they do and they do not. To
some extent, knowing each of the factors will help a potential software
author decide both how much to create and how much to reuse. The re-
use allowed by the factors balances the costs and benefits of copyright
protection at the time the first work is created. At the same time, how-
ever, because the specific state of affairs is unknown until the reuser ac-
tually makes the decision to reuse rather than at the time the first
program is created, full determination under the factors remains un-
known until the time just prior to reuse. Because there are two actors,
the court must apply the factors in such a way that ex ante incentives to
create and ex post incentives to reuse maximize social benefits.

To the extent that one party is unable to discern the exact behavior
of others or cannot cheaply guess what will happen on average, imposing
liability based on what actually happens may maximize social benefits.
Generalized factors are a categorical assessment of certain costs and
benefits that can have an effect similar to ex ante rules; at the same time,
however, ex post determination of those factors may maximize social ben-
efits where there are two actors.

An analogy in tort law is per se negligence. While courts could de-
termine in each specific instance whether the cost of certain behavior
outweighs the costs of an accident, they instead categorize certain viola-
tions of law where negligence will be assumed. This “factor” affects in-
centives to act carefully because the person acting in violation of the law
can plan his or her affairs; he or she knows what the likely outcome at
trial would be. At the same time, the tort victim may not know that the
defendant is breaking the law. While the factor affects the ex ante be-
havior of one party, it only affects the other party’s behavior based on
expected behavior or based on game theory guesses about what the other
party will do. Thus, the ex ante part of the factors will affect the defend-
ant, and an ex post analysis might be necessary to influence the plaintiff.
This result is consistent with the game theory description of the eco-
nomic model and the predictions about incentive effects associated with
the model. '

536 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

C. Tur Facrtors

There are four basic factors that categorize the model and should
guide the courts.

1. Market Substitution

An important factor for courts and authors to consider is whether
the reuser has substituted the new work into the market in place of the
pre-existing work. If the reuser experiences a dollar gain and the earlier
author experiences a dollar loss, then the incentive to create would be
eviscerated.®® If the ratio of substitution is less than 1:1, then a court
would accordingly be more likely to allow reuse, depending in part on
other factors.100

This factor is already explicitly considered by courts, and is there-
fore not particularly new to the analysis. In Campbell v. Acuff-Rose Mu-
sic, Inc., the Court discusses transformative versus substitutive reuse in
the context of parody.191 Under this factor, reuse that transforms but
does not substitute for the first work is not considered infringing. Dam
notes that in order for this factor to be meaningful, the enhanced fea-
tures must be significantly important, and the value added by the en-
hancements must be a substantial portion of the value of the second
product.102 This factor is represented in the model as:

a. 4B, is negative due to profits taken by the reuser.
b. 4B, is positive and equal to or greater than the decrease in AB, de-
pending on how much value the new product adds in the market.
c. AB; is ambiguous depending on the amount of substitution. One
component is negative due to decreased incentive to create caused by
decreased profits. An offsetting component is positive due to increased
competition and the innovation that follows new creation. The more the
substitution, the more incentives decrease and the smaller the benefit
from competition.

On the whole, to the extent that societal and producer benefits de-
crease more than benefits increase for the reuser, the court will disallow
reuse.

a. Originality v. Slavish Copying

One subset of market substitution is “slavish copying.” Dam and

99. Piracy is the penultimate 1:1 substitution.

100. See David W.T. Daniels, Learned Hand Never Played Nintendo: A Better Way to
Think About the Non-Literal, Non-Visual Software Copyright Cases, 61 U. Cur. L. Rev. 613,
637 (1994) (stating that programs that reduce incentive to create should be found
infringing). :

101. Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 591-93 (1994).

102. Dam, supra note 16, at 362.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 537

others call this “me too” copying.’® It stands to reason that if the eco-
nomic goal of copyright law is the creation of original works, then the
more original/innovative the product associated with a certain reuse is,
the more likely a court will allow it.104 Conversely, if the reuse is a slav-
ish copy, then reuse will likely be disallowed.105

In a survey of 25 cases between 1978 and 1990, Soma, et. al., found
that 15 cases involved total copying of a substantial portion of the first
program, and that of those 15 all but one were found infringing.19¢ The
saving grace for the lone winning reuser was a failure to place a copy-
right notice on a ROM chip; this decision would be different after the
Berne Convention.

Consistent with Feist, courts require more than just “sweat of the
brow” before they will allow reuse of software elements. If an entire user
interface is copied, regardless of its simplicity,197 extensive original
source code programming that makes the software work will not save the
reuser from infringement liability. On the other hand, if some original-
ity is shown that creates technological advancement and modifies the
first work in some way, then reuse will more likely be allowed.108 The
more the original work is modified, the more likely reuse will be
allowed.10?

Under the model, this is essentially the same as 1:1 market substitu-
tion, except there is also no offsetting social benefit gain from increased
competition because slavish copying will not create competitive pressure
to increase the supply of goods or improve products.

2. Breach of Economic Relationship

If the reuser breaches an economic relationship with the first au-
thor, a court is more likely to disallow reuse or alternatively to assess
damages.!1® Soma found that in 10 cases where a party breached an

103. Id. at 358.

104. Landes and Posner, supra note 2, at 344 (noting that the source of literal copies
will garner more protection than the source of derivative works).

105. See e.g., Fonar Corp. v. Domenick, 105 F.3d 99 (2d Cir. 1997).

106. Soma, et. al. ., A Proposed Legal Advisor’s Roadmap for Software Developers: On
the Shoulders of Giants May No Breachers of Economic Relationships Nor Slavish Copiers
Stand, 68 Denv. U. L. Rev. 191, 220-23 (1991).

107. Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 78 (D. Mass. 1990).

108. See Glynn S. Lunney, Jr., Lotus v. Borland: Copyright and Computer Programs, 70
Tor. L. Rev. 2897, 2403 (1996) (arguing that copyright should protect programs only where
there is an “undue” advantage to competitor).

109. See NEC Corp. v. Intel Corp., 10 U.S.P.Q.2d (BNA) 1177, 1186-87 (N.D. Cal. 1989),
(allowing reuse even though microcode programmer assumed to have started with copied
code modified it until the new work and the first work were no longer similar.)

110. See, e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc., 592 F.2d 718 (breaching of confi-
dentiality obligation gives rise to trade secret claim even if no copyright infringement);

538 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

economic duty, courts found liability in all 10 cases, regardless of the
degree of copying and even in cases where the reuser did substantial
original authorship to create the second product.111

The ex post economic basis for this factor is that a court does not
want to allow a “breacher” to gain without having to pay for it.112 As
noted in the discussion about Gracen, an ex ante analysis indicates that a
low level of protection is all that is necessary, because the first software
author would not provide the fruits of his or her labor to the reuser with-
out pay, and that pay would cover the risk of reuse.113 For example, in
Effects Associates, Inc. v. Cohen, the court held that failure to pay for
movie special effects footage did not raise copyright issues because of an
implied license to use the footage.114

This analysis, of course, depends in large part on the ex ante as-
sumptions of the parties. With software, parties are unable to make as-
sumptions because the degree of reuse allowed by courts seems to differ
based on whether an economic relationship exists which was breached
after entering the relationship and the parties will not know before en-
tering the relationship which state of the world they will be in. Thus,
they may not have an accurate estimate beforehand and may not be able
to protect themselves by contract. Further, as discussed below, it is not .
always possible to set a price on the disclosure of trade secrets, and thus
the parties might not be able to contract in advance for a breach.115

A court reviewing the matter ex post, however, sees that a relation-
ship has been breached and has two options to create incentives for par-
ties to contract and breach efficiently in the future. First, the court can
assess some sort of contract/quasi-contract liability but continue to allow
reuse. Second, the court can disallow reuse that might otherwise have
been allowed. These choices are not equally efficient due to Arrow’s in-
formation paradox: in the case of source code and other trade secret ele-
ments, the act of reuse may not be compensated by contract type
damages because the other party would be free to exploit the technology
in ways uncontemplated by the original agreement, and the very act of

Lasercomb Am., Inc. v. Reynolds, 911 F.2d 970, 971-72, 980 (4th Cir. 1990) (barring in-
fringement suit due to copyright misuse but allowing damages for fraud based on represen-
tations that licensee would protect licensor’s copyright).

111. Soma, supra note 11, at 220-23. Soma did not tie the breach to economic incentives
to create and contract. See also Kepner-Tregoe v. Leadership Software, 12 F.3d 527 , 531-32
(5th Cir. 1994) (infringement was found where former partner created similar work to com-
pete contrary to license agreement).

112. PosNER, supra note 2, at §4.8.

113. Source code, for example, is usually kept as a trade secret as well as a copyrighted
work.

114. Effects Assocs., Inc. v. Cohen, 908 F.2d 555, 558-59 (9th Cir. 1990).

115. For example, many arbitration clauses exempt injunctive relief from arbitration.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 539

contracting creates this risk with no way to protect against reuse.116
This distinguishes Effects Associates from software cases.

While only contract remedies were available in Effects Associates, if
the work was software—especially source code—the outcome might have
been different. In Cadence Design Systems, Inc. v. Avant! Corp., the
court held that a likelihood of infringement entitled the owner of the pre-
existing work to a preliminary injunction, even if the reuser might go out
of business, and even if money damages were adequate.l1? This is be-
cause social cost of decreased incentives to create and license copyrighted
programs are high enough such that simple expectation damages will not
induce social wealth maximizing behavior; additional damages are re-
quired to create the incentive. With copyright remedies available, the
court can choose a higher level of copyright protection, and can set dam-
ages or enjoin reuse as necessary to obtain an efficient outcome. Under
the model, this is represented as follows:

a. AC, is positive due to the economic breach, and could be quite large if

source code is involved.

b. AB, is positive and probably larger than AC,. If AB, were less than

AC,, then ordinary contract remedies equal to AC,, if available, might be

sufficient to deter breach.

c. AB, is negative due reduced incentive to contract or create where ob-

ligations may be breached.

Thus, when societal benefits are reduced and production costs in-
creased more than the reuser can gain, reuse will not be allowed.

3. Customer Need for Compatibility

Under this factor, the more costly it would be for customers were
reuse disallowed, and the more benefits customers could obtain were re-
use allowed, the more likely a court will allow reuse. This factor is ac-
centuated by the ex post analysis. It is not until after customers have
used a product that a court can assess the actual costs and benefits in-
volved. While an ex ante analysis would look at the expected customer
needs and make predictions and rules based on such guesses, courts look
at the ex post outcome to determine what customers have actually done.

As long as slavish copying of an entire program is disallowed, this
factor still ensures that companies recoup their investment in the first
software program. They will, of course, make investment decisions
which encompass the probability that their program will lose protection
of some program elements due to customer needs. Thus, the investment
in each program may decrease, but the ability for new program authors

116. Lemley, supra note 94, at 1050-51.
117. Cadence Design Sys., Inc. v. Avant! Corp., 125 F.3d 824, 827-29 (9th Cir. 1997),
cert. denied 118 S. Ct. 1795 (1998). '

540 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

to compete and add new features by reusing certain elements offsets this
decrease. Because protection is still extended to the work as a whole,
this result is different than the “truncated protection” proposals dis-
cussed above.118 Even so, a court will only reduce the protection if cus-
tomer—that is, societal—interests would actually be served by reducing
protection.

This factor bears on two controversial ideas from the literature:
“switching costs” and “de facto” standardization.1?

a. Suwitching Costs

Switching costs are the costs a user incurs by switching from one
program to another.120 As noted above, loss of the use of data files is one
cost. In addition, costs include purchase (or license fee) of the software
itself, retraining, and new hardware necessary to run the software. Dam
notes that the analysis of switching costs differs where software only is
involved, as opposed to the purchase of new computer hardware in addi-
tion to computer software.’2! Thus, in order to switch to a new software
program, a user had to consider both hardware and software costs, and
high hardware costs might force a user to buy inferior and more costly
software in order to avoid purchasing hardware. To the extent, however,
that computer hardware costs have dramatically decreased in relation to
software costs and to the extent that faster computer hardware is neces-
sary to run newer software programs at all, this distinction is not
necessary.

As switching costs increase a court would be more likely to reduce
protection. This sliding scale allows more flexibility than Clapes, who
argues for broad protection, reasoning that switching costs are overesti-
mated generally,1?2 or Larvick, who argues that consumer benefits of
standard interfaces are high enough such that no copyright protection
should apply to user interfaces.!23 A factor based analysis allows the
court to determine whether or not switching costs are actually high
enough to reduce protection.

118. But see Brown, supra note 22, at 835 (holding that “market factors” should not be
considered in copyright protection). The argument here, however, is not that protection
ceases because a product is successful. The argument is that market success causes cus-
tomer reliance, and that limited reuse of key program elements may be efficient.

119. Dam, supra note 16, at 346.

120. Id.

121. Id. at 349. For example, until recently only Apple made Macintosh computers.
122. Clapes, supra note 16, at 961.

123. Larvick, supra note 47, at 211, 215.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 541

b. De Facto Standards

A product becomes a “de facto” standard when virtually everyone
uses it even though no governing body has approved the product as a
standard.124¢ Some have proposed that protection for a program cease as
soon as it becomes a de facto standard. This argument suffers from the
same weakness as proposals to cease protection once investment is recov-
ered: software authors don’t know beforehand if their product will be-
come a standard.'?5 Patry points out that this rule would also be
empirically problematic due to generally short lived market leads; he
points out that by the time of the Lotus v. Borland decision, Lotus was no
longer the substantial market leader it had once been.126

The broad proposals to cease protection refer to wholesale copying of
de facto standard programs which would be inefficient and thus disal-
lowed under the slavish copying factor here. Reuse of certain elements of
de facto standard programs, however, presents a different issue than
wholesale copying, and does not suffer from the same inefficiency.

Dam asserts that the scenes a fair doctrinel27 will serve to allow use
of popular program elements, so focus on de facto standards is unneces-
sary.1?2® Dam’s argument, however, begs the question: how is a court
supposed to know when a program element is so widely used that it
should no longer be protected? Because Dam focuses primarily on whole-
sale copying he need not confront this issue, but reuse today includes
both reuse of elements as well as complete appropriation. Someone had
to use each element first, and arguably that person would not want copy-
right protection in his or her element to cease.

The question is whether there exists a trademark-like pohcmg
duty that the first creator must perform to keep a program element from
becoming an industry standard, or whether a program element is so im-
portant that courts will allow reuse whether or not the element has been

“policed.” Both types of cases have been before courts, and reliance on
the scenes a fair doctrine without guidance about when the doctrine
should actually be applied has little practical use. The “customer com-
patibility needs” factor, however, allows courts to assess—at any time

124. MS-DOS on PC computers was, and still is in many ways, the de facto standard
operating system on PC computers.

125. Dam, supra note 16, at 351.

126. Patry, supra note 39, at 8 n.37.

127. In the literary field, scenes a fair refers to stock literary devices that are part of
every author’s repertoire. As applied to computer software, the doctrine limits protection
for elements that are either necessary to achieve a certain end (such as a grid in an elec-
tronic spreadsheet), are standard for the industry (such as a menu bar), or follow from a
common theme (such as a desktop). The Gates court provides a good definition. Gates
Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 838 (10th Cir. 1993).

128. Dam, supra note 16, at 360.

542 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

during the first product’s life cycle—when an element should cease to be
protected and when it may be used by other programmers. At the point
in time when the product becomes a de facto standard, the creator would
no longer be able to rely on the product’s “momentum” and others would
be able to use certain elements.’29 It may be, like many generic trade-
marks, that early on in a product’s life the element is protected but later
on the element may be reused. Under the model, this factor is repre-
sented as follows: .

a. AB, is negative due to market substitution for the new product.

b. Assuming no slavish copying, 4B, is positive and greatly outweighs

the negative AB, due to the reuser’s ability to break into a market that

would otherwise be captured by the producer’s product. Unlike the inef-

ficient proposal to eliminate all protection when a producer recovers his

or her costs, limited copying of specific elements necessary to reduce

switching costs will not have an incentive killing impact on the pro-

ducer’s benefits, B,. The producer has likely reaped monopoly-like ben-

efits if its program is so widely used as to create a need for

compatibility.*30

c. Part of AB, is negative due to a lack of incentive to create. The de-

crease is not large, however, because 4B, is small.

d. Part of AB; is positive due to increased competition and incentive to

innovate and more customers who are better able to choose a program

that meets their needs.131

e. One component of AC; is low due to decreased switching costs.

f. Another component of AC, may be high or low, depending on the

quality of the pre-existing program. If the program is of high quality,

then the increase in social costs will be low by allowing reuse; barring

reuse may actually create social costs.132 If the program quality is low,

then the increase in social costs will be high because allowing reuse will

not create incentives to create improved technology.133 While there is

disagreement on this issue,'34 the partial reuse for customer compati-

129. Timothy S. Teter, Note, Merger and Machines: An Analysis of the Pro-Compatibil-
ity Trend in Computer Software Copyright Cases, 45 Stan. L. Rev. 1061, 1072 (1993); Jo-
seph Farrell, Standardization and Intellectual Property, 30 JuriMeTRICS J. 35, 36 (1989).

130. Lawrence D. Graham and Richard O. Zerbe, Jr., Economically Efficient Treatment
of Computer Software: Reverse Engineering, Protection and Disclosure, 22 Rurcers Com-
PUTER & TEcH. L.J. 61, 125 (1996) (noting broad approval of reverse engineering when
monopoly profits are large).

131. Id. ,

132. Nicolas P. Terry, GUI Wars: The Windows Litigation and the Continuing Decline of
Look and Feel, 47 Ark. L. Rev. 93, 132 (1994).

133. Farrell, supra note 129, at 46 (stating that excessive dissemination means that an
inferior standard may capture the market).

134. Compare Farell, supra note 129, with Larvick, supra note 47, at 211-12 (limited or
no protection for user interfaces will not “freeze” current interfaces into static standards),
and Menell, supra note 72, at 1068 (_h@lding that broad copyright protection may lead com-
panies to adopt incompatible and non-efficient standards to avoid reuse).

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 543

bility indicates that the increase in social costs would be small, because
new software manufacturers will be allowed only to reuse the elements
necessary to keep customer costs low, but reusers would otherwise add
functionality in order to obtain future customers.135

g. The gain in social benefit and the decrease in social cost should out-
weigh the sometimes administratively costly determination of whether
customer needs for compatibility justify limited copyright protection for
certain elements.136

On the whole, social benefits are increased, social costs are increased
slightly, and benefits gained by the reuser outweigh a loss in benefits to
the producer.

4. Competitive Need for Compatibility

This factor, often called “functional compatibility,” measures the ne-
cessity for reuse based on the functional requirements of the computer
and the desired application. The factor is similar to the trade dress no-
tion of functionality: to the extent that software looks similar because of
functional requirements, the reuser will not be held liable for copyright
infringement.137 This factor is an offshoot of the idea/expression merger
doctrine expressed in Herbert Rosenthal Jewelry Corp v. Kalpakian 138
For computer software, this factor is explicitly discussed in NEC v. Intel,
where the court states “[hlaving conceded at trial that NEC had a right
to duplicate the hardware . . . Intel is in no position to challenge NEC’s
right to use the aspects of Intel’s microcode that are mandated by such
hardware.”139 '

This factor is usually most important where the program element is
unseen by competitors or unique to a product’s function, and the only
way for other companies to compete is to reuse at least part of the first
program. Reuse may be the only way some companies can survive in a
competitive market.?4? This is a factual question that must be deter-

135. See, e.g., Menell, supra note 72, at 1069 n.131 (noting that a file conversion pro-
gram—as noted above a form of reuse generally allowed in market equilibrium—may alle-
viate the problem of standard adoption in general).

136. Teter, supra note 129, at 1072.

137. In Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 148-49 (1989), the
Court held that the patent system alone governs copying of ideas and functional elements.

138. Hebert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742-43 (9th Cir. 1971)
The court limited protection of a pre-existing jeweled bee broach because of the limited
number of ways that jewels can be put together to look like a bee.

139. NEC Corp. v. Intel Corp., 10 U.S.P.Q.2d 1177, 1188 (N.D. Cal. 1989).

140. Julie E. Cohen, Reverse Engineering and the Rise of Electronic Vigilantism: Intel-
lectual Property Implications of “Lock-Out” Programs, 68 S. Car. L. Rev. 1091, 1093 (1995);
Menell, supra note 72, at 1067-68.

544 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

mined ex post. 141

Some argue that competitive compatibility is simply a pretext for
cheaply taking profits rightly earned by the first author’s original crea-
tion.142 This argument fails economic analysis, however.143 Companies
that must copy in order to compete under this factor will usually attempt
to license the technology because it is less expensive and more expedient
than reverse engineering and protracted legal battles.144¢ Because one
company owns the technology another is trying to license, however, bi-
lateral monopoly costs arise which make voluntary and efficient transac-
tions more difficult to achieve. Courts would step in to correct the mar-
ket failure; only when efforts to license at a cost efficient price fail or are
unattainable may reuse of essential elements occur. Under the model,
this factor is represented as follows:

a. AB, is positive due to increased competition and increased value to

computer program users.145

b. As with the other factors, AB, is positive and 4B, is negative, and

they roughly offset each other, though the benefit gains to the reuser

will likely exceed the benefit loss to the producer based on increased

ability to compete. Of course, the more elements of a program that are

reused, the more equal redistribution of elements becomes.

c. One part of AB, is negative due to decreased incentives to create.

This decrease in social benefits is outweighed by the gained benefits of

increased competition so B, will increase.

d. Like the customer needs factor, it is also possible that C, will in-

crease greatly due to widespread dissemination of an inferior standard.

On the other hand, if the court examines which elements are truly nec-

essary to compete and allows reuse of only those elements, then it is

likely that technology will advance due to new elements added by the

reuser. Because the primary benefit of this factor is market entry, it is

reasonable to expect that new competitors that do not slavishly copy

will add new program elements in order to actually make a profit.146

141. See Engineering Dynamics, Inc. v. Structural Software, Inc., 26 F.3d 1335, 1347
(5th Cir. 1994) (remanding case to district court to hear evidence on the extent that pro-
gram input and output formats by market requirement).

142. Christopher Hager, Note, Apples & Oranges: Reverse Engineering as o Fair Use
After Atari v. Nintendo and Sega v. Accolade, 20 Rurcers CompUTER & TECH. L.J. 259, 320
(1994) (. . . their true objectives were to cash in on commercial markets established by the
plaintiffs”).

143. David A. Rice, Sega and Beyond: A Beacon for Fair Use Analysis . . . At Least as Far
as It Goes, 19 U. Davron L. Rev. 1131, 1146 (1994) (“The Ninth Circuit concluded, however,
that the public benefit resulting from a commercial use is a factor worthy of consideration
even if the objective and consequences of the use is economic gain.”).

144. Lauren Bruzzone, Note, Copyright and License Protection for Computer Programs:
A Market Oriented Assessment, 11 Pace L. Rev. 303, 314 (1991).

145. Teter, supra note 129, at 1063-71.

146. For example, dropping prices of software developer kits (many are now free) pro-
grammers use to develop “add-ons” to existing software products indicates that strong

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 545

D. JustiFving THE FacTtors: Court DECISIONS

* A second and more important test of the model is whether courts are

actually making decisions based on it. One way to verify whether the

' model is useful and not simply an after the fact rationalization is to see if

it reconciles seemingly irreconcilable cases. The following discussion

and comparison of cases supports the application of the decision factors
to actual cases.

1. Lotus v. Borland and Whelan v. Jaslow

Perhaps the most difficult and most important set of cases to recon-
cile is Lotus v. Borland, which grants almost no protection, and Whelan
v. Jaslow, which grants seemingly endless protection. Using the eco-
nomic decision factors, the result is relatively .clear. In Whelan, the
reuser had entered into an economic relationship with the owner of the
first program and breached that relationship by using arguably un-copy-
rightable structure, sequence, and organization of the program to make a
new program. The court saw this breach and ruled, implicitly at least,
that as between the two parties to an agreement, the non-breacher
should win.?47 Breaching an economic relationship appears to be the
singularly dispositive factor, as none of the other factors were present in
this case.148

In Lotus, on the other hand, no such relationship existed: the parties
were competitors. In this case, Borland used a “command interpreter”
that allowed Lotus 1-2-3 users to run macro scripts and to enter Lotus 1-
2-3 command keystrokes.'4® The importance of these keystrokes to
users was enormous. Not only had users built up training in operating
the program,'5° but macro scripts are also written as command short-

copyright protection is not necessary to advance new standards. By cheaply and freely
licensing computer code that might otherwise be protected, the companies are encouraging
externalities that will make one product the “standard.” Because developers do not need to
pay, they will support, without reference to copyright protection, what they view to be the
“better” or at least customer preferred standard.

147. Patry, supra note 39, at 4. (Whelan was a “compelling case of infringement” based
on unauthorized reproduction by a former business partner.). _

148. Soma, et. al., supra note 106, at 220-23 supports this conclusion. See also Manu-
facturer’s Technologies v. CAMS, 706 F. Supp. 984, 993-94 (D. Conn. 1989), where the court
rejected arguments that competitive need justified reuse where the defendants developed
plans for a new program while employed by the plaintiff as sales representatives.

149. Lotus uses the “slash” key to invoke command menus, and then uses the first letter
of the command as a short-cut. For example, a user typing “/fo” would invoke the [Flile
{Olpen command.

150. WordPerfect, for example, changed its keystrokes when it moved its word processor
from DOS to Windows. “Shift F7” is the print command in DOS and “Control P” is the print
command in Windows. In order to maintain user training in its DOS program, however,
WordPerfect provided with its Windows version an option to use the same keystrokes avail-

546 | JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

cuts.151 Thus, thousands of users would have lost uncountable training
time and productivity enhancing macro scripts by switching to Borland’s
program if Borland was unable to reuse the portion of the Lotus 1-2-3
user interface. As a result, the “customer needs” factor was considered
by the court. Because of the near monopoly that Lotus held,152 the
switching costs for customers for both macro compatibility and training
costs, in addition to enhanced competition, greatly outweighed any cost
to Lotus.

Lack of the slavish copying factor mitigated the reuse by Borland.
Borland did not reuse entire portions of the Lotus 1-2-3 interface and it
completed extensive work in both creating its own interface and in ad-
ding features not offered by Lotus. Compare this result with Lotus v.
Paperback, where the defendant had not only reused elements necessary
to meet customer needs but had also slavishly copied the entire Lotus 1-
2-3 interface with few improvements to the software.153 There the cus-
tomer needs factor was outweighed by slavish copying.

Note that the “competitive needs” factor was not considered in Lotus
v. Borland. Borland could have, and until the First Circuit reversed the
district court had, released a competing spreadsheet without any reuse
of the Lotus program.

2. Substitutive Use as a Dispositive Factor

As the two Lotus cases above indicate, substitutive use—and even
slavish copying—is not dispositive of reuse that would be considered
copyright infringement. When other factors are not present, however,
slavish copying will virtually always be considered infringement.

In Digital Communications Assocs., Inc. v. Softklone Distrib.
Corp. 154 the district court disallowed reuse of a text based screen which
looked almost exactly like a copyrighted work even though the screen

able in the DOS version; the author notes that six years after abandoning the DOS version
of WordPerfect, he still uses the DOS keystrokes.

151. Thus, a macro to open a file would be written “/fo” just as the command to open a
file would be entered by a user.

152. Brian Johnson, Comment, An Analysis of the Copyrightability of the “Look and
Feel” of a Computer Program: Lotus v. Paperback Software, 52 Ouio St. L.J. 947, 948
(1991) (estimating a market share of 70% - 80%).

153. Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 78 (D. Mass. 1990)
Thus, defendants had no choice, they argue, but to copy these expressive elements
from 1-2-3. Had they not copied these elements (including the macre facility),
users, who had been trained in 1-2-3 and had written elaborate macros to run on
1-2-3 spreadsheets, would be unwilling to switch to VP-Planner. VP-Planner
would be a commercial failure. Neither the factual nor the legal predicate of the
argument is supportable.

Id. :
154. Digital Communications Assocs., Inc. v. Softklone Distrib. Corp., 659 F. Supp. 449,
460 (N.D. Ga. 1987).

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 547

was very simple and arguably not original. While the court could have
easily held that the work was not copyrightable, it instead provided pro-
tection to the work as a whole and found infringement due to slavish

copying.
3. The Video Game Cases

Two cases relating to video game consoles illustrate how the factors
are weighed against each other. In Sega Enterprises, Ltd. v. Accolade,
Ine.,155 the Ninth Circuit held that substitutive use in reverse engineer-
ing was acceptable where intermediate copying of an entire program was
necessary in order to create a competing video game program cartridge
compatible with a single game console. In this case, the competitive need
for compatibility outweighed the substitutive use.*>¢

As in Sega, in Atari Games Corp. v. Nintendo of America, Ine.157
Atari was subject to onerous license terms from Nintendo prior to re-
verse engineering Nintendo’s code.158 It would appear at first that this
case was the same as Sega; the court relied in part on Feist15° and rea-
soned that reverse engineering was generally acceptable.'6® However,
the court found that Atari lied to the Copyright Office to obtain a copy of
Nintendo’s code while it was a licensee of Nintendo and also found that
Atari copied more than was necessary to compete. 16t

Thus, breach of the economic relationship and substitutive use fac-
tors outweighed the competitive need for compatibility.162 In fact, as
noted above, the breach of an economic relationship was probably dispos-

155. Sega Enterprises, Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).

156. Id. at 1514 (“Prior to rendering its own games compatible with the Genesis con-
sole, Accolade explored the possibility of entering into a licensing agreement with Sega, but
abandoned the effort because the agreement would have required that Sega be the exclu-
sive manufacturer of all games produced by Accolade.”).

157. Atari Games Corp. v. Nintendo of America, Inc., 975 F.2d 832 (Fed. Cir. 1992).

158. Id. at 836

The license terms, however, strictly controlled Atari’s access to Nintendo’s technol-
ogy, including the 10NES program. Under the license, Nintendo would take
Atari’s games, place them in cartridges containing the 10NES program, and resell
them to Atari, Atari could then market the games to NES owners. Nintendo lim-
ited all licensees, including Atari, to five new NES games per year. The Nintendo
license also prohibited Atari from licencing NES games to other home video game
systems for two years from Atari’s first sale of the game.
Id.

159. Feist Publications, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 349 (holding that
pure fact is not copyrightable).

160. Atari Games Corp., 975 F.2d at 844.

161. Id. at 841, 845.

162. See Mark L. Gordon, Copying to Compete: The Tension between Copyright Protec-
tion and Antitrust Policy in Recent Non-Literal Computer Program Copyright Infringement
Cases, 15 Joun MarsHarL J. CompuTERr & InFo. L. 171, 176 (1996).

548 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

itive of an infringement finding in this case.163 As noted by Gordon, the
key differences between Sega an Atari v. Nintendo were that the Sega
code was purely functional and that in Sega, the reuser had no other way
to create a compatible program and did not obtain an unauthorized copy
of the source code.164

4. The Speed-Up Chips

In Lewis Galoob Toys, Inc. v. Nintendo of America, Inc,165 the reuser
(Galoob) made a game cartridge add-on that intercepted certain pieces of
data between Nintendo game consoles and cartridges, and either edited
or blocked the data to change game play, such as allowing unlimited life-
time of game characters. The court held “it does not necessarily follow
that kaleidoscopes create unlawful derivative works when pointed at
protected artwork. The same can be said of countless other products that
enhance, but do not replace, copyrighted works.”166 ‘

In Galoob the court relied on a hybrid of the customer need for com-
patibility factor and the competitive need to compete factor. Like a ka-
leidoscope, Galoob’s “Game Genie” was used to fulfill a certain, though
perhaps unusual, market demand. Whereas kaleidoscopes fill a market
need for distorted vision, Game Genie fulfilled a need for unlimited video
game lives. Switching costs would have been high for customers in each
case. Kaleidoscope users would have to severely limit what they look at,
and game players would have to purchase a new game system from a
manufacturer willing to license the derivative work right to Galoob. The
factor intertwines with the competitive need as well, because the only
way for the kaleidoscope maker and Galoob to fulfill the market niche is
to reuse some amount of the first work.

The application of these factors in Galood indicates that the social
benefits of the development of new products and technologies, no matter
how unusual the market may seem for those technologies, outweighs the
social and private costs of reuse where no slavish copying occurs, espe-
cially when there is little or no substitution. In Galoob, the court re-
jected the argument that the product at issue usurped Nintendo’s ability
to create a similar product, and held that the Game Genie did not reduce
the market for any existing game.167

Compare Galoob with Midway Manufacturing Co. v. Arctic Interna-
tional, Inc., where the court held that a “speed up” chip allowing com-

163. Compare with Harper & Row Publishers, Inc. v. Nation Enterprises, 471 U.S. 539,
541, 553 (1985) (finding infringement where printing of excerpts caused exclusive licensee
to terminate contract with copyright owner). . .

164. Gordon, supra note 162.

165. Lewis Galoob Toys, Inc. v. Nintendo of Am., Inc., 964 F.2d 965 (9th Cir. 1992).

166. Id. at 969.

167. Id. at 971.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 549

puter game characters to move more quickly was a derivative work, and
thus infringing.16® In Midway, the chips were both replacements for the
first chip and a potential future market substitute. The court noted that
game manufacturers would want to exploit the new “speed up” market
and that the infringing chip destroyed this opportunity.16®

In Midway, the court had no information on the new market because
such a market had not yet developed and so the court made a determina-
tion that market substitution would harm prior authors and reduce in-
centives to enter that market. In Galoob, the court had ex post evidence
that Nintendo had no intention of exploiting the known new market, and
consequently considered the new facts, downplaying the market substi-
tution factor in favor of the competitive need to reuse in order to exploit a
market that the copyright owner was not exploiting.

5. Economic Obligations v. Future Work for Authors

In MAI Systems v. Peak Computer'’® the Ninth Circuit held that a
third party who loaded a computer program into a computer system’s
internal memory made an impermissible copy. To many, this seemed
like an unsupportable result.1”? However, the factors make clear why
the court made its decision. MAI had service agreements with its cus-
tomers that required all service to be done by MAI technicians.1”2 When
the customers allowed Peak to service the computers, they breached an
economic obligation to MAI, and thus the court disallowed the reuse by
Peak.

In Brown Bag Software v. Symantec, Corp.,73 a programmer named
John Friend created an outlining program for Brown Bag called PC-Out-
line. After leaving Brown Bag, Friend created another outlining pro-
gram for Symantec, called Grandview. A review of the two programs
showed that many of the elements were similar, but the court found no
infringement. The court did not apply the breach of economic obligation
factor because Friend was no longer under any obligation to Brown Bag.
If anything, it applied an opposite factor not discussed above: authors
must be able to work again in their area of expertise, or they will not
create in the first place.

Further, the court relied heavily on the functional need for compati-
bility by upholding the district court’s use of the idea/expression and

168. Midway Mfg. Co. v. Arctic Int’l, Inec., 704 F.2d 1009, 1013 (7th Cir. 1983).

169. Id.

170. MAI Sys. Corp. v. Peak Computer Corp., 991 F.2d 511, 519 (9th Cir. 1992).

171. See, e.g., Bradley J. Nicholson, The Ghost in the Machine: MAI Systems Corp. v.
Peak Computer, Inc. and the Problem of Copying in RAM, 10 Hica TecH. L.J. 147, 167
(1995).

172. MAI Sys. Corp., 991 F.24 at 517.

173. Brown Bag Software v. Symantec Corp., 960 F.2d 1465, 1468 (9th Cir. 1992).

550 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

scenes a fair doctrinal tools, noting that most of the similar elements
were those that were necessary to an outlining program.174

6. - Similar Subject Matter

In Data East v. Epyx, the court held that the second author’s karate
game program did not infringe the first game.1”5 The court held that in
order to make a karate game, certain karate features would be necessary
in each product.176

On the other hand, in Broderbund Software v. Unison World, Inc.177
the second author created a program that created banners and cards in a
manner similar to Broderbund’s “The Print Shop.” The court focused on
the number of ways that “Choose a Font” menu could have been re-
worded and rejected the functional need for reuse.l’® While discussion
of this one feature seems disingenuous given that the simple word “Font”
is used in most word processors today, the court found on the whole that
an “eerie resemblance” existed between the two programs’ screens, se-
quencing, layout, choices, and feedback to the user.179

The programs in each case were in large part market substitutes.
The cases show the extent to which the court is willing to apply the com-
petitive need to reuse factor given the facts in the cases before them. In
Data East, the court noted that both programs copied real world karate
moves and needed similar features to implement the games, and thus
the products could be similar.18° The competitive need to reuse function-
ality trumped even a large substitution effect. In Broderbund, however,
the reuser was not required by any real world or other functional need to
select a set of functions, name those functions, and present those func-
tions to the user in essentially the same way as the first author’s expres-
sion. The court held the need to compete did not necessitate the need to
reuse almost all of the structure, sequence, and organization.18!

The comparison of Data East and Broderbund sheds light on the
First Circuit’s opinion in Lotus v. Borland. While the court held that
Borland could reuse the menu hierarchy for the purposes of macro func-
tionality, it did not disapprove of the Lotus v. Paperback holding, or even
the Lotus v. Borland district court’s holding for that matter, that a direct

174. Id. at 1472 -73. The features included pull down menus and a main editing screen
to enter data.

175. Data East USA, Inc. v. EPYX, Inc., 862 F.2d 204, 208-09 (9th Cir. 1988).

176. Id.

177. Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127 (N.D. Cal.
1986).

178. Id. at 1134.

179. Id. at 1137.

180. Data East, 862 F.2d at 209.

181. Broderbund, 648 F. Supp. at 1133-34.

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 551

presentation of the entire menu with no changes was not allowed under
the functional need to compete factor.182 In other words, while the hier-
archy itself was important for functionality, namely in the macro conver-
sion, the presentation of that hierarchy in the form of a user interface
was not important for functionality.

VI. APPLICATION OF THE MODEL: FUTURE CASES

The factor based solution proposed here guides analysis of future
cases where the courts have yet to issue decisions.

A. VirTUuaL REALITY

Virtual reality, in its extreme form, is a computer program that im-
merses the user in the program. At its fullest implementation, it in-
cludes goggles that display three dimensional sights, earphones that
play three dimensional sounds, and clothing that both interprets move-
ment and sends tactile sensations to the user.

Virtual reality creates new questions of copyrightability for two rea-
sons. First, virtual reality was designed to.be object based. That is, vir-
tual reality elements are highly conducive to reuse in other virtual
“worlds” and authors design these elements to be reused.183 Second, as
technology advances, it will be more and more difficult to distinguish vir-
tual reality from actual reality.184

The decision factors aid judges in determining the proper amount of
protection.

1. Direct Reuse of Specific Elements

With respect to direct and complete reuse of specific elements—that
is, copying—if the makers of the object really do intend that they be used
in multiple “worlds,” then the model implies that the market will not fail
and the users will either license or freely allow reuse without bringing
suit. Breaches of economic obligations arising from licenses would likely
determine any copyright infringement issue in a case.

To the extent, however, that court cases do arise, then the decision
factors would be used. Also, because only some elements will be reused,

182. Lotus Dev. Corp. v. Borland Intl, Inc., 49 F.3d 807, 810, 815-16 (1st Cir. 1995),
offd by an equally divided court, 516 U.S. 233 (1996) (“The Lotus menu command hierar-
chy is also different from the Lotus screen displays. . . .”).

183. Jack Russo and Michael Risch, Virtual Reality - A Legal Overview, in Computer
Software: Protection/Liability/Law/Forms §19.05[1] (L.J. Kutten ed. 1994). For example, a
virtual automobile might be used in a number of virtual cities. There is no need or desire of
city designers to redesign virtual automobiles each time they create a new virtual city.

184. The best example of this is a Star Trek: The Next Generation holodeck program,
which is frequently depicted as being indistinguishable from reality.

552 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

the slavish copying factor might not always be dispositive. For example,
to the extent that a customer has previously licensed an element as part
of a virtual world, and then reuses that same element in a second
purchased or newly created virtual world, then the customer need for
compatibility factor—based primarily on switching costs—would neces-
sitate a finding of non-infringement. This would be especially true if the
reuser relied on use of the first author’s programming tools to create an
element that is then reused in another author’s virtual world.

In addition, the second author’s competitive need to reuse might ne-
cessitate a finding of non-infringement. For example, if a first author
creates a “hand” element that is widely used to navigate a virtual world,
then the second author may not be able to compete in the market unless
it can ensure its potential customers that it uses the same “hand” inter-
face. In such a case, the customer externalizes its switching costs onto
the first author, but the gains from a competitive product entering the
market make up for these costs.

2. Apparent Reuse of Realistic Elements

With respect to distinguishing virtual reality from actual reality, the
factors imply that the more realistic an element is, the more likely a
court would require striking similarity or admitted copying before find-
ing infringement.'85 This is because similarities in realistic elements
would functionally be required to compete. Authors forced to create new
reality based elements, not substantially similar to existing elements,
might be locked out of the market due to the costs of such original crea-
tion. This would be truer to the extent that “cameras” could capture
three dimensional technology ohjects, and future authors avoiding simi-
larity would require original design work to depict the same object.186

On the other hand, striking similarity or slavish copying would
mean complete market substitution and courts would have to look at the
same factors discussed above under direct reuse of virtual objects. In
addition, if an element is not realistic, competitors would not be able to
gain a free ride off the work of others. While it might still be costly to
produce non-realistic work, it would not be a cost that another competi-
tor imposed by first capturing all rights to a realistic object.187

185. Russo and Risch, supra note 180, at §19.03; but see Gracen v. Bradford Exch., 698
F.2d 300, 304-05 (limiting protection rather than considering similarities). One way or the
other, reuse is allowed absent some other factor.

186. Burrow Giles Lithographic Co. v. Sarony, 111 U.S. 53, 61 (1884) (holding a photo-
graph is protected as original work); Bleistein v. Donaldson Lithographic Co., 188 U.S. 239,
249 (1908) (“Others are free to copy the original. They are not free to copy the copy.”).

187. See Feist Publications, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 349-50
(1991). -

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 553

B.. INTERNET COPYRIGHT INFRINGEMENT

Like virtual reality, copyright works on the Internet are based in
large part on the reuse of protected elements. While downloading com-
plete programs for use on a computer clearly falls within the slavish
copying factor, more interesting is the treatment of smaller elements in-
corporated into documents on the World Wide Web.

The World Wide Web is an Internet standard where each document,
or web page, is composed of several elements, including text directly in-
cluded in the page, links that send the user to another page, and text or
graphics incorporated from other sites on the Internet. A web page au-
thor could, if he or she wanted, completely reuse someone else’s page
without the knowledge of either the first page’s author or the second
page’s viewer.188 Until recently, web pages were purely documents, but
now they also include programs that are written in a variety of computer
languages.

1. The General Case

The core treatment of this type of reuse is clear. First, where a page
is copied verbatim, courts would likely find the slavish copying factor and
disallow reuse. Although many web pages are not created for commer-
cial use, like other original works their creation is considered a social
benefit and any complete copying that would tend to seriously harm the
incentive to create will not be allowed. Second, much reuse is handled by
the market. For example, many authors are able to provide free informa-
tion to users by selling advertising “space” on their web pages. A page
displaying information will also include an advertisement, which is in
reality an element incorporated from some remote company’s computer
server. This transaction does not lead to market failure because the re-
using web author has permission—and in fact is paid——to reuse an origi-
nal element belonging to someone else. However, when a page is
“framed” in another page, courts will be more hesitant to find infringe-
ment because no real substitution is occuring.189

2. Use of Information

A more difficult question is the use of unprotected information in
web pages. While reusing the telephone book in Feist involved keypunch
processing and was thus costly enough to encourage an attempt to con-
tract, using information from remote computers on the Internet is a sim-

188. Trademark protection for web pages is beyond the scope of this paper.

189. See Futuredontics, Inc. v. Applied Anagramics, Inc., 45 U.S.P.Q.2d 2005 (C.D. Cal.
1998), (affd 152 F.3d 925 (9th Cir. 1998) (denying preliminary injunction for copyright
infringement where one web page loaded another web page in a “frame”).

564 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

ple as including a link in a web page.l20 In addition, because the
information is by definition machine readable, manipulations of informa-
tion are easily managed.

The decision factors give insight into how courts should rule on vary-
ing types of reuse. For example, reuse without modification of substan-
tially all of the information available on a site would lead courts to
disallow the reuse under the market substitution factor.191 The fact that
many web sites apparently license very small news stories from Reuters
for reprint on their sites indicates that either (i) the companies believe
that relatively small quantities of information would likely be protected
or (ii) that reuse of the conglomeration of news stories would certainly be
protected.

Where a reuser manipulates the information and represents it in a
new format, the question is still more difficult. For example, a “fantasy
baseball” web page might reprint baseball statistics obtained from a dif-
ferent author’s web page and also perform calculations on the data to
present adjusted scores.'2 The difficulty with this problem is that infor-
mation is not really a computer program, and thus copying to compete or
to avoid switching costs does not really apply. Of course, the duplicative
cost of regathering information is a primary reason that “pure fact” is not
protected in the first place.

In addition, because the information is transformed, there is very
little market substitution. The first authors would argue that fantasy
game players would have to visit their sites, download the information
and manipulate it themselves. Because instant access to the processed
information would be gone, it is likely, however, that users would look in
newspapers for the information and avoid the first authors’ sites anyway.

C. Web Browser Standards

Another development in the World Wide Web is the use of program
components that are activated by web pages. A simple program is a mar-
quee that scrolls sports scores across the screen. More complicated pro-
grams allow for complex installation and maintenance of other software
on the computer.

Like OOP components discussed above, these program components
do not cause a market failure. The companies authoring the program

190. For example, the link: http:/maps.yahoo.com/yahoo/yt.hm?FAM=yahoo&CMD
=GEO&SEC=geo&AD2=401+Florence+Street&AD3=Palo+Alto%2C+CA+94301&recent=0
would show a map to Russo & Hale LLP.

191. CCC Info. Serv. Inc. v. Maclean Hunter Market Reports, Inc., 44 F.3d 61, 61 (2d
Cir. 1994).

192. See Kregos v. Associated Press, 937 F.2d 700, 708-09 (2d Cir. 1991) (holding that
baseball statistics page is copyrightable, but receives limited protection).

1999] THE ECONOMICS OF COMPUTER SOFTWARE REUSE 555

components to be reused obtain enough benefit from the promulgation of
the components that they allow others to reuse them inexpensively or
freely. For example, Sun recently sued Microsoft, not alleging that
Microsoft had copied its Java language components, but instead alleging
that Microsoft’s implementation of the Java components were not “accu-
rate” and were harming Sun’s reputation in the market.193 If Sun saw
value in stopping Microsoft’s reuse altogether, it might be able to con-
vince a court to ban reuse based on the breach of an economic obligation
factor. :

Competing World Wide Web browser software is a useful example of
many of the factors. First, it illustrates that copyright protection in gen-
eral does not lead to proliferation of a single standard. For example, Mo-
saic (now Netscape) was originally the primarly used graphics based web
page browser, and was distributed freely.194 Netscape Navigator is un-
deniably protected by copyright, yet Microsoft was able to create a com-
peting web page browser that quickly challenged Netscape’s market
position, perhaps unfairly.'®> Now the two products are competing stan-
dards, and computer users are the beneficiary of the advances the two
companies have made.

An examination of the different browsers shows how a judge might
apply the factors if there was a copyright infringement suit. For exam-
ple, a comparison of Netscape with Lynx, a text based browser, shows
that the ability to highlight links to other web pages is functionally re-
quired in order to implement a World Wide Web browser. In fact, it is
required by the HTML programming language itself. Thus, the func-
tional need to compete factor would allow reuse.

More abstractly, Netscape implemented a menu called “Bookmarks”
where users could save frequently accessed web pages. Users might cre-
ate a huge number of bookmarked pages. Reuse of this element leads to
two interesting results.

First, Microsoft could argue that it was functionally required to al-
low users to save bookmarks in its program. In fact, it did create a “Fa-
vorites” menu. Note that the non-protection of this “standard” element
did not lead to stagnation; rather, in order to gain additional sales,
Microsoft improved on the concept by allowing for an easily organized
hierarchy of the favorites menu where the use could group specific types
of web pages by category. Netscape followed suit by also implementing
this improvement.

193. Sun Microsystems, Inc. v Microsoft Corp., 21 F. Supp.2d 1109 (N.D. Cal. 1998)
(issuing preliminary injunction).

194. Boyle, supra note 74, at 50.

195. United States v. Microsoft Corp., 980 F. Supp. 537, 540 (D. D.C. 1997) rev'd, 147
F.3d 935 (D.C. Cir. 1998) (issuing injunction against bundling Internet Explorer with Win-
dows 95).

556 ~ JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XVII

Second, Microsoft could have created a “bookmark” translation pro-
gram that would convert Netscape Bookmarks into Microsoft Favorites.
Microsoft would have based this program on the customer need for com-
patibility factor. The amount of time that it would take for a customer to
switch all of his or her bookmarks might preclude a person from switch-
ing to Microsoft’s web page browser, despite the fact that Microsoft’s
browser was free.

The reuse of certain elements, however, did not have an effect on all
of the market choices made by the two companies, nor did it lead to a
wholesale substitute product. For example, Netscape’s product inte-
grates World Wide Web browsing with an electronic mail/usenet news
program. On the other hand, Microsoft chose to implement the same fea-
tures as two separate products, which could be, and in fact are, used
individually if the user chooses.

In addition, from its first release, Microsoft distributed its program
as a reusable ActiveX component, and many software companies imple-
mented or embedded, Microsoft’s web browsing components within their
products (such as Intuit’s Quicken). On the other hand, Netscape has
not made its browsing features available for others to use, though it re-
cently announced that it was making its source code available for all to
see, implying that others could freely modify the source to embed Net-
scape functions in third party programs.

This illustration is useful because it points out that while a company
might protect its product as a whole, as Microsoft or Netscape can, differ-
ent companies will make different choices about how much reuse to actu-
ally allow based on its own private benefits and costs. Given the model
and factors above, it appears that eventually the same outcome is
achieved, whether by court intervention (such as Lotus v. Borland) or by
acquiescence based on likely judicial outcomes (such as the bookmarks v.
favorites).196

VII. CONCLUSION

Copyright protection for computer software will be more important
in the coming years as more software is created and sold. The model
presented here describes how courts have acted in the past, and the deci-
sion factors attempt to guide future courts without being over or under
protective. If the decision factors are used, courts may continue to make
efficient copyright protection decisions, and at the same time remain con-
sistent in their statements of law. Furthermore, software authors
should be able to protect their investment while at the same time have a
clearer picture of what prior building blocks they may reuse.

196. Boyle, supra note 74, at 49 (noting that whether the outcome is beneficial will be an
empirical question).

	Villanova University Charles Widger School of Law
	From the SelectedWorks of Michael Risch
	1999

	How Can Whelan v. Jaslow and Lotus v. Borland Both be Right? Re-Examining the Economics of Computer Software Reuse
	tmpkDP80T.pdf

