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Abstract 

Many life history stages of animals that experience environmental insults enter developmental 

arrested states that are characterized by reduced cellular proliferation, with or without a 

concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest 

reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, 

acidification of the intracellular milieu is a major factor governing catabolic and anabolic 

downregulation.  Release of ion gradients from intracellular compartments is the source for 

approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is 

observed.  Recovery from the metabolic arrest requires re-sequestration of the protons with a 

vacuolar-type ATPase (V-ATPase).  The remarkable facet of this mechanism is the ability of 

embryonic cells to survive the dissipation of intracellular ion gradients.    Across many diapause-

like states, the metabolic reduction and subsequent matching of energy demand is accomplished 

by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis.  Molecular 

pathways that are activated to induce these resilient hypometabolic states include stimulation of 

the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer 

formation) genes for diapause-like states in nematodes and insects.  Contributing factors for 

other metabolically-depressed states involve hypoxia-inducible factor-1 and downregulation of 

the pyruvate dehydrogenase complex.  Metabolic similarities between natural states of stasis and 

some cancer phenotypes are noteworthy.  Reduction of flux through oxidative phosphorylation 

helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer 

stages in Caenorhabditis elegans.  Mechanisms that underlie natural stasis are being used to pre-

condition mammalian cells prior to cell biostabilization and storage. 
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1.  Introduction 

The ability to arrest development and metabolism prior to environmental challenges like 

desiccation, anoxia, and freezing improves the survival of many species (Buck and Hochachka, 

1993; Crowe and Clegg, 1978; Clegg, 2005; Guppy et al., 1994; Guppy and Wither, 1999; Hand, 

1991; Hand and Hardewig, 1996; Hand and Menze, 2008; Hochachka and Guppy, 1987; Lutz, 

1992; Podrabsky et al, 2007; Storey, 2007; Storey and Storey, 2007).  For example, invertebrate 

diapause is a state of developmental and/or metabolic arrest controlled by endogenous cellular 

factors, such that entry into diapause in nature precedes the onset of stressful environmental 

conditions (Alekseev et al., 2007; Cáceres, 1997; Denlinger, 2002; Lees, 1955; Hahn and 

Denlinger, 2007, 2011; Tauber and Tauber, 1976).  What occurs during entry into diapause is 

that animals interrupt their normal developmental program.  Complex metabolic processes are 

carefully downregulated in a coordinated fashion, which minimizes imbalances in cellular 

processes that can cause pathological conditions to develop.  Diapausing organisms remain 

hypometabolic even under conditions that would normally promote active metabolism and 

development.  In this regulated state of stasis, diapausing animal are more tolerant of 

environmental stresses.  Further, the greater the arrest of metabolism during energy limited states 

like anoxia, the longer is the survivorship in the dormant state (Hand, 1998). 

The requirements for an organism to survive a hypometabolic state  include (but are not 

limited to) the suppression of oxidative pathways of energy production, the suppression of 

energy consumption (e.g., transcription, translation, ion pumping), extension of macromolecular 

half-lives, and avoidance of unwarranted apoptosis (Buck and Hochachka, 1993; Clegg, 2007; 

Guppy et al., 1994; Hand and Menze, 2008; Hand and Hardewig, 1996; Hochachka and Guppy, 

1987; Lutz, 1992; Menze et al. 2010b; Storey and Storey, 2007).  The suppression of oxidative 
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pathways in particular is a key to recovering from hypometabolic states; otherwise, cellular 

energy reserves become depleted and organisms reach energetic states from which recovery is 

not possible.  Downregulation of specific gene products, and in some instances upregulation, 

may be useful in promoting the diapause state (e.g., Menze et al., 2009; Ragland et al., 2010; 

Reynolds and Hand, 2009b; Rinehart et al., 2010; Urbanski et al., 2010; van Breukelen et al., 

2000).  Preservation of existing macromolecules is accomplished by directly reducing 

degradation rates (Anchordoguy and Hand, 1995; van Breukelen and Hand, 2000; Warner et al., 

1997) and through the actions of protective intracellular solutes (Hoekstra et al., 1997; Crowe et 

al., 1997) and molecular chaperones (Clegg, 2001, 2007). 

The goals of this review are to evaluate features of the metabolic restructuring inherent in 

energy-limited states like diapause and anoxia-induced quiescence, and to review some of the 

proximal mechanisms promoting the downregulation.  Finally, we will consider various 

applications of these concepts – derived from natural biological states – to enhance the success 

of biostabilization of mammalian cells.   One key prediction is that forcing mammalian cells into 

stasis (defined here as cellular and developmental arrest under hydrated conditions at euthermic 

temperatures) will foster greater survivorship of cells when exposed to stabilization methods like 

dehydration, lyophilization and cryopreservation.  

 

2.  Developmental and metabolic arrest do not always coincide 

 

Commonly, when development is suspended as a result of entry into diapause or 

environmentally induced quiescence, there is a concomitant and acute depression of metabolism.  

One example, which to our knowledge is the most profound metabolic depression ever reported 

during a diapause state, is seen in embryos of the brine shrimp, Artemia franciscana (Clegg et 

al., 1996; Reynolds and Hand, 2004).  This anostracan crustacean inhabits hypersaline bodies of 
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water such as the Great Salt Lake, Utah.  Females release diapause embryos that display a 90% 

drop in respiration rate, as measured for field-collected embryos (Fig. 1).  The measured 

depression is even greater (97%) when embryos are synchronized for time of diapause entry 

(Clegg et al., 1996).  This metabolic arrest that accompanies diapause occurs under fully 

normoxic and hydrated conditions.  Similarly, oxygen consumption is reduced by 87% in 

embryos of the field cricket, Gryllus pennsylvanicus (Rakshpal, 1962).   

In contrast, there are a number of diapause cases for which it is clear that developmental 

arrest is uncoupled from metabolic arrest.  In embryos of the Southern ground cricket, 

Allonemobius socius, acute depression of aerobic metabolism does not accompany the entry into 

diapause (Reynolds and Hand, 2009a).  Diapause entry is defined as the point at which 

development ceases (4–5 days post-oviposition), as measured by blockage of morphological 

change and cell proliferation.  DNA content is an indirect measure of cell proliferation (cell 

number), and oxygen consumption per embryo increases linearly with increasing DNA content.  

The abrupt arrest of cell proliferation shows that diapause serves the purpose of postponing 

progression through the life cycle as part of an overwintering strategy, but energy metabolism 

does not drop below that measured at the point of diapause entry (Reynolds and Hand, 2009a; 

Fig. 2).  This observation is rather unexpected, because shutting down the biosynthesis of 

expensive macromolecules needed for proliferation (e.g., DNA and protein) should reduce 

metabolic expenditure.  The possibility that glycolysis-derived energy might support a large 

fraction of the proliferation (and thus its depression overlooked during diapause entry due to 

quantification solely by oxygen consumption) was ruled out by simultaneous measurements with 

microcalorimetry.  Calorimetric-respirometric ratios did not reveal any anaerobic contribution to 

energy metabolism in non-diapause, proliferating embryos (Reynolds and Hand, 2009a).   In 
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some forms of insect diapause (i.e., at the pupal stage), metabolic rate can be cyclical during 

diapause (Denlinger et al., 1972; Slama and Denlinger, 1992).  We have no evidence for pulsatile 

respiration in A. socius embryos; our measurements were averaged over relatively short time 

intervals of 1 h. 

The respiration rate of non-diapausing embryos continues to increase several fold as 

development progresses, and this ontogenetic increase is blocked during diapause, such that 

metabolic rate of diapause embryos is only 36% of the rate measured for developing embryos at 

15 days (Reynolds and Hand, 2009a).  The lack of significant metabolic arrest during diapause is 

not unique to A. socius because embryos of the grasshopper Alocara elliot continue to consume 

oxygen at a ‘pre-diapause’ rate even after entering diapause (Roemhild, 1965). Many species of 

insects remain responsive to changes in environmental conditions throughout diapause (Kostál, 

2006), and consequently it is probable that if metabolic downregulation in A. socius were to 

occur in nature it would be mediated by external factors (e.g. low temperature, hypoxia) rather 

than internal mechanisms.  Nevertheless, the biological explanation and importance for such 

decoupling of metabolism and development during diapause entry is currently unexplained.   

Both non-diapause and diapause embryos have unusually high [AMP]:[ATP] ratios and 

low [ATP]:[ADP] ratios during early embryogenesis (Fig 3.), which suggests embryos may have 

experienced hypoxia as a result of the serosal cuticle or other extraembryonic membrane that 

limits water loss but may restrict oxygen diffusion.  An attractive hypothesis is that activation of 

the AMP-activated protein kinase (AMPK) is responsible in some way for diapause entry in A. 

socius.  AMPK is a fuel-sensing enzyme that is activated by decreases in a cell’s energy state as 

reflected by an increased AMP:ATP ratio.  AMPK serves as a metabolic fuel gauge and is part of 

a signaling cascade that modulates a number of metabolic processes including, but not limited to, 
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inhibition of cell proliferation (Hardie, 2007; Ruderman et al., 2010; Steinberg and Kemp, 2009). 

AMPK activity is required to inhibit cell proliferation during dauer formation in Caenorhabditis 

elegans (Narbonne and Roy, 2006).  In diapause states for the annual killifish Austrofundulus 

limnaeus (see Section 4.2) and A. franciscana embryos (Reynolds, Covi, Menze and Hand, 

unpublished), an increase in the AMP:ATP ratio occurs that may activate this enzyme.  However, 

for A. socius, because AMP:ATP ratios are equivalent between diapause and non-diapause 

embryos and the highest AMP:ATP ratios are present before onset of developmental arrest, it is 

improbable that AMPK is directly responsible for diapause entry.  Thus, while unlikely to be 

universal mechanism for regulating diapause induction, [AMP]:[ATP] ratios may activate 

AMPK and contribute to metabolic downregulation in some diapausing species.   

It is noteworthy that a similar decoupling of metabolism and development has been 

reported during diapause in embryos of the annual killifish Austrofundulus limnaeus (Podrabsky 

and Hand, 1999).  Surprisingly in this case, a major decline in metabolism (as judged by heart 

rate, heat dissipation rate and oxygen consumption) precedes the developmental arrest by several 

days.  Yet during this developmental period when depression of metabolism is evident, there are 

significant increases in total DNA content and embryonic complexity.  If the metabolic decline is 

strictly associated with diapause (an alternative exists, cf. Podrabsky and Hand, 1999), the early 

metabolic depression may reflect a sequential exit of dividing cells from the cell cycle in an 

anterior-to-posterior fashion.    Thus, while major developmental processes may be complete in 

the anterior region, the posterior region may still be developing. Such a pattern could explain 

how muscle somites are still being added in the posterior region, yet metabolic rate is already 

declining after 8 days post-fertilization as a result of cell cycle arrest in the more anterior 

regions.  From the above examples, it is abundantly clear that one should not assume a 
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depression in energy metabolism simply because a developmental arrest occurs during diapause 

entry. 

 

3.  Arrest and restructuring of metabolic during cell stasis 

 

3.1  Modulation by intracellular pH and mechanism for the acidification 

 

Embryos of A. franciscana tolerate anoxia for periods of years in the fully hydrated state 

and at euthermic temperatures (Warner and Clegg, 2001; Clegg, 1997).  During anoxia-induced 

quiescence, metabolism is reduced to virtually immeasurable levels (Hand, 1995; Clegg, 1997); 

metabolic depression is accompanied by acute developmental arrest (e.g., Dutrieu and Chrestia-

Blanchine, 1966).  The impact of intracellular acidification on the metabolic transition into 

anaerobic quiescence in embryos of A. franciscana is well documented and multiple reviews are 

available (Busa and Nuccitelli, 1984; Busa, 1985; Hand, 1997, 1998; Hand and Hardewig, 1996).  

Thus we will not review the topic here, but will simply point out that the largest transition in 

intracellular pH (pHi) ever reported for eukaryotic cells (pHi ≥7.9 to 6.3) occurs during the 

transition from aerobic development to anaerobic quiescence in A. franciscana embryos, and this 

proton accumulation has profound inhibitory impacts on energy metabolism, gene expression, 

biosynthesis and macromolecular turnover (Hand et al 2001; Hand and Podrabsky, 2000; Clegg, 

2007; Hand and Menze, 2008).  For an assessment of whether or not there is a role for pHi in 

promoting diapause entry in A. franciscana embryos, see Clegg (2011, this issue). 

The issue that eluded explanation for 23 years is the source of protons for the impressive 

acidification under anoxia described above (Busa et al., 1982; Covi and Hand, 2005b).  Previous 

work shows a massive drop in the cellular ATP:ADP ratio occurs under anoxia in these embryos 

(Anchordoguy and Hand, 1994; Stocco et al., 1972) that produces a net release of protons.   
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When combined with hydrolysis of other NTPs and small amounts of organic acid production, 

calculations indicate the drop in ATP could account for a maximum of perhaps 72% of the 

proton equivalents required for the observed acidification (Kwast et al., 1995).  However more 

conservative calculations suggest the explained acidification could be as low 20–26% (Busa and 

Nuccitelli, 1984; Kwast et al., 1995).  Clearly, insufficient proton equivalents are identified thus 

far to explain the transients in pHi observed during entry and exit from anoxia. A novel 

mechanism to resolve this problem is developed and tested by Covi and Hand (2005) and Covi et 

al. (2005), and then combined with a study that measures the metabolic costs of the process 

(Covi and Hand, 2007).   

The concept proposes that during aerobic development of the embryos a vacuolar proton 

pump (V-ATPase; the expression of which is documented; Covi and Hand, 2005) first 

compartmentalizes the protons into membrane-bound intracellular compartments, not unlike the 

acidic compartments observed in many eukaryotic cells.  These compartments presumably would 

include Golgi complex, exocytotic and endosomal vesicles, lysosomes, and yolk platelets.  Then 

exposure of embryos to anoxia releases protons from the acidic compartments to the surrounding 

cytoplasm.  Calculations indicate this mechanism could account for 50% of the required protons 

needed to explain the 1 pH unit shift during the early phase of anoxia exposure (Covi and Hand, 

2005).  It is appropriate to note that pHi values for these embryos are obtained with 
31

P-NMR.  

Thus, protons stored in these intracellular membrane-bound compartments, which are presumed 

to have low phosphate concentrations, would remain undetected by 
31

P-NMR until their release 

into the cytoplasmic compartment with its relatively high Pi content.   

Evidence for this mechanism is generated by 
31

P-NMR measurements of embryos during 

the aerobic recovery from anoxia.  Covi et al. (2005) demonstrate that in vivo inhibition of V-
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ATPase activity by bafilomycin blocks recovery from the intracellular acidification induced by 

anoxia.  With bafilomycin, the embryo pHi recovers only from pH 6.6 to 6.9 (Fig. 4), in contrast 

to the full recovery of pHi to 7.9 seen without bafilomycin.  Oxidative phosphorylation and ATP 

resynthesis only accounts for the first 0.3 pH unit alkalinization observed during aerobic 

recovery from the 1 pH unit acidification produced during 1 h of anoxia. The additional 0.7 pH 

unit increase requires proton pumping by the V-ATPase.  Thus, sequestration of protons in 

compartment(s) with low Pi content is the major contributor to intracellular alkalinization during 

aerobic recovery from anoxia. 

Covi et al. (2005) also show that global dissipation of proton gradients with carbonyl 

cyanide 3-chlorophenylhydrazone (CCCP) in the presence of oxygen yields an acidic pHi similar 

to that observed after 1 h of anoxia; further, anoxia exposure of the CCCP-treated embryos does 

not acidify the pHi any further. These combined data strongly support the hypothesis that 

dissipation of proton gradients are a key contributor to anoxia-induced acidification of the 

intracellular space in A. franciscana embryos.  Indeed, when combined with the protons 

produced by net hydrolysis of NTPs (Busa and Nuccitelli, 1984; Kwast et al., 1995), the collapse 

of proton chemical gradients can fully explain the origin of acid equivalents required for this 

acidification (see model presented in Fig. 5). 

  Finally, given the complete absence of detectable Na
+
K

+
-ATPase activity during the pre-

emergence development of A. franciscana embryos, Covi and Hand (2007) postulate that the V-

ATPase may perform a role in both the acidification of intracellular compartments and the 

energization of plasma membranes.  The V-ATPase inhibitor bafilomycin produces a 

concentration-dependent inhibition of oxygen consumption in aerobic embryos. Respirometric 

data indicates that proton pumping by the V-ATPase, and processes immediately dependent on 
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this activity, constitutes approximately 31% of the aerobic energy budget of the preemergent 

embryo (Fig. 6). The high metabolic cost associated with maintaining these diverse proton 

gradients requires that V-ATPase activity be downregulated under anoxia in order to attain the 

almost complete metabolic depression observed in the quiescent embryo.  Downregulation of the 

V-ATPase pump is most likely accomplished within minutes by the rapid drop in the ATP:ADP 

ratio and increased free Pi during entry into anoxia (Covi and Hand, 2005).  Reversible 

dissociation appears to be the primary mechanism by which V-ATPase activity is regulated 

(Wieczorek et al 2003), although recent data suggests that changes in phospholipid content may 

also play a regulatory role (Zhang et al. 2010, Lafourcade et al. 2008). Given the acute time 

frame of the response to anoxic transitions in A. franciscana, it is relevant to note that reversible 

dissociation may occur in response to energy limitation (Kane and Smardon, 2003), and 

reassembly and activation of the V-ATPase is mediated by PKA (Alzamora et al. 2010; Rein et 

al. 2007). 

 

4.  Comparison of metabolic remodeling in other selected animals 

4.1  Dauer larvae of Caenorhabditis elegans  

C. elegans ‘dauer’ larvae are induced to enter a state of developmental and metabolic 

arrest by environmental and physiological cues such as starvation, hypoxia, over-crowding, 

desiccation and unfavorable temperatures (Cassada and Russel, 1975; Fielenbach and Antebi, 

2008; Mabon et al., 2009; Riddle and Albert, 1997).  C. elegans develop from egg to adult phase 

in about 3 days, and adults have an average life span of 13 days (Gems et al., 1999; Holt and 

Riddle, 2003).  However, dauer larvae can survive for several months without feeding, and the 

time spend in the dauer state has no effect on the adult life span.  Dauer larvae exhibit a low rate 
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of oxygen consumption rate consistent with reduced metabolic rates (Vanfleteren and De Vreese, 

1996; Houthoofd et al., 2002).  O’Riordan and Burnell (1989) found that activities for enzymes 

involved in the Krebs cycle were lower in dauer larvae than in adults.  The flux of metabolites 

through the Kreb’s cycle was found to be 11-fold lower in dauer larvae than in adults.  However, 

dauer larvae have an active glyoxylate cycle (Vanfleteren and De Vreese, 1995) and fatty-acid 

oxidation enzymes, which indicates their capacity for conversion of fatty acids to carbohydrate 

(O’Riordan and Burnell, 1990).  

Wang and Kim (2003) show upregulation of genes encoding pyruvate kinase and 

phosphofructokinse (PFK) during the dauer stage, and O’Riordan and Burnell (1989) report 

upregulation of PFK activity.  These observations suggest glycolytic capacity is elevated during 

the dauer stage.  Because genes for glycogen utilization do not appear to be upregulated during 

the dauer phase (Wang and Kim, 2003), a source of glucose other than glycogen may be 

available to the larvae.  Trehalose levels are increased in the dauer stage as compared to the adult 

stage and may serve as the primary source of carbohydrate fuel (Fuchs et al., 2010).   

 Dauer larvae utilize alternative pathways of energy production involving fermentation. 

Entry into the dauer state is usually accompanied by formation of lactate, especially in hypoxic 

conditions (Holt and Riddle, 2003; Braeckman et al., 2009).   Larvae in prolonged dauer phase 

show accumulation of ethanol as a predominant fermentation end product.  The end products 

succinate and acetate are also generated in dauer larvae by mechanisms similar to those 

described for parasitic helminths (Tielens et al, 2002; Holt and Riddle, 2003). Upregulation of 

alcohol fermentation genes occur in dauer larvae (Holt and Riddle, 2003; Wang and Kim, 2003), 

and Glocker et al. (2008) show the upregulation of alcohol dehydrogenase protein levels.  It is 

suggested that preferential alcohol fermentation in hypoxic tissue of dauer larval would provide 
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metabolites to epidermal aerobic tissue that would enable it to conserve lipid reserves, which 

would in turn impart longevity (Holt and Riddle, 2003).  The AMP-activated protein kinase 

(AMPK) analogue aak-2 prevents utilization of triglycerides in dauer larvae (Narbonne and Roy, 

2009).  aak-2 directly inactivates adipose triglyceride lipase (ATGL-1), which hydrolyzes the 

triglyceride pool to release fatty acids (Narbonne and Roy, 2009; Cunningham and Ashrafi, 

2009).  Downregulation of ATGL-1 limits fat utilization and promotes viability and longevity in 

the dauer state.  It should be immediately obvious that this role of AMPK for blocking fat 

utilization is diametrically opposed to the classical view from the mammalian literature that 

AMPK activation stimulates fat mobilization and oxidation (cf. Hardie, 2007).  A crisper 

perspective on how the functions of AMPK change across diverse animal groups is needed.  The 

regulation of lipid conservation during the dauer stage involves the insulin signaling pathway 

and utilizes a suite of daf (dauer formation) genes (Fielenbach and Antebi, 2008; Kenyon, 2010).  

Such a pattern of lipid sparing is also supported during embryonic diapause in several 

insects (Kaocharern, 1958; Reynolds and Hand, 2009b; Visscher, 1976).  For example, 

transcripts for enzymes that promote with fatty acid/lipid  usage (ATP-citrate lyase, acyl-CoA 

reductase, lipid metabolism protein) are downregulated during diapause in cricket embryos 

(Reynolds and Hand, 2009b).  Similar to its role in the regulation of dauer formation, insulin 

signaling is also known to be involved in insect diapause and to downregulate the fork-head 

transcription factor FOXO (Baker and Thummel, 2007; Hahn and Denlinger, 2011).   Under 

conditions of low insulin, FOXO is active and controls a number of features related to the 

diapause phenotype, including lipid buildup (Hahn and Denlinger, 2011).  Knockdown studies of 

FOXO show that lipid reserves characteristic of the overwintering diapause state of the mosquito 
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Culex pipiens are not built up when this transcription factor is depressed (Sim and Denlinger, 

2008). 

  

4.2  Austrofundulus limnaeus in diapause 

This annual killifish is briefly introduced earlier in the context of decoupling of 

metabolism and development during diapause (Section 2).  Generally, annual killifish 

(Cyprinodontiformes, Rivulidae) occur in savanna and desert regions on the continents of Africa 

and South America. They inhabit ephemeral ponds in areas that experience pronounced dry and 

rainy seasons (Myers, 1952; Peters, 1963).  Ponds inhabited by A. limnaeus dry out on a seasonal 

basis, killing the adult and juvenile forms (Nico and Thomerson, 1989). Populations persist in 

such situations as a result of the occurrence of diapause embryos embedded in the pond 

sediments.  Podrabsky and Hand (1999) show that the rate of oxygen consumption and heat 

dissipation in early embryos of A. limnaeus peak at 8 days post-fertilization, followed by a 

continuous decline in these values until about 24 days post-fertilization. Oxygen consumption 

declines further over an additional 50 days to about 10% of the value determined at 8 days post-

fertilization.   Both indicators of metabolic rate therefore show a major depression of energy flow 

prior to entry into diapause as defined by the onset of developmental arrest (see Section 2).  This 

metabolic depression is associated with a severe reduction in the rate of protein synthesis 

(Podrabsky and Hand, 2000). 

 Diapause embryos maintain high [ATP]/[ADP] ratios and adenylate energy charge during 

diapause, consistent with a simultaneous depression of energy use and demand (Podrabsky and 

Hand, 1999).  While the adenylate energy charge (AEC) is high during entry into diapause, there 

is a statistically significant decline during early diapause, which could be accounted by the 

increase in the AMP concentration across this period.  There is an increase in the [AMP]/[ATP] 
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ratio observed after 8 days post-fertilization that is negatively correlation with the rates of 

oxygen consumption and heat dissipation.  Elevated levels of AMP are therefore suggested to 

contribute to the depression of metabolism during early development and diapause in A. 

limnaeus (Podrabsky and Hand, 1999) via activation of AMPK (see Sections 2 and 5.2).  

Podrabsky and Hand (1999) estimate [AMP] in embryonic cells of A. limnaeus to be well over 

the activation threshold for the AMPK by 14 days post-fertilization.  

    Embryos of A. limnaeus are likely to experience long bouts of severe hypoxia or anoxia 

in the environment in which they developmental (Podrabsky et al., 2007).   Diapause embryos of 

A. limnaeus survive anoxia up to 30 days, while embryos in advanced stages of diapause survive 

even longer.  A strong negative correlation between the rate of lactate production during anoxia 

and survival of anoxia reinforces the importance of metabolic rate depression to long-term 

survival of anoxia in embryos of A. limnaeus (Podrabsky et al., 2007).  There appears to be an 

accumulation of free essential amino acids in embryos of A. limnaeus subjected to anoxia. Other 

amino acids such as glutamate, glutamine, aspartate and asparagines, which are elevated during 

normoxic development before entry into diapause, are depleted during the course of anoxic 

incubation.  Podrabsky et al. (2007) suggest the role of these non-essential amino acids is to 

supply the citric acid cycle after transamination.  They further propose that glutamate and 

glutamine are utilized in production of GABA, which is a potent inhibitory neurotransmitter that  

plays a role in protecting neural cells from excitotoxic cell death (Lutz and Milton, 2004; Cheung 

et al., 2006).  Podrabsky et al. (2007) attribute the extreme anoxia tolerance of A. limnaeus 

embryos to key metabolic traits of diapause:  depressed rates of metabolism, protein synthesis 

and ion transport and large stores of glycogen and amino acids like glutamate and glutamine. 
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5.  Application of metabolic preconditioning to biostabilization of mammalian cells 

As emphasized in Section 1, for animals whose evolutionary history has provided natural 

tolerance to anoxia, desiccation and freezing temperatures, metabolic depression is often a pre-

requisite for survival.  By considering this lesson from nature, one logical extrapolation is that 

preconditioning of mammalian cells to promote metabolic depression and proliferative stasis will 

foster greater survival of cells during biostabilization protocols that involve removal of cell water 

(lyopreservation) or cryopreservation (Hand and Hagedorn, 2008; Menze et al., 2010a).  

   

5.1  HIF-1 and pyruvate dehydrogenase during hypoxia and cancer 

One of the hallmark features of diapause in many species is the depression of oxidative 

phosphorylation under fully normoxic conditions.  Similar metabolic restructuring is observed in 

some (but certainly not all) cancers that utilize the natural adaptive responses to hypoxia in order 

to survive and thrive (Bellance et al., 2009; Jezek, 2010; Heiden et al., 2009).   If the cancerous 

metabolic phenotype (particularly as observed in various types of hard tumors) could be 

mimicked in non-cancerous cells, it is possible that tolerance of these cells to desiccation or 

subfreezing temperatures could be increased. 

During hypoxia in mammalian cells one mechanism for depression of oxidative 

phosphorylation is the inactivation of the pyruvate dehydrogenase complex (PDC), which is 

responsible for the decarboxylation of pyruvate to acetyl-CoA in the mitochondrial matrix, after 

which the acetyl-CoA enters the citric acid cycle (Harris et al., 2002).  PDC is strongly regulated 

by phosphorylation (inactive) and de-phosphorylation (active) of its E1 subunit, also known 

simply as pyruvate dehydrogenase (PDH) (Harris et al., 2002; Kim et al., 2006; Papandreou et 

al., 2006; Bonnet et al., 2007; McFate et al., 2008). PDH in humans has three phosphorylation 
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sites that are regulated by pyruvate dehydrogenase kinases (PDK1-4) and pyruvate 

dehydrogenase phosphatases (PDP1,2), which are integral components of the PDC and are 

expressed in a tissue-dependent manner (Harris et al., 2002; Kolobova et al, 2001; Bowker-

Kinley et al., 1998).  When PDH is phosphorylated by PDK, PDC activity is downregulated and 

oxidative phosphorylation is depressed due to lack of pyruvate-derived substrate entering the 

citric acid cycle (Harris et al., 2002).   

An added effect of the suppression of oxidative phosphorylation is the reduction in the 

mitochondrial production of reactive oxygen species (ROS) (Bonnet et al., 2007; Zhang et al., 

2007).  In excess, ROS can oxidize macromolecules and will eventually lead to dysfunctions and 

cell death via apoptosis (Zhang et al., 2007).  The suppression of PDC activity may be one 

mechanism by which cancer cells increase life span and maintain high proliferation rates, since 

they require large amounts of ATP but do not seem to experience the negative effects of 

excessive ROS production (Bonnet et al, 2007; Zhang et al., 2007).     

A main regulator of the hypoxia response in mammalian cells is hypoxia inducible factor-

1 (HIF-1).  HIF-1 is a heterodimeric transcriptional co-activator; it has an α- and β-subunit.  The 

β-subunit (ARNT; aryl hydrocarbon receptor nuclear translocator) is constitutively expressed, so 

the regulation of HIF-1 activity is based on the steady-state concentration of HIF-1α (Lluis et al., 

2004; Kim et al., 2006; Papandreou et al., 2006).  HIF-1α is constantly expressed but is rapidly 

degraded under normoxic conditions.  The mechanism behind HIF-1α stabilization is based on 

an intrinsic oxygen sensor, prolyl hydroxylase (PHD) that targets HIF-1α for degradation in the 

presence of oxygen (Harris et al., 2002; Lluis et al., 2004; McFate et al., 2008).  In the presence 

of oxygen, PHD hydroxylates proline residues on HIF-1α, which causes the binding of the von 

Hippel-Lindau tumor suppressor protein (pVHL), a component of an E3 ubiquitin ligase that 
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recognizes the hydroxylated HIF-1α.  HIF-1α is then targeted for degradation by the proteosome 

(Lluis et al., 2004).  However, without oxygen PHD cannot hydroxylate HIF-1α, so HIF-1α is 

not targeted by pVHL and accumulates, eventually binding with the β-subunit to form the HIF-1 

dimer, which then translocates to the nucleus (Fig. 7) (Harris et al., 2002; Lluis et al., 2004).  It 

is noteworthy that excess ROS also can apparently activate the HIF pathway by oxidizing the 

Fe
2+

 of prolyl hydroxylase thereby inhibiting its function (Brunelle et al., 2005).      

HIF-1, along with co-activator p300/CBP, binds to DNA hypoxia response elements 

(HREs).  A HRE is found in the promoter/enhancer region of the PDK-1 gene and facilitates its 

oxygen-dependent expression, and in turn, the downregulation of oxidative phosphorylation 

(Kim et al., 2006; Papandreou et al., 2006; McFate et al., 2008).  HREs are also associated with 

promoter/enhancer regions of many glycolytic enzymes, which serves to upregulate their 

expression at low oxygen, increase glycolytic rate, and facilitate cell survival under hypoxia 

(Lluis et al., 2004; Kim et al., 2006; Papandreou et al., 2006; McFate et al., 2008).  HIF-1 also 

activates the transcription of many glucose transporters so the cell can increase glucose flux to 

compensate for the low ATP yield of glycolytic metabolism (Semenza, 2007).  This glycolytic 

poise allows the cell to maintain redox homeostasis and survive under hypoxic conditions 

(Semenza, 2010).  HIF-1 operates this way in some forms of cancers.  Certain types of cancer 

cells preferentially produce energy by glycolysis in the cytosol rather than by pyruvate oxidation 

in the mitochondria (Bellance et al., 2009; Jezek, 2010; Heiden et al., 2009).   

 

5.1.1.   Preconditioning before cell stabilization: Insights from HIF-1 in hypoxia and cancer. 

Metabolic restructuring during some natural states of dormancy (e.g., insect diapause, 

fish diapause, and the dauer state) displays similarities to the hypoxia response in mammalian 
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cells.  Both show a shift from an oxidative phosphorylation poise to a more glycolytic poise.  

Even with ample oxygen available, some types of cancers also utilize survival strategies that 

share similarities with the hypoxia response (e.g., Bellance et al., 2009; Jezek, 2010; Heiden et 

al., 2009).  The downregulation of oxidative phosphorylation under normoxia and in the presence 

of high glucose is known as the Crabtree Effect (Crabtree, 1928).  The upregulation of glycolysis 

under normoxic conditions is known as the Warburg Effect (Warburg et al., 1924; Warburg, 

1956).  The most extreme metabolic arrest during dormancy is seen in A. franciscana embryos 

and is associated with the longest survival duration; in this case energy flow is globally 

depressed in both diapause and anaerobic quiescence (see Sections 2 and 3.1, respectively). In 

order to mimic this severe arrest and promote an increased tolerance to extreme stresses in 

mammalian cells, it might prove advantageous to foster a Crabtree phenotype without also 

fostering a Warburg phenotype.  That is, to downregulate the PDC independent of the HIF 

pathway, without actively shunting the cells toward a more glycolytic poise.   

RNA interference (RNAi) is a mechanism that is used to control the activity of genes by 

knocking-down mRNA activity and protein expression.  By using RNAi to knock down PDK1 in 

squamous cell carcinoma lines, McFate et al. (2008) show that PDC activity is restored and the 

cells shift away from the cancerous phenotype.  Upregulation of PDC activity leads to a decrease 

in hypoxic cell survival and tumor growth (McFate et al., 2008).  In contrast, RNAi that is used 

to target pyruvate dehydrogenase phosphatase could prevent the dephosphorylation and 

activation of the PDC.  In this way the Crabtree phenotype could be fostered without the 

increased activation of multiple genes associated with the HIF pathway.   

The synthetic glucocorticoid dexamethasone upregulates PDK4 mRNA in HepG2 cells 

and Morris hepatoma 7800 C1 cells (Huang et al., 2002; Kwon et al., 2004).  Dexamethasone 
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also successfully protects primary hepatocytes from death receptor-mediated apoptosis (Oh et al., 

2006) and stimulates the PI3K/Akt signaling cascade, which restricts mitochondrial respiration 

and inactivates multiple pathways of apoptosis initiation (Amaravadi and Thompson, 2005).  

Peroxisome proliferators-activated receptor-α (PPARα) agonists, such as WY-14,643 (Biomol 

Research Laboratories), increase PDK4 mRNA and protein levels (Huang et al, 2002).  Finally, 

recent work by Gohil et al. (2010) shows that the over-the-counter drug meclizine suppresses 

oxidative phosphorylation in a way distinct from classic mechanisms like the HIF-1 response.  

More research is needed to understand this mechanism, but meclizine might prove to be another 

avenue by which to foster a Crabtree poise prior to processing cells for biostabilization. 

 

5.2  AMP Analogues for stimulation of the AMP-activated protein kinase   

 The ability to increase the effective steady-state ratio of AMP to ATP in cells provides an 

opportunity to evaluate the impact of this change on rates of metabolism and cellular 

proliferation.   As we have emphasized for some cases of diapause and anoxia-induced 

quiescence, one theme is that the AMP:ATP ratio is elevated and tightly correlated with the 

arrest of metabolism (Hochachka et al., 1993; Podrabsky and Hand, 1999, 2000; Reddy and 

Davies, 1993; Wegener, 1988).  A high AMP:ATP ratio activates AMPK, which serves to 

conserve cellular energy stores (Hardie et al, 1998). Thus, we predicted that the AMPK cascade 

could be exploited for preconditioning mammalian cells, and indeed the induction of a stasis-like 

phenotype improves cell viability during cryopreservation of multiple mammalian cell lines and 

rat primary hepatocytes (Menze et al., 2010a).   

 The mechanism used for preconditioning by Menze et al. (2010a) is exposure of cells to 

5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR).  A property that contributes 
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to the frequent use of AICAR is its ability to cross the cell membrane through the nucleoside 

transporter (Gadalla et al., 2004). After uptake into the cell, AICAR is phosphorylated by 

adenosine kinase to form 5-aminoimidazole-4-carboxamide-1b-D-ribofuranosyl-5’-

monophosphate (ZMP), which is membrane impermeable (Vincent et al., 1991).  ZMP emulates 

several effects of AMP on AMPK, which include allosteric activation and activation of the 

upstream kinase LKB1 (Hardie, 2007; Henin et al., 1996; Merrill et al., 1997).  However, it is 

appropriate to note that accumulation of ZMP, as well as other AICAR-derived metabolites (i.e., 

ZDP, ZTP), varies approximately 3.5-fold across the cell lines tested (Menze et al., 2010a).   

 AICAR has the potential to promote a number of the same metabolic features associated 

with diapause.  Proliferation for a given cell line is negatively correlated with the fold-increase 

achieved in the ‘effective adenylate ratio’ ([AMP] + [ZMP])/[ATP]) after AICAR treatment 

(Fig. 8a).   An increased effective adenylate ratio serves to increase the activity of AMPK.  This 

decreased cell proliferation promoted by AICAR is tightly associated with an increase in 

survivorship post-freezing for the various cell lines (Fig. 8b), expressed relative to control cells 

not pretreated with AICAR.   Survivorship is also increased post-freezing for rat primary 

hepatocytes (Menze et al., 2010a).  Thus for each cell line, the greater the depression of 

proliferation due to preconditioning with AICAR, the greater is the survivorship post-freezing.  

Interestingly, AICAR does not promote a change in metabolism of the J774 macrophages (Fig. 

9), even though proliferation is markedly reduced by AICAR for this cell line.  In contrast, 

AICAR treatment does promote metabolic depression in NIH/3T3 fibroblasts (Menze et al., 

2010a).  These cell-specific differences for the AICAR influences on metabolism again 

emphasize the importance of characterizing the effects of this compound on each cell type of 

interest.   
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 Finally Fig. 9 displays the impact of another AMP analogue on the metabolism of J774 

macrophages.  Intracellular loading of adenosine-5’-O-thiomonophosphate (AMPS), a 

nonhydrolyzable analog of 5'-AMP and potent activator of AMPK, significantly depresses 

metabolism of macrophages; AMPS reduces proliferation of these cells as well (Menze et al., 

2005).  While AMPS is an even stronger activator of AMPK that is ZMP, the difficulty with the 

analogue is that is not membrane permeable.  Thus cells must be transiently permeabilized to 

allow loading the APMS.  In the case of the J774 macrophages, poration is accomplished by 

ATP-induced opening of the P2X7 receptor channel; removal (dilution) of added ATP serves to 

close the channel (Menze et al., 2005).  While the need for poration is a distinct disadvantage, 

the advantages are that AMPS is effective at lower concentrations than is ZMP; APMS loading 

has minimal impact on other components of the nucleotide pool; and AMPS avoids the issue of 

cell-type dependent variability in the conversion of AICAR to ZMP.   

 Thus metabolic preconditioning with AICAR is an effective means to increase cell 

survivorship during biostabilization.  As pointed out in Section 5.1, a metabolic adjustment 

exhibited by some cancer cells (known for their high propensity for survival) is to direct 

pyruvate flux away from the TCA cycle and toward lactate production by inactivation of the 

pyruvate dehydrogenase complex.  It seems that cell stability/survival can be enhanced and 

apoptosis depressed by turning down oxidative phosphorylation fueled by pyruvate.  This 

metabolic restructuring is again similar to that seen in several forms of invertebrate diapause 

(pupal diapause of the flesh fly Sarcophaga crassipalpis, adult reproductive diapause of 

Drosophila melanogaster, and the larval dauer of C. elegans), where glycolytic metabolism is 

favored over oxidative phosphorylation (Ragland et al., 2010).    
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6.  Conclusions and future directions. 

We have highlighted ways that animals exposed to energy-limited states for extended 

periods manage to survive. A recurring strategy to survive harsh environmental impact seems to 

involve a reduction in cell proliferation and the inhibition of metabolism, or at least a 

restructuring of metabolic pathways from oxidative phosphorylation to aerobic glycolysis.  

Lessons learned from organisms that naturally exhibit cell stasis and desiccation tolerance are 

improving our biostabilization procedures for mammalian cells.  For example, pretreatment of 

mammalian cell lines with the AMPK activator AICAR promotes a reduction in cell proliferation 

(and in some cells metabolic depression) and is associated with improved survivorship after 

cryopreservation.  Integrating such concepts of cell stasis into protocols for biostabilization may 

bring us closer to the exciting possibility of engineering mammalian cells and tissues that are 

more tolerant to long-term storage. 
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Figure Legends 

 

Figure 1.  Oxygen consumption by encysted embryos of Artemia franciscana.  Respiration rates 

of embryos in diapause are significantly depressed compared to postdiapause embryos that have 

developed at room temperature for 8 h. Bars represent mean ± SEM.  (adapted from Reynolds 

and Hand, 2004).   

 

Figure 2.   Respiration rate of A. socius embryos as a function of time after post-oviposition. 

(values are means ± s.e.m., n = 3–12 samples of 100 embryos for each time point). The bar 

indicates respiration rate of diapause embryos 15 days post-oviposition (mean ± SEM, n = 22).  

(adapted from Reynolds and Hand 2009a). 

 

Figure 3.   Adenine nucleotide ratios in A. socius embryos.  (A) [AMP]:[ATP] 

ratios and (B) [ATP]:[ADP] ratios of non-diapause and diapause embryos 

as a function of developmental time. Values are means ± SEM, n = 3–6 

samples of 200–300 embryos for each time point. (adapted from Reynolds and Hand 2009a). 

 

Figure 4.  Intracellular pH and NTP/NDP status of dechorionated A. franciscana embryos for 

long-term pre-treatment with bafilomycin as observed with 
31

P-NMR.  Spectra are displayed for 

58 min of anoxia followed by 7.5 min and 25 min of aerobic recovery.   Shaded boxes serve to 

emphasize changes in chemical shift and shape of the Pi peaks. (adapted from Covi et al., 2005). 
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Figure 5.   Exposure to anoxia induces a drop in cellular ATP as oxidative phosphorylation is 

arrested. Within the first 5 min of exposure to anoxia, a cessation of proton transport by the V-

ATPase and an activation of proton dissipative paths occur. The combined result is a 1 unit drop 

in intracellular pH over approximately 1 h. The return of oxidative phosphorylation upon 

reoxygenation of the embryos causes ATP levels to rise, which in turn activates the V-ATPase. 

Subsequent proton pumping into the intracellular compartment causes further alkalinization of 

pHi, which in turn helps to facilitate the resumption of development and metabolic processes 

inhibited by low pH.  (adapted from Covi et al., 2005) 

 

Figure 6.  Effect of preincubation with 1 mmol l
-1

 bafilomycin on oxygen consumption of 

Artemia franciscana embryos.  An asterisk indicates a significant difference from untreated 

controls (mean ± SEM; n = 3). (adapted from Covi and Hand, 2007). 

 

Figure 7.  Model for the regulation of HIF-1 .  Oxygen and Fe
2+

 are required for normal 

functioning of prolyl hydroxylase (PH), which tags HIF-1α for degradation.  Hypoxia disrupts 

PH activity, elevates HIF-1α and fosters PDK1 expression.  Under normoxia, CoCl2 or 

desferrioxamine can displace/chelate the required Fe
2+

 thereby inactivating PH, elevating HIF-

1α, and triggering gene expression. 

 

Figure 8.   (A) Depression in cell proliferation is correlated with the fold-increase in the 

'effective adenylate ratio' after AICAR treatment ([AMP] + [ZMP])/[ATP]), expressed relative 

to control values.  (B) Fold-increase in cell viability after freezing (number of viable cells after 

freezing with AICAR/number of viable cells after freezing without AICAR).  The effect of 
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AICAR on viability after freezing positively correlates with the fold-increase in the ‘effective 

adenylate ratio’.  (redrawn from Menze et al., 2010a). 

 

Figure 9.  Heat dissipation of mouse macrophage cells (J774.A1) after treatment with 

stimulators of AMP-activated protein kinase.  Control values are for untreated cells.  AICAR 

exposure was for 24 h at a concentration of 2 mM.  AMPS treatment requires that cells are first 

porated to allow loading with this membrane-impermeable analog of AMP.  Poration is 

accomplished by exposure of cells to 5 mM ATP to transiently open the P2X7 receptor channel 

(for details see Menze et al., 2005).  The AMPSi values represent cells porated in the presence of 

10 mM AMPS and should be compared to the AMPSe values (poration control) in which cells 

were porated in the absence of AMPS.  *Significant difference in heat production after poration 

with 10 mM AMPS (AMPSi) compared with the poration control (AMPSe), P ≤ 0.05.  Each bar 

represents mean ± SD of n = 3–7 separate measurements.  (redrawn from Menze et al., 2005). 
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