Skip to main content
Article
Allosteric Models for Multimeric Proteins: Oxygen-Linked Effector Binding in Hemocyanin
Biochemistry (2005)
  • Michael A Menze, University of Louisville
  • Nadja Hellman, Johannes Gutenberg Universitat, Mainz
  • Heinz Decker, Johannes Gutenberg Universitat, Mainz
  • Manfred K. Grieshaber
Abstract
In many crustaceans, changing concentrations of several low molecular weight compounds modulates hemocyanin oxygen binding, resulting in lower or higher oxygen affinities of the pigment. The nonphysiological effector caffeine and the physiological modulator urate, the latter accumulating in the hemolymph of the lobster Homarus Vulgaris during hypoxia, increase hemocyanin oxygen affinity and decrease cooperativity of oxygen binding. To derive a model that describes the mechanism of allosteric interaction between hemocyanin and oxygen in the presence of urate or caffeine, studies of oxygen, urate, and caffeine binding to hemocyanin were performed. Exposure of lobster hemocyanin to various pH values between 7.25 and 8.15 resulted in a decrease of p50. In this pH interval, p50 decreases from 95 to 11 Torr without effectors and from 49 to 6 Torr and from 34 to 5 Torr in the presence of 1 mM urate or caffeine, respectively. Thus, the allosteric effects induced by protons and urate or caffeine are coupled. In contrast, isothermal titration calorimetry did not reveal any differences in binding enthalpy (¢H°) for urate or caffeine under either normoxic or hypoxic conditions at different pH values. Despite these apparently conflicting results, they can be explained by the nested MWC model if two different types of modulator binding sites are assumed, an allosteric and a nonallosteric type of site. Simulations of in ViVo conditions with this model indicate that the naturally occurring modulator urate is physiologically relevant in H. Vulgaris only during hypoxic conditions, i.e., either during environmental oxygen limitation or extensive exercise.
Disciplines
Publication Date
2005
Publisher Statement
This article is copyright 2005 American Chemical Society.
Citation Information
Michael A Menze, Nadja Hellman, Heinz Decker and Manfred K. Grieshaber. "Allosteric Models for Multimeric Proteins: Oxygen-Linked Effector Binding in Hemocyanin" Biochemistry Vol. 44 (2005)
Available at: http://works.bepress.com/michael_menze/15/