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ABSTRACT

Anhydrobiotic animals protect cellular architecture and metabolic machinery in

the dry state, yet the molecular repertoire supporting this profound dehydration tolerance is not
fully understood. For the desiccation-tolerant crustacean, Artemia franciscana, we report
differential expression of two distinct mRNAs encoding for proteins that share sequence similarities
and structural features with late-embryogenesis abundant (LEA) proteins originally discovered in
plants. Bioinformatic analyses support assignment of the LEA proteins from A. franciscana to group
3. This eucoelomate species is the most highly evolved animal for which LEA gene expression has
been reported. It is becoming clear that an ensemble of micromolecules and macromolecules is
important for establishing the physical conditions required for cellular stabilization during drying in
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It is a biological truism that environmental
stresses that impact the activity of cellular water
pose a threat to life (Somero, '92). For centuries
scientists have been intrigued by exceptional
animals that can survive the loss of virtually all
cellular water for prolonged periods (Leeuwenhoek,
1702; Crowe and Clegg, ’73). The mechanisms by
which these anhydrobiotic animals protect cellular
architecture and metabolic machinery in the dry
state are not only of biological interest but also
of biomedical importance for cell stabilization
(Crowe et al., 2005; Elliott et al., 2006). For a
desiccation-tolerant arthropod, we report herein
the differential expression of two distinct mRNAs
encoding for proteins that share strong sequence
similarities and structural features with late-
embryogenesis abundant (LEA) proteins origin-
ally discovered in plants.

Intracellular sugar glasses like those formed
with trehalose or other carbohydrates during
drying (Hoekstra, 2005 and references therein)
provide protection during water stress in animals
and plants. Hydrophilic LEA proteins (hydrophi-
lins) seen for example in seeds, pollen, and the
resurrection plant are receiving considerable
interest because their intracellular accumulation

© 2006 WILEY-LISS, INC.

is tightly correlated with acquisition of desiccation
tolerance, and recent in vitro data indicate their
capacity to stabilize other proteins during drying
(Grelet et al., 2005). Embryos of the brine shrimp
Artemia franciscana have served as an important
model species for studies of animal desiccation,
and evidence from this organism has underscored
the role of trehalose and small stress proteins
in anhydrobiosis and other environmental stresses
(Crowe et al., ’84; Warner et al., 2004; Clegg, 2005;
Crowe et al., 2005). In this study, we investigated
whether or not expression of other desiccation-
associated proteins might be found in the devel-
opmental stages of the brine shrimp that exhibit
survival in the dried state.
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MATERIAL AND METHODS

Animals

Encysted embryos of the brine shrimp,
A. franciscana Kellog (Great Salt Lake popula-
tion), were either obtained in the dehydrated state
(post-diapause) from Sanders Brine Shrimp Co.
(Ogden, UT) or collected from the surface of the
Great Salt Lake in the hydrated state (diapause)
(Covi and Hand, 2005). Embryo viability and
preservation of the diapause state during storage
were evaluated as previously described (Reynolds
and Hand, 2004).

Sequencing of cloned LEA genes

DNA inserts were sequenced directly from
plasmids isolated from bacterial clones picked
from a full-length unidirectional ¢cDNA Library
(Lambda Uni-ZAP XR Vector). The library was
prepared from poly-A mRNA purified and pooled
from active and diapause stage embryos. Sequen-
cing utilized BigDye terminator chemistry and
an ABI PRISM 3100 Genetic Analyzer (Applied
Biosystems, Foster City, CA). Primer walking
was used to insure full-length sequence was
obtained. Sequences were assembled using
Sequencher software (Gene Codes Co., Ann
Arbor, MI).

Isolation of total RNA and preparation
of cDNA for quantitative PCR

Post-diapause embryos were hydrated and
incubated at room temperature in medium equili-
brated with air as described previously (Covi and
Hand, 2005). Briefly, after the desired time
periods of incubation, RNA extractions were
performed with an RNeasy Midi kit (Qiagen,
Valencia, CA) as per the manufacturer’s instruc-
tions for animal tissues. For samples of larvae
(24 hr), swimming nauplii were separated from the
shed chorion. Diapause embryos were incubated
for 4d as previously reported (Reynolds and Hand,
2004) to allow individuals not in diapause to
hatch; larvae and empty shells were removed.
The concentration of RNA in each sample was
determined spectrophotometrically (Aggp). AMV
reverse transcriptase (Promega, Madison, WI) and
a dTe5V primer were employed to reverse tran-
scribe poly(A+) mRNA from total RNA.

Real-time quantitative PCR

Analyses of cDNA from various developmental
stages of A. franciscana were performed using

real-time quantitative polymerase chain reaction
(rtqPCR) with an iCycler (Bio-Rad Laboratories,
Hercules, CA) and SYBR Green. PCR reaction
mixes were prepared by using the IQ SYBR Green
Supermix (Bio-Rad Laboratories) with a total
reaction volume of 25 pl. Cycling parameters were
3min at 95°C and then 50 cycles at 95°C (15sec)
and 56°C (30sec), followed by a melting curve
analysis. Each developmental stage was evaluated
with 4-6 independent experiments, each with
three nested replicates, and with reference dye
normalization. The cycle threshold value (Ct)
determined with the manufacturer’s software
and used for analyses, and all ACt values were
normalized to the expression of a bona fide
housekeeping gene, a-tubulin (Zheng et al., ’98),
after determination of the PCR efficiencies (Pfaffl,
2001). Primer sequences for a-tubulin were 5'-
CGA CCA TAA AAG CGC AGT CA-3 and 5-CTA
CCC AGC ACC ACA GGT CTC T-3. Primer
sequences for Afrleal were 5-GTG CCG TCT
GTG CTC TC-3 and 5-CAG GGA GCC TAT GAG
GGA CT-3'. Primer sequences for Afrlea2 were
5-GAA TGT GCA GCA TCA GCA GT-3 and
5-GCT CAG TCA ACA TAT GAC CCA GTG-3'.
Values for the fold change in expression are given
as means+SD, and significance was assessed by
applying the ¢-test of the mean with Minitab 1998
(Minitab Inc., State Collage, PA).

Bioinformatic analyses

Sequences were compared with the GenBank/
NCBI database using BLAST software, and also to
the Pfam database (www.sanger.ac.uk/Software/
Pfam/search.shtml). The Kyte and Doolittle algo-
rithm (Kyte and Doolittle, ’82) was used to
construct hydropathy plots (ProtScale program,
http://au.expasy.org/tools/protscale.html). A 9-
residue moving average was used to compute the
hydropathy score. The Biology Workbench 3.2 site
(http://workbench.sdsc.edu/) was used for multiple
sequence alignments (CLUSTALW) and evalua-
tion of amino acid abundance (AASTATS). Sec-
ondary structure predictions were run with the
GOR 1V, PHDsec, HNN, SSpro, SOPMA, Porter,
and Prof programs (http:/au.expasy.org/tools/),
and values for alpha-helix content were averaged.
Subcellular localization of proteins was predicted
using: PREDOTAR (www.inra.fr/predotar/), TargetP
(www.cbs.dtu.dk/services/TargetP), and Mito
Prot (http://ihg.gsf.de/ihg/mitoprot.html). Both
proteins were evaluated for regions that could
be involved in coiled-coil structures using the
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program COILS (www.ch.embnet.org/software/
COILS_form.html). Multiple sites for coiled-coil
structures were identified for AfrLEA1 (at least 6)
and AfrLEA2 (at least 3).

RESULTS AND ANALYSIS

Based on data mining of a c¢DNA library
prepared from A. franciscana embryos, coupled
with real-time quantitative PCR (rtqPCR), we find
that each developmental stage with the capacity
for anhydrobiosis (diapause and post-diapause
embryos) expresses high levels of two LEA
mRNAs, while the desiccation-intolerant larval
stage (control) shows expression that is many
fold lower (Fig. 1A). This differential expression
is consistent with a role for these gene products in
survivorship during dehydration.

Deduced protein sequences indicate that
AfrLEA1 is composed of 357 amino acids with
an apparent molecular mass of 39kDa, while
AfrLEA2 contains 364 amino acids and is 39 kDa.
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(Table 1). Both proteins are strongly hydrophilic
based on hydropathy plots (Fig. 1B). Further,
the hydropathy patterns clearly reveal repeating
motifs characteristic of plant LEA proteins.
Sequence analyses show conserved repeats of 32
amino acids for AfrLEA1 and 14 for AfrLEAZ2; the
tandem repeats become more degenerate toward
the carboxy terminus (Fig. 1C, D). The repeating
motifs do not match either the historical 11-mer
repeat seen for some group 3 LEA proteins (Dure,
’93; Cuming, ’99), or the 20-mer sometimes seen
for group 1 LEA proteins (Esperlund et al., '92;
Cuming, '99). However, lack of concordance with
the historical repeats is observed even for plant
LEA proteins (cf. Grelet et al., 2005).
Comparisons with the GenBank database reveal
strong similarities to a phylogenetically broad
suite of group 3 LEA proteins for AfrLEA1
(e.g., accession numbers: NP 001024042, Caenor-
habditis elegans, nematode, E value=5e %
AAA85367, Picea glauca, white spruce, 167 °%; CAA

80491, Glycine max, soybean, le”°¢; YP604937,
3
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Fig. 1.

(A) mRNA expression profiles for the LEA genes Afrleal and Afrlea2 from Artemia franciscana embryos. LEA

mRNAs are maintained 7-14-fold higher in the two desiccation-tolerant embryonic stages (i.e., diapause and post-diapause)
compared to the desiccation-intolerant nauplius larva that served as a control (mean+SD; N =4-5; P<0.005). The double
asterisks indicate that the paired means are statistically different. All ACt values (corrected for efficiency) were normalized to
the expression of a housekeeping gene (a-tubulin). (B) Kyte and Doolittle hydropathy plots for the deduced proteins AfrLEA1
and AfrLEA2 indicate strong hydrophilicity, as shown by values below zero. Amino acid position is plotted on the x-axis
beginning with the N-terminus. The more evident cyclic repeats are numbered sequentially above the x-axis for each protein
(color coded). Alignments of tandemly repeated motifs, which correspond to the numbered hydropathy patterns, are provided in
(C) and (D). The repeats become more degenerate as one moves toward the C-terminus.
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AfrLEA1

MAEPEEPPGI YEKVKSAFVS APDRAQEAYN QAYESARSVF DDAVRSARKM KNTAAEQAQG 60
AYEGLKESPE NLQRVTRDIY HQAQDTGKGA YETVAGSADD AYRRAQETAQ AAQEQSKGFL 120
NRVKDTLTAP FSSSSDQAKE TYDRTKDEAQ YRAQQAADAG QGFFGKVKDT ITAPFTSGYD 180
QTQEGYERAR RSAEEAAQQA ADQGQTLFER AKDTITSPFS SGSEQAQESF ERAKRAAEEQ 240
VEQSKGMFQN IKGTITSPFN SAADTAKEAG QRAKKQAEEA ADQSQGFMQK VKDTVASPFL 300
SAGEESQEAI ERTKREAEEA RHQGEGFLHR VADTIMHPFQ SSSEQVGEAA DRIKRGA 357
AfrLEA2

MPKAAAKGIG ETVKADADVV EGMASTGYEK LKSAFGIASN KTKDAAENVA ESARATKDYT 60
VDSAKSAYDK TVDSTKSAYD KTTDSAKSVH DSTADTAKSA YNKATETLGS AYDKTKDTAQ 120
STYDQVTGAA HSAYDKTAEA TKSAYDKTAD AAHSVYNKTG DAGKQAYDST KEAARSTGKS 180
ISDAAYFTGK GAERQGDQVK SELPSYSPSS SGEKLAQHLV KSEKEGKKLT EEALKDRDLS 240
QVPGFRSVKK AHEPDAKEDI SAVDFASASP SQRKVADTEG VWSSPVDRQE SRFFSDLAGK 300
IGDMLGGGKI NAIQTPEEMD HERLIHKSSQ SQVAGNVPGR AKTAWTPEDR IILHQERFPK 360
ENPE 364
Deinococcus  radiodurans, mnon-spore-forming subcellular targeting programs failed to suggest
bacterium, 9¢ %) and for AfrLEA2 (e.g., localization to specific organelles such as the

BAA11017, Arabidopsis thaliana, thale cress,
2¢~ ;. AD59387, Brassica napus, rapeseed, 5e 1%
ABA26579, Phaseolus vulgaris, bean, Te '3;
CAF32327, Pisum sativum, pea, 3e ). Wise
(2003) has emphasized that in addition to strong
sequence similarities to canonical LEA proteins,
upregulated expression profiles that are tightly
associated with desiccation, as we report here, are
also important for LEA protein identification. In
this context, a LEA-like DNA sequence from a
chironomid insect larva is present in GeneBank
(accession number BAE92616), but expression
data are unavailable.

Other features consistent with assignment of
AfrLEA1 and AfrLEA2 to group 3 are: high alpha-
helix content (77%, AfrLEA1; 59%, AfrLEA2) with
significant potential for coiled-coil structures,
over-representation of alanine (16.2%, AfrLEA1L;
14.3%, AfrLEA2), and the lack of over-representa-
tion for glycine or arginine. Both sequences are
devoid of cysteine, a feature of many LEA
proteins. Finally, when the two A. franciscana
sequences were compared against the Pfam
database, both were assigned to Pfam LEA 4
family, which corresponds to group 3 LEA proteins
(cf. Grelet et al., 2005).

DISCUSSION

To our knowledge, this is the first report of two
LEA proteins expressed in one animal species.
Targeting to different cellular locations might
explain the functional significance of two LEA
proteins, although bioinformatic analyses with

mitochondrion. The predictive power of these
current software programs is limited, and the
complexity of the N-terminal cleavable extensions
(termed presequences) involved in targeting is
high (Pfanner and Geissier, 2001; Wiedemann
et al., 2004).

The expression of LEA proteins is not restricted
to plants, having been documented in bacteria,
fungi, nematodes (Wise and Tunnacliffe, 2004;
Hoekstra, 2005, and references therein), and now
a desiccation-tolerant crustacean, A. franciscana.
This eucoelomate species is the most highly
evolved animal for which LEA gene expression
has been reported. Among various physiological
roles, stabilization of sugar glasses is often
suggested for LEA proteins (Hoekstra, 2005),
along with protein stabilization via protein—
protein interaction (Grelet et al., 2005), ion
sequestration (Grelet et al., 2005), and formation
of structural networks (Wise and Tunnacliffe,
2004). Such networks have been hypothesized to
increase cellular resistance to physical stresses
imposed by desiccation (cf. Goyal et al., 2003). It is
becoming clear that an ensemble of micromole-
cules and macromolecules is important for estab-
lishing the physical conditions required for
cellular stabilization during drying in nature.
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