University of Massachusetts Boston

From the SelectedWorks of Michael P. Johnson

October 16, 2012

Maintain, Demolish, Re-purpose: Policy Design for Vacant Land Management using Decision Models

Michael P Johnson, Jr. Justin Hollander, *Tufts University* Alma Hallulli, *University of Massachusetts Boston*

Maintain, Demolish, Re-purpose: Policy Design for Vacant Land Management using Decision Models

Michael Johnson, University of Massachusetts Boston Justin Hollander, Tufts University Alma Hallulli, University of Massachusetts Boston

> 2012 INFORMS National Conference, Phoenix, AZ October 16, 2012

Policy motivation

- Neighborhoods, cities, regions and countries face sustained economic and population decline, due to lower population growth rates, deindustrialization and sustained disinvestment, and the housing foreclosure crisis
- Planners increasingly see 'decline' as something to plan for: a place may lose population while ensuring a high quality of life and enhanced social value (Delken 2008, Hollander 2010)
- Growth-oriented planning continues to maintain its hegemony over local government decision-making

Can decision models help planners devise strategies that will maximize the social value of managed decline?

What is shrinkage?

- Smart decline: 'planning for less, fewer people, fewer buildings, fewer land uses' (Popper and Popper 2002)
- Reduction in level of public services (Popper and Popper 2002):
 - Fixed assets: closure/consolidation/re-purposing of schools, fire stations, libraries
 - Services: reduced maintenance of infrastructure, outsourcing, furloughs/layoffs

Transformative investments (Hollander 2010):

- Subdivision of owner-occupied single family homes into multi-family rentals
- Demolition of homes
- Conversion of vacant lots to urban agriculture, parks and community gardens and environmental remediation

What cities and regions face shrinkage?

- Flint, Michigan (Hollander 2010)
- Youngstown, Ohio (Hollander 2009)
- Buffalo, New York (Hollander and Cahill 2011)
- Great Plains region of the Midwest (Popper and Popper 2004)
- Taranto, Italy, Porto, Portugal, Aberdeen, UK, Frankfurt/Oder, Germany and Tallinn, Estonia (Wolff, 2010)
- Leipzig, Germany (Banzhaf, Kindler and Haase 2007)
- Southwest US and central Florida (Hollander 2012)

What is new about shrinkage?

- Permanence of new economic and social constraints
- Acceptance of need for new land uses
- Managed decline is one of multiple planning/policy strategies for a region, or portions of a region

Key modeling concepts

Neighborhood-level investments

- Residential-focused investments maintain or enhance existing residential and commercial uses
- Non-residential-focused investments enable residential and commercial uses to be converted to a variety of passive or recreational uses

Growth policies

- Smart growth attempts to maintain or increase residential population in a sustainable manner
- Smart decline seeks to reduce residential population and while preserving overall quality of life

Research questions

- What levels of residential- and non-residential-focused investments in each neighborhood within our study area jointly optimize multiple social objectives?
- What model formulations are associated with smart growth, smart decline or 'no action' policies within and across neighborhoods?

Modeling preliminaries

Assumptions

- Different neighborhoods respond differently to residential-focused versus non-residential-focused investments.
- Perceived equity (fairness) can determine political feasibility of planning strategies
- Neighborhood-level investments may result in economies or diseconomies of scale over space

Challenges

- Planners may view concerns with equity and neighborhood-level engagement design as incompatible with regional-level and quantitatively-focused decision modeling
- OR/MS can be seen as confirming (or not questioning) traditional power relationships or notions of knowledge

Municipal shrinkage planning problem

- Goal: Choose investment levels across neighborhoods that support residential and/or non-residential uses
- Objectives:
 - Maximize neighborhood satisfaction associated with residential and nonresidential investments
 - Maximize clustering of neighborhood investments, to capture economies of scale
 - Maximize the perceived equity, or fairness of a city-wide development plan

Constraints:

 Limit levels of residential and non-residential investments within and across neighborhoods

How can we model neighborhood satisfaction?

Research evidence:

- Negative social impacts of proximity to vacant land (Branas et al., 2011)
- Resident opinions on neighborhood quality are heterogeneous and not synonymous with growing cities (Hollander 2011)

Assumptions:

- Neighborhood satisfaction is
 - Salient to residents and non-residents
 - Associated with quality of life and level of neighborhood investments
 - Derived from residential-focused and non-residential-focused investments
- Neighborhoods respond differently to investments:
 - A high-impact neighborhood shows increasing returns to scale
 - A low-impact neighborhood shows decreasing returns to scale
 - A moderate-impact neighborhood shows constant returns to scale

Neighborhood satisfaction functions

Model parameters:

- A_i = index of neighborhood attractiveness
- r_i = level of residential-focused investment
- n_i = level of non-residential-focused investment
- x = scale factor for residential-focused investments
- y = scale factor for non-residential-focused investments
- Residential-oriented neighborhood satisfaction function:

$$S_i^r = f_i(r_i; A_i) \equiv A_i \cdot r_i^x$$

Non-residential-oriented neighborhood satisfaction function:

$$S_i^n = g_i(n_i, A_i) \equiv \frac{1}{A_i} \cdot n_i^y$$

where:

- x(y) = 1 for moderate impact neighborhoods
- x(y) > 1 for high impact neigborhoods
- x(y) < 1 for low impact neighborhoods

Complete model

Objectives:

Max

$$S(r,n) = \left(\frac{1}{A_i}\right) \cdot r_i^x + A_i \cdot n_i^y$$

$$C(y) = \sum_{i=1}^{N} \sum_{j=1}^{N} y_{ij}$$

$$E_{1}(r) = \min_{i=1,2,...,I} \begin{cases} r_{i} \\ B_{i}^{r} \end{cases}$$
$$E_{2}(n) = \min_{i=1,2,...,I} \begin{cases} n_{i} \\ B_{i}^{n} \end{cases}$$

Constraints: $r_i \leq B_i^r \quad \forall i$ $n_i \leq B_i^n \quad \forall i$ $\sum_{i=1}^{I} r_i \leq B^r$ $\sum_{i=1}^{I} n_i \leq B^n$ $\max(B^r, B^n) \leq \sum_{i=1}^{I} (r_i + n_i) \leq B^r + B^n$

$$y_{ij} \leq \frac{r_i + n_i}{d_{ij}} \forall i, j$$

INFORMS Phoenix 2012 October 16, 2012

MSPP description and solution approach

- Non-linear multi-objective math optimization problem
- Generate approximation to Pareto frontier
 - Initially: weighting method (Cohon 1978)
 - Generally: contemporary methods (Collette and Siarry 2002; Ehrgott 2005; Ehrgott and Gandibleux 2002; Miettinen 1999)
- Classify neighborhood investment strategy {r_i^{*}, n_i^{*} } as:
 - Smart growth policy if $r_i^* > n_i^*$,
 - Smart decline policy if $n_i^* > r_i^*$
 - No-action policy otherwise
- Similar definitions apply for study area

Case study

- Goal: apply municipal shrinkage planning problem to real city
- Candidates:
 - MA 'gateway cities'
 - 'Great' cities
 - Cities traditionally focus of smart decline scholarship
- Method:
 - Identify metrics of distress/decline (cf Wolff 2009)
 - Select candidates with greatest number of distress measures

City	% Change in population 1990-2000	% Change in population 2000-2010	Change in housing vacancy rate 2000 - 2010	Change in poverty rate 2000 - 2010	% Change in civilian employed 2000 - 2010	Change in unemployment rate 2000 - 2010	Distress in how many categories?
Brockton	1.61%	-0.52%	4.8	0.7	0.3	5.4	2
Fall River	-0.83%	-3.35%	6.1	4.6	-3.1	5	5
Fitchburg	-5.35%	3.11%	8.9	2.9	0.9	1.5	1
Haverhill	12.81%	3.24%	4.1	1.4	-0.9	3.7	0
Holyoke	-9.70%	0.11%	-2.5	3.6	-2.5	3	3
Lawrence	2.55%	6.02%	3	3.4	5	-0.2	1
Lowell	1.64%	1.29%	6.2	0.9	0.4	1.7	1
New Bedford	-6.56%	1.39%	3.1	2.5	2.7	1.8	1
Pittsfield	-6.18%	-2.31%	0.5	2.8	0.1	2.5	2
Springfield	-3.22%	0.64%	4.7	2.7	-4.3	4.1	2
Worcester	1.67%	4.86%	5.9	0.2	0	2.9	0

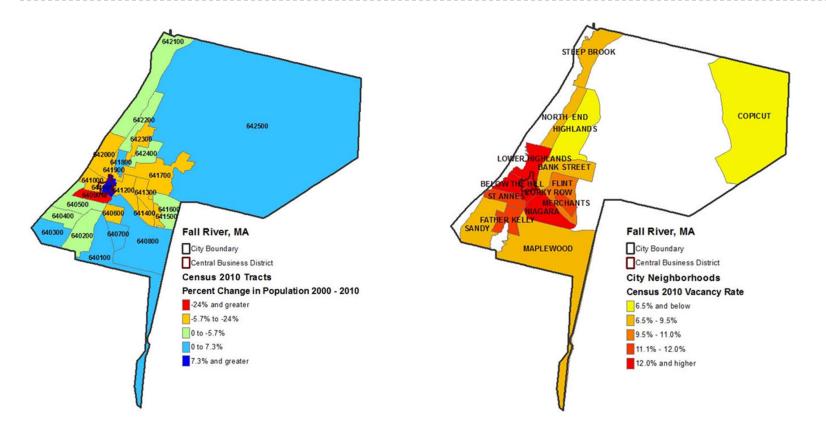
MA gateway cities

INFORMS Phoenix 2012 October 16, 2012

Selected large cities

City	% Change in population 1990-2000	% Change in population 2000-2010	Change in housing vacancy rate 2000 - 2010	Change in poverty rate 2000 - 2010	% Change in civilian employed 2000 - 2010	Change in unemployment rate 2000 - 2010	Distress in how many categories?
Baltimore	-13.03%	-4.64%	5.7	1.2	2	2.8	2
Boston	2.52%	4.83%	4.5	2.3	1.1	4.2	1
Detroit	-8.06%	-24.97%	18.9	10.6	-11.6	10	6
Las Vegas	46.01%	22.01%	9.6	3.4	-3.2	5.2	2
Albuquerque	14.24%	21.68%	-0.7	4.6	-1.2	1.5	0
New York City	8.56%	2.08%	4.2	-1.5	3.6	1.5	1
Charlotte	26.79%	35.24%	4.8	5.9	-5.8	5.5	3
Columbus	11.04%	10.62%	6	7.3	-4.8	5.3	3
Oklahoma City	12.13%	14.59%	2.5	1.1	1.5	2	0
Portland	17.35%	10.33%	1.8	4.9	-4	3.9	1
Philadelphia	-4.48%	0.56%	3.2	2.9	-1.1	3	2

Selected 'shrinkage' cities


City	% Change in population 1990-2000	% Change in population 2000-2010	Change in housing vacancy rate 2000 - 2010	Change in poverty rate 2000 - 2010	% Change in civilian employed 2000 - 2010	Change in unemployment rate 2000 - 2010	Distress in how many categories?
Flint, MI	-12.66%	-18.02%	11	10.9	-13.5	5.2	6
Ashland, KY	-7.47%	-1.35%	1.1	2.4	-0.9	1.4	0
Youngstown, OH	-16.71%	-18.34%	5.8	7.3	-3.3	4.5	4
New Orleans, LA	-2.53%	-29.06%	11.6	-3.1	3.9	2.2	2
Cleveland, OH	-5.69%	-17.05%	10.1	5.6	-2.6	5.2	3
Buffalo, NY	-12.12%	-10.71%	2.2	3.9	1.2	1.2	1
Dayton, OH	-9.55%	-14.83%	9.4	7.7	-3	5.1	5
Pittsburgh, PA	-10.56%	-8.63%	4	0.1	3.5	-0.3	0
Rochester, NY	-5.40%	-4.19%	5	3.2	-3	1.1	1
lackson, MS	11.07%	-5.83%	6.9	2.6	-1.1	1.3	0

Choose Fall River, MA for case study: local, under-studied, generalizeable

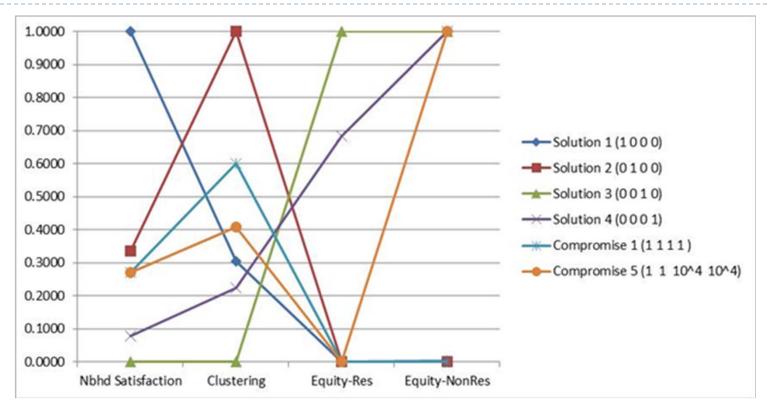
INFORMS Phoenix 2012 October 16, 2012

Case study city: Fall River, MA

Flat growth in 1990 – 2000 vs. 5% growth in Bristol County Higher percentage of foreign-born population than county or state

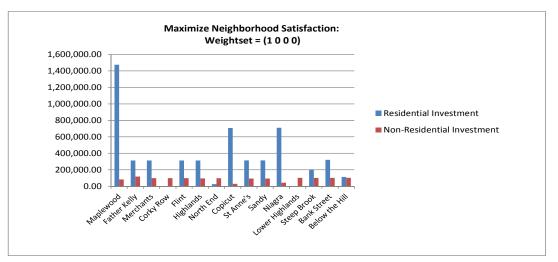
Data development

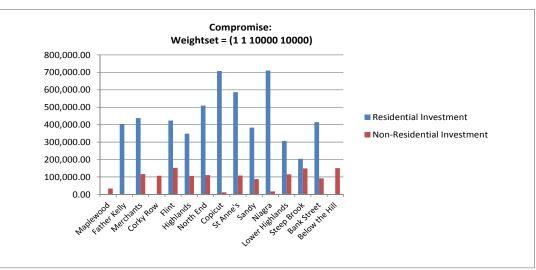
- Classify neighborhoods by growth potential:
 - Smart growth: population growth > 2% (x = 1.5; y = 0.5)
 - Smart decline: decline > 2%; low-income population, no CDBG investments or both (x = 0.5, y = 1.5)
 - Other neighborhoods: (x = y = 1)
- Total investment budget equals sum of CDBG and HOME programs (\$6,795,162)
 - Residential-focused growth budget = 80% of total
 - Non-residential-focused growth budget = 20% of total
- Neighborhood-level investment limits are a random percentage of each growth budget:
 - Smart growth: [10%, 30%]; [0%, 10%]
 - Smart decline: [0%, 15%]; [15%, 40%]
 - Other neighborhoods: [5%, 20%] for both


Fall River dataset

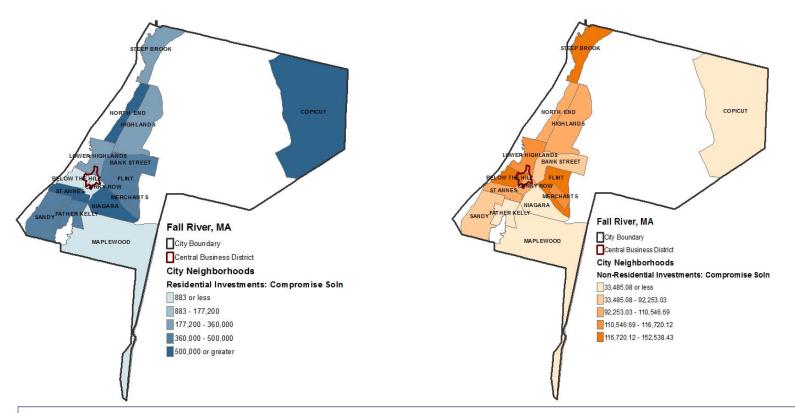
Neighborhood	Vacancy	Residential Growth	Nonresidential	Residential	Nonresidential
	Rate	Scale Factor	Growth Scale Factor	Growth Budget	Growth Budget
Maplewood	7.94%	1.5	0.5	\$1,475,117	\$83,037
Father Kelly	11.84%	0.5	1.5	\$550,538	\$506,256
Merchants	12.05%	0.5	1.5	\$570,880	\$289,445
Corky Row	12.65%	0.5	1.5	\$883	\$265,421
Flint	11.05%	0.5	1.5	\$423,835	\$378,268
Highlands	6.51%	0.5	1.5	\$347,764	\$263,504
North End	9.01%	0.5	1.5	\$626,885	\$274,136
Copicut	4.80%	1.5	0.5	\$707,773	\$30,011
St Anne's	11.58%	1	1	\$586,251	\$268,226
Sandy	9.30%	1	1	\$383,138	\$217,013
Niagra	12.39%	1.5	0.5	\$710,111	\$43,595
Lower Highlands	12.54%	0.5	1.5	\$654,239	\$286,757
Steep Brook	8.26%	0.5	1.5	\$204,029	\$369,418
Bank Street	9.48%	0.5	1.5	\$445,975	\$228,771
Below the Hill	12.24%	0.5	1.5	\$112,537	\$372,555
			Total Budgeted	\$7,799,955.00	\$3,876,413.00
			Total Available	\$5,436,129.60	\$1,359,032.40

Model solution


- Premium Solver Platform using Standard LSGRG Nonlinear Engine
- > 242 variables and 275 constraints
- Solution times ranged from 8.10 seconds to 32.43 seconds



- Four of the five non-dominated solutions result in maximum allowable investments across the two investment types
- Maximizing clustering of investments results in four neighborhoods receiving no investments, and six other neighborhoods receiving no non-residential investments


Two non-dominated solutions – decision space

INFORMS Phoenix 2012 October 16, 2012

Compromise solution – decision space

- Residential investments are concentrated outside of the region containing the CBD
- Non-residential investments generally concentrated closer to CBD
- Policy recommendation: avoid expensive programs to encourage relocation to the city center via initiatives such as loft redevelopments

Analysis of solutions

Tradeoff analysis

Metric: Change in neighborhood satisfaction objective associated with one-unit gain in clustering objective	Non-dominated solutions		
83,007,583	Optimize neighborhood satisfaction vs. optimize non-		
	residential equity		
817,800	Optimize clustering vs. compromise solution		

How does sensitivity to changes in neighborhood satisfaction affect willingness to choose between non-dominated solutions?

Greedy heuristic

- Sort neighborhoods in decreasing order of attractiveness (1/V_i) and decreasing order of residential scale factor (x)
- Sort neighborhoods in increasing order of attractiveness (V_i) and decreasing order of non-residential scale factor (y)
- Assign residential (non-residential) investments by 'bang-for-buck'

Does ease of generating solution (similar to one that optimizes residential satisfaction) offset resulting inequality?

Conclusions

- Initial effort to provide tangible and substantive guidance to planners and policy-makers
- Solutions balance neighborhood satisfaction, economic efficiency and social equity while accommodating practical limitations on neighborhood-level resource availability
- Neighborhood satisfaction model incorporates notions of scale economies of neighborhood investments while distinguishing between traditional and non-traditional uses
- Non-dominated solutions can serve as a basis for community discussions but not intended to generate specific planning prescriptions

Next steps

Current model

- Emiprically model and validate neighborhood satisfaction functions
- Investigate alternative forms for equity function
- Convert decision model to MOLP
- Enagage actual client and allow for different modeling and solution approaches

Alternative decision problems

- Target individual residential parcels for continued occupancy or allow to become vacant
- Select vacant parcels for investment for alternative uses

Questions?