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a b s t r a c t

We present a mathematical analysis of the transmission of certain diseases using a sto-
chastic susceptible-exposed-infectious-treated-recovered (SEITR) model with multiple
stages of infection and treatment and explore the effects of treatments and external
fluctuations in the transmission, treatment and recovery rates. We assume external fluc-
tuations are caused by variability in the number of contacts between infected and sus-
ceptible individuals. It is shown that the expected number of secondary infections
produced (in the absence of noise) reduces as treatment is introduced into the population.
By defining RT;n and R T ;n as the basic deterministic and stochastic reproduction numbers,
respectively, in stage n of infection and treatment, we show mathematically that as the
intensity of the noise in the transmission, treatment and recovery rates increases, the
number of secondary cases of infection increases. The global stability of the disease-free
and endemic equilibrium for the deterministic and stochastic SEITR models is also pre-
sented. The work presented is demonstrated using parameter values relevant to the
transmission dynamics of Influenza in the United States from October 1, 2018 through May
4, 2019 influenza seasons.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerous mathematical models have been developed to study the transmission dynamics of emerging and re-emerging
diseases (Diekmann, Heesterbeek, & Metz, 1990; Driessche & Watmough, 2002; Etbaigha, Willms, & Poljak, 2018; Feng,
Towers, & Yang, 2011; Hollingsworth, Anderson, & Fraser, 2008; Huo, Chen, & Wang, 2016; Korobeinikov, 2009; LaSalle,
1976; Li, Xiao, Zhang, & Yang, 2012; Melesse & Gumel, 2010; Mendez, Campos, & Horsthemke, 2012; Tornatore,
Buccellato, & Vetro, 2005; Otunuga, 2017; Otunuga, 2018; West, Bulsara, Lindenberg, Seshadri, & Shuler, 1979; Yang &
Mao, 2013, Mummert & Otunuga, 2019).Without treatment of such diseases, infection advances in stages and infected in-
dividuals typically die within certain years. Several authors (Birrell, Presanis, & De Angelis, 2012; Hollingsworth et al., 2008;
Korobeinikov, 2009;Melesse&Gumel, 2010; Otunuga, 2018) have studied extensively epidemicmodels with various stages of
infection. Influenza has various stages of infection ranging from the contagious stage before any symptoms appear (period

* Corresponding author.
E-mail addresses: otunuga@marshall.edu (O.M. Otunuga), ogunsolu@mail.usf.edu (M.O. Ogunsolu).
Peer review under responsibility of KeAi Communications Co., Ltd.

Contents lists available at ScienceDirect

Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm

https://doi.org/10.1016/j.idm.2019.12.003
2468-0427/© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Infectious Disease Modelling 5 (2020) 61e90

http://crossmark.crossref.org/dialog/?doi=10.1016/j.idm.2019.12.003&domain=pdf
mailto:imprint_logo
www.keaipublishing.com/idm
mailto:journal_logo


when the flu virus is entering and multiplying in only a few cells in the respiratory tract) to the stage when the flu virus has
proliferated enough for the immune system to notice. The general incubation period for Influenza (typically known as the flu)
varies for different individuals, usually between one to four days with average incubation period of about two days. This
suggests that it is important to study the different stages of flu infection while studying transmission of infectious diseases.

Although it might be impossible to avoid certain infectious diseases, there are different strategies available that protect
individuals from infection and treat disease once it has developed. It is of high importance to study how such disease reacts to
treatments, and the analysis of treatment stages and treatment effects on infected individuals should be included in models
describing the transmission dynamics of treatable diseases. Several programs such as the Biomedical Advanced Research and
Development Authority have been developed by the U.S. Department of Health and Human Services to provide an integrated,
systematic approach to the development and purchase of vaccines, drugs, therapies, and diagnostic tools necessary for public
health medical emergencies.1

According to the work of Hu et al. (Hu, Nigmatulina, & Eckhoff, 2013), contact rates and patterns among individuals in a
geographic area drive transmission of directly-transmitted pathogens,making it essential to understand and estimate contacts
for simulation of disease dynamics. In their work, Grassly et al. (Grassly& Fraser, 2006) explains different causes of seasonality
in infectious diseases of humans. Theygive different representations of the transmission rate based on the causes of seasonality
in the infectious diseases. In this work, we study the global dynamics of a deterministic and stochastic SEITR epidemic model
with multiple stages of infection and treatments. We assume the population is completely susceptible at the beginning of the
epidemics and derive themeasure of the power of an infectious disease to attack a completely susceptible population using the
deterministicmodel. In the absence of noise, we comparemathematically the expected number of secondary cases of infection
in the presence and absence of treatments and show that the number decreases as the treatment rate increases. We study the
case where the transmission, treatments and recovery rates are assumed to be influenced by external fluctuations caused by
variability in the number of contacts between infected and susceptible individuals due to weather patterns, school terms, etc.
We assume fluctuations in the treatment rates may be caused by limited availability of drugs or effect of seasonality and this
may result in fluctuations in the recovery rates. Such random variations can be modeled by a Gaussian white noise process
causing the rate to fluctuate around amean value. The external noise is able tomodify the dynamical behavior of themodel by
transforming the deterministic SEITR epidemic model to a stochastic epidemic model. We derive the basic reproduction
number in the presence of noise and analyze how the presence of noise in the transmission, treatments and recovery rates
affects the number of infections produced by an infected individual. The paper is organized as follows. In Section 2, we
formulate the deterministic model describing the transmission and spread of certain diseases, as well as its treatments and
recovery. In Section 3, the existence of equilibrium points, and derivation of reproduction number using next generation
method in thepresenceandabsenceof treatments are analyzed.Analysis of theeffectof treatments andeffectofdroppingoutof
treatment on the number of infection produced by an infected individual are investigated analytically and numerically in
Section 4. The local and global stability of the disease-free and endemic equilibriums are discussed in Section 5. By introducing
noise in the transmission, treatment and recovery rates, we formulate and derive a stochastic model analogous to the deter-
ministicmodel in Section 6. The effects of noise on the transmission, treatment and recovery rates, togetherwith the existence
and stability of the disease-free equilibrium point in the presence of noise are investigated analytically and numerically.

2. Deterministic model formulation

By assuming the human population is completely susceptible at the beginning of an epidemics and sub-dividing the total
population, NðtÞ, into susceptible humans SðtÞ, exposed humans EðtÞ, infected untreated IjðtÞ humans in stage j of infection,
infected humans under treatment and in stage j of infection TjðtÞ, and the recovered population RðtÞ, at time t, we investigate
the transmission and treatment of certain infectious diseases. We assume the total human population NðtÞ satisfies NðtÞ ¼
SðtÞ þ EðtÞ þPn

j¼1
ðIjðtÞþTjðtÞÞ þ RðtÞ and humans are recruited into the susceptible population at a rate L. The general popu-

lation is reduced by natural death at a rate m. The population of susceptible humans is reduced by infection due to contact with

infectious (untreated or treated) individual at a full rate b
Pn
j¼1

hjIj. It is well known (Godoy et al., 2018) that influenza vacci-

nation may not prevent infection but reduces the severity of the disease. The Center for Disease and Control 2 claimed that in
randomized clinical trials, there was evidence that some influenza viruses developed resistance or reduced susceptibility to
one or more influenza antiviral CDC recommended FDA-approved drugs like oseltamivir (Tamiflu), zanamivir (Relenza),

peramivir (Rapivab), and baloxavir (Xofluza) drugs2. Several authors (Feng et al., 2011; Gani et al., 2005; Kretzschmar, Schim
van der Loeff, Birrell, Angelis, & Coutinho, 2013; Liu and Zhang, 2011; Otunuga, 2018; Qiu & Feng, 2010) have considered
introducing parameter that accounts for the reduction in infectiousness due to treatments among individuals in their model.

In our model, we let εj be the reduced infectiousness due to treatment in stage j of infection and include the reduced rate b
Pn
j¼1

1 Prevention and treatment, https://www.ncbi.nlm.nih.gov/books/NBK209704/, accessed 5.12.2019.
2 https://www.cdc.gov/flu/treatment/baloxavir-marboxil.htm. Page last reviewed: November 18, 2019.
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εjTj due to treatment. Infected (but not yet infectious) individuals become untreated infectious individuals in stage 1 of
infection at a rate p. Untreated infected individuals in stage k of infection migrate into stage kþ 1 of untreated infection at a
rate rk and die of infection at a rate dk. These individuals receive treatment (and migrate to stage k of treated infected
compartment) at a rate tk. Treated infected individuals in stage k of infection migrate to stage kþ 1 of treated infection at a

rate gk and die of infection at a rate dk. Individuals that stop receiving treatment migrate to stage k of untreated infected
compartment at a rate 4k. Untreated and treated infected individuals in stage k of infection recover and migrate to the
recovered compartment at a rate of jk and hk, respectively. The schematics describing the transmission described above is
given in Fig. 1.

The deterministic model governing S, E, Ik, Tk, R for k ¼ 1;2;…;n, is described as follows:

dS ¼
�
L� bS

Pn
j¼1

�
hjIj þ εjTj

�� mS
�
dt; Sðt0Þ ¼ S0;

dE ¼
�
bS
Pn
j¼1

�
hjIj þ εjTj

�� ðmþ pÞE
�
dt; Eðt0Þ ¼ E0;

dI1 ¼ ðpE � ðmþ d1 þ r1 þ t1 þ j1ÞI1 þ 41T1Þ dt; I1ðt0Þ ¼ I01;
dIk ¼ ðrk�1Ik�1 � ðmþ dk þ rk þ tk þ jkÞIk þ 4kTkÞ dt; Ikðt0Þ ¼ I0k; k ¼ 2;3;…;n;

dT1 ¼ ðt1I1 � ðmþ d1 þ g1 þ 41 þ h1ÞT1Þdt; T1ðt0Þ ¼ T01;

dTk ¼ ðtkIk þ gk�1Tk�1 � ðmþ dk þ gk þ 4k þ hkÞTkÞ dt; Tkðt0Þ ¼ T0k; k ¼ 2;3;…;n;

dR ¼
� Pn

j¼1

�
jjIj þ hjTj

�� mR
�
dt; Rðt0Þ ¼ R0;

(2.1)

Fig. 1. Schematic diagram for the SEITR model. The circle compartments represent group of individuals.
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where the parameters in themodel are described in Table 2, with gn ¼ rn ¼ 0. Since the limit lim
t/∞

supNðtÞ � L=m, we consider
the solution of the model (2.1) in the feasible region

T : ¼
n
ðS; E; I1;…; In; T1;…; Tn;RÞT 2R2nþ3

þ : 0� Sþ Eþ
Xn
j¼1

�
Ij þ Tj

�þR¼N�L

m

o
; (2.2)

where Rþ denotes set of nonnegative real numbers. For the rest of this work, we define k ¼ L=m. It can be shown that T is
positively invariant with respect to (2.1). We set the sizes of S, E, Ik, Tk, R, for k ¼ 1;2;…;n as percentages by setting L ¼ m.

3. Existence of equilibrium points in the presence and absence of treatments

We discuss the existence and stability of the equilibrium points of (2.1) in the presence and absence of treatment. Under
certain conditions (which are discussed in (3.14) and Section 5), system (2.1) has two unique equilibrium points namely, the
disease-free (denoted P0) and endemic (denoted P1) equilibrium points described as

P0 ¼
�
S
0

E
0

I
0
1 … I

0
n T

0
1 … T

0
n R

0
�u

;

P1 ¼ ð S* E
*

I
*
1 … I

*
n T

*
1 … T

*
n R

* Þu:

(3.1)

The equilibrium points P0 and P1 are derived in Subsections 3.1 and 3.2, respectively.

3.1. Disease-free equilibrium P0

The disease-free equilibrium P0 of (2.1) has entries

S
0 ¼ k; E

0 ¼ 0; I
0
j ¼ 0; T

0
j ¼ 0; R

0 ¼ 0; j ¼ 1;2;…; n: (3.2)

In the following, we derive the measure of the power of an infectious disease to attack a completely susceptible popu-
lation. It is the expected number of secondary cases produced, in a completely susceptible population, by a typical infective
individual. This number, called the basic reproduction number and denoted by RT ;n, is calculated explicitly considering n
stages of infection and treatment. The endemic equilibrium, P1, is expressed in terms of RT ;n. We also discuss a case where no
treatment is received in the population and denote the corresponding reproduction number by R0;n. We show that in order for
the number of infection to diminish to zero on the long run, appropriate parameters in the model must be controlled so that
the number RT ;n is at most one. That is, as long as the number of secondary infection produced by an infected individual is not
more than one, the number of infections diminish to zero on the long run. Above the number RT ;n ¼ 1, disease endemic
presist.

3.1.1. Elimination threshold quantity, RT;n, in the presence of treatments
Define8>><>>:

ak ¼ mþ dk þ rk þ tk þ jk;

bk ¼ mþ dk þ gk þ 4k þ hk;
c ¼ mþ p;
k ¼ L=m:

(3.3)

In the presence of treatments, we write (2.1) in the form

dx¼ðF ðxÞ�V ðxÞÞ dt; (3.4)

using the next-generation matrix (Driessche & Watmough, 2002), where.
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x ¼

0BBBBBBBBBBBB@

E
I1
«
In
T1
«
Tn
R
S

1CCCCCCCCCCCCA
;F ¼

0BBBBBB@
bS
Xn
j¼1

�
hjIj þ εjTj

�
0
«

0
0

1CCCCCCCCA
2nþ3�1

;V ¼

0BBBBBBBBBBBBBBBBBB@

cE
a1I1 � 41T1 � pE
a2I2 � r1I1 � 42T2

«

anIn � rn�1In�1 � 4nTn
b1T1 � t1I1

b2T2 � t2I2 � g1T1
«

bnTn � tnIn � gn�1Tn�1

mR�
Xn
j¼1

�
jjIj þ hjTj

�
bS
Xn
j¼1

�
hjIj þ εjTj

�þ mS�L

1CCCCCCCCCCCCCCCCCCCCCA

:

The derivatives D F ðP0Þ ¼
 

vF i
vxj

!
¼
�

Fn 02nþ1�2
02�2nþ1 02�2

�
and D V ðP0Þ ¼

�
vV i
vxj

� ¼ �Vn 02nþ1�2
J3 J4

�
of F and V ,

respectively, are evaluated at P0 and partitioned so that Fn ¼ bk

0BB@
0 h1 h2 … hn ε1 ε2 … εn
0 0 0 … 0 0 0 … 0
0 « « 1 « « « 1 «
0 0 0 … 0 0 0 … 0

1CCA
2nþ1�2nþ1

,

Vn ¼
0@ c 01�n 01�n

s MI �I 4

0n�1 �I t MT

1A, s ¼ ð�p 0 … 0 ÞTn�1, J3 ¼
�
0 �j1 �j2 … �jn �h1 �h2 … �hn
0 bkh1 bkh2 … bkhn bkε1 bkε2 … bkεn

�
,

J4 ¼
�
m 0
0 m

�
, and

MI ¼

0BBBBBB@
a1 0 0 0 … 0
�r1 a2 0 0 … 0
0 �r2 a3 0 … 0
« « « 1 1 «
« « « « 1 «
0 0 … 0 �rn�1 an

1CCCCCCA; MT ¼

0BBBBBB@
b1 0 0 0 … 0
�g1 b2 0 0 … 0
0 �g2 b3 0 … 0
« « « 1 1 «
« « « « 1 «
0 0 … 0 �gn�1 bn

1CCCCCCA;

I 4 ¼ diagð41;42;/;4nÞ; I t ¼ diagðt1; t2;/; tnÞ:

(3.5)

The spectral radius of the matrix FnV�1
n is given by

RT;n ¼ kb
p

c

Xn
k¼1

"
ukhk þ εkvkQk
j¼1
�
ajbj � tj4j

�#; (3.6)

where uk and vk satisfy�
uk ¼ bkrk�1uk�1 þ 4kgk�1vk�1;
vk ¼ tkrk�1uk�1 þ akgk�1vk�1; for k ¼ 1;2;…;n;

(3.7)

and r0 ¼ g0 ¼ 1; u0 ¼ 1; v0 ¼ 0. We note here that ajbj � tj4j ¼ ajbj þ tjbj >0 for j ¼ 1;2;…;n.

Remark 3.1.1. The reproduction number (3.6) can be re-written in matrix form as

RT;n ¼ kb
p

c

Xn
k¼1

266664
ð hk εk Þ

�
bk 4k
tk ak

��
rk�1 0
0 gk�1

��
uk�1
vk�1

�
Yk
j¼1

				� bj 4j
tj aj

�				

377775; (3.8)

where uk�1 and vk�1 are defined in (3.7) and the matrices
�
bk 4k
tk ak

�
and

�
rk�1 0
0 gk�1

�
are coefficient matrices of the

differential equation
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d
�

Ik
Tk

�
¼
��ak fk

tk �bk

��
Ik
Tk

�
þ
�
rk�1 0
0 gk�1

��
Ik�1
Tk�1

�
¼ �

				� bk fk
tk ak

�				� bk fk
tk ak

��1� Ik
Tk

�
þ
�
gk�1 0
0 rk�1

��
Ik�1
Tk�1

�
;

governing Ik and Tk in (2.1) for k ¼ 2;3;/;n.

Remark 3.1.2. Description of the derivation of RT ;n

For amodel with one stage of infection, if i; j ¼ 1;2;3 represent compartments E; I1 and T1, respectively, then the ði; jÞ entry
of the inverse V�1

1 of the matrix V1 defined in (3.5), and obtained as

V�1
1 ¼

0BBBBBB@
1=c 0 0

p

c
b1

a1b1 � t141

b1
a1b1 � t141

41
a1b1 � t141

p

c
t1

a1b1 � t141

t1
a1b1 � t141

a1
a1b1 � t141

1CCCCCCA; (3.9)

is the average time an individual introduced into compartment j spent in compartment i. It follows directly from (3.9) that the
average time an individual introduced into the exposed compartment spent in the untreated infected compartment I1 is

p
c

b1
a1b1�t141

¼ 1
a1

p
c
P∞
j¼0

�
t1
a1

41
b1

�j

, while the average time an individual introduced into the exposed compartment spent in the

treated infected compartment T1 is p
c

t1
a1b1�t141

¼ 1
b1

p
c
P∞
j¼1

�
t1
a1

�j�
41
b1

�j�1

. An infected individual in the untreated and treated

infected compartments Ij and Tj produces new infection in the exposed compartment E at a rate bhj and bεj, respectively. Thus,

the number RT ;1 ¼ bkh1pc
b1

a1b1�t141
þ bkε1

p
c

t1
a1b1�t141

is the expected number of secondary cases produced, in a completely

susceptible population, by a typical infective individual in compartment 1. In general, the average time an individual intro-
duced into the exposed compartment spent in the untreated infected compartment Ik is p

c
ukYk

j¼1

ðajbj � tj4jÞ
, while the average

time an individual introduced into the exposed compartment spent in the treated infected compartment Tk is

p
c

vkYk
j¼1

ðajbj � tj4jÞ
. Hence, RT ;n ¼ bk p

c
Pn
k¼1

266664 ukhkþεkvkYk
j¼1

ðajbj � tj4jÞ

377775.

Remark 3.1.3. Reproduction number R0;n in the absence of treatment

Define�
ak ¼ mþ dk þ rk þ jk;

bk ¼ mþ dk þ gk þ hk:
(3.10)

In the absence of treatment (that is, tk ¼ 0 for k ¼ 1;2;…;n;) we have uk ¼Qk
j¼1ðbjrj�1Þ, vk ¼ 0 for k ¼ 1;2;…;n; and the

reproduction number RT ;n simplifies to the treatment free reproduction number R0;n given by

R0;n ¼ kb
p

c

Xn
k¼1

"
hk
Yk

j¼1

 
rj�1

aj

!#
: (3.11)

This is the reproduction number associated with the model without treatment
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dS ¼
�
L� bS

Pn
j¼1

�
hjIj
�� mS

�
dt;

dE ¼
�
bS
Pn
j¼1

�
hjIj
�� ðpþ mÞE

�
dt

dI1 ¼ ðpE � ðmþ d1 þ r1 þ j1ÞI1Þ dt;
dIk ¼ ðrk�1Ik�1 � ðmþ dk þ rk þ jkÞIkÞ dt; k ¼ 2;3;…;n

dR ¼
�Pn

j¼1
jjIj � m R

�
dt:

(3.12)

In a completely susceptible population receiving no treatment, we describe the quantity R0;n as the expected number of
secondary infection produced by a typical untreated infected individual in a completely susceptible population.

The disease-free equilibrium point of (3.12) reduces to

~P0 ¼
�
~S
0 ~E

0 ~I
0
1 …

~I
0
n

~R
0
�u

; (3.13)

3.2. Endemic equilibrium point, P1, in the presence of treatment

The endemic equilibrium P1 ¼ � S� E
�

I
�
1 … I

�
n T

�
1 … T

�
n R

� �u of system (2.1) described in (3.1) is obtained as8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

S
� ¼ k

RT;n
;

E
� ¼ L

c

�
1� 1

RT;n

�

I
�
k ¼ p

c
L ukYk

j¼1

�
ajbj � tj4j

�
�
1� 1

RT;n

�
;

T
�
k ¼ p

c
L vkYk

j¼1

�
ajbj � tj4j

�
�
1� 1

RT;n

�
; k ¼ 1;2;…;n;

R
� ¼ L

m

p

c

Xn
k¼1

0BBBB@ ukjk þ vkhkYk
j¼1

�
ajbj � t4

�
1CCCCA
�
1� 1

RT;n

�
;

(3.14)

provided RT ;n >1, where uk and vk are defined in (3.7).

Remark 3.2.1. Endemic equilibrium in the absence of treatment.

In the absence of treatment, the endemic equilibrium P1 reduces to

~P1 ¼
�
~S
� ~E

� ~I
�
1 …

~I
�
n

~R
� �u

; (3.15)

where ~P1 is derived from (3.14) by setting tk ¼ 0 and obtained as
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8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

~S
� ¼ k

R0;n
;

~E
� ¼ L

c

�
1� 1

R0;n

�
;

~I
�
k ¼ p

c
L

"Yk

j¼1

 
rj�1

aj

!#�
1� 1

R0;n

�
;

~R
� ¼ L

m

p

c

Xn
k¼1

 
jk

Yk

j¼1

 
rj�1

aj

!!�
1� 1

R0;n

�
:

(3.16)

provided R0;n >1.

4. Effect of treatment and dropping out treatment in the system

In this section, we study how receiving treatment and dropping out of treatment affect the system.

4.1. Effect of treatment of infection in the system

Consider the reproduction number RT ;j corresponding tomodel (2.1) with j stage(s) of infection (derived by setting n ¼ j in
(3.6)). Write RT ;jðtiÞ≡RT ;j as a function of ti for 1 � i; j � n. We define the quantities RT ;jðti /∞Þ≡ lim

ti/∞
RT;jðtiÞ and RT ;jðti ¼ 0Þ≡

RT ;jðtiÞjti¼0 as the expected number of secondary infection produced by a typical infected individual (in a completely sus-
ceptible populationwith j � n stages of infection) as treatment capacity ti goes to infinity and as no treatment is administered
in stage i of infection, respectively.

We can show, after rigorous calculations, that

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>><>>>>>>>>>>:

RT ;jðt1/∞Þ ¼ kb
p

cb1

Xj
k¼1

bukhk þ bvkεkYk
r¼1

rs1

ðarbr þ brtrÞ
;

bu1 ¼ 0; bv1 ¼ 1; and buk;bvk; ks1 are defined in ð4:3Þ8>>>>>>>>>><>>>>>>>>>>:

RT ;jðti/∞Þ ¼ RT;i�1 þ kb
p

cbi
ðui�1ri�1 þ vi�1gi�1Þ

Xj
k¼i

bukhk þ bvkεkYk
r¼1

rsi

ðarbr þ brtrÞ
; for 2 � i � j � n;

bui ¼ 0; bvi ¼ 1; and buk;bvk; ksi are defined in ð4:3Þ

(4.1)
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>><>>>>>>>>>>:

RT;jðt1 ¼ 0Þ ¼ kb
p

ca1

Xj
k¼1

�ukhk þ �vkεkYk
r¼1

rs1

ðarbr þ brtrÞ
;

�u1 ¼ 1; �v1 ¼ 0; and �uk;�vk; ks1 are defined in ð4:3Þ8>>>>>>>>>><>>>>>>>>>>:

RT;jðti ¼ 0Þ ¼ RT;i�1 þ kb
p

caibi

Xj
k¼i

�ukhk þ �vkεkYk
r¼1

rsi

ðarbr þ brtrÞ
; for 2 � i � j � n;

�ui ¼ biri�1�ui�1 þ 4igi�1�vi�1; �vi ¼ aigi�1�vi�1; and �uk;�vk; ksi are defined in ð4:3Þ;

(4.2)

where ui, vi are defined in (3.7) for i ¼ 1;2;/;n, �u0 ¼ 1, �v0 ¼ 0, and8>><>>:
� buk ¼ bkrk�1buk�1 þ 4kgk�1bvk�1;bvk ¼ tkrk�1buk�1 þ akgk�1bvk�1; for k ¼ iþ 1;/; n; 1 � i � n�
�uk ¼ bkrk�1�uk�1 þ 4kgk�1�vk�1;
�vk ¼ tkrk�1�uk�1 þ akgk�1�vk�1; for ksi:

(4.3)

Furthermore,8>>>>><>>>>>:

dRT ;j
dti

¼ aibibi
ðaibi þ bitiÞ2

�
RT ;jðti/∞Þ � RT;jðti ¼ 0Þ�;

d2RT;j
dt2i

¼ � 2aib
2
i bi

ðaibi þ bitiÞ3
�
RT;jðti/∞Þ � RT;jðti ¼ 0Þ�; for 1 � i; j � n:

(4.4)

It follows from (4.4) that the derivative dRT;jðtiÞ
dti

<0 and the graph of RT ;jðtiÞ concaves up for all ti � 0 if and only if

RT ;jðti /∞Þ<RT ;jðti ¼ 0Þ;for 1 � i � j � n. Likewise, dRT ;j

dti
>0 and the graph of RT ;jðtiÞ concaves down for all ti � 0 if and only if

RT ;jðti /∞Þ>RT ;jðti ¼ 0Þ;for 1 � i � j � n. By definition, we expect RT ;jðti /∞Þ<RT ;jðti ¼ 0Þ;for 1 � i;j � n. This shows that
in a population with j stages of infection, the number of secondary infection, RT ;j, produced by an infected individual in a
completely susceptible population decreases as the treatment rate ti increases.

4.1.1. Case where ti≡t for all i ¼ 1;2;/;n
Define

R∞;n ¼ kb
p

c

Xn
k¼1

"
εk

Yk

j¼1

 
gj�1

bj

!#
; (4.5)

where bj is defined in (3.10). For fixed tj ¼ t, j ¼ 1;2;/;n, we write RT ;n≡RT ;nðtÞ (defined in (3.6)) as a function of t. The
number of secondary infection, RT ;nðtÞ, has the property:

RT;n /R∞;n as t/∞:

The function

f ðtÞ¼RT;nðtÞ
R0;n

; (4.6)

is a rational function of t referred to as the relative elimination threshold. The graph of the function has y-intercept f ð0Þ ¼ 1

(following directly from Remark 3.1.1) and negative zeros. The vertical asymptotes are the negative vertical lines t ¼ � ajbj
bj
,

for j ¼ 1;2;/;n . Define
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f ¼ 1
R0;n

kb
p

c

Xn
k¼1

"
εk

Yk

j¼1

 
gj�1

bj

!#
¼

Pn
k¼1

"
εk

Yk
j¼1

 
gj�1

bj

!35
Pn

k¼1

"
hk
Yk
j¼1

 
rj�1

aj

!35: (4.7)

The function f ðtÞ/f as t/∞. The value f is the horizontal asymptote of f ðtÞ. It measures the infection transmission
potential when treatment capacity goes to infinity relative to the transmission potential when no treatment is administered.
It follows from property of rational functions that f R0;n <RT ;nðtÞ � R0;n ðthat is;R∞;n <RT ;n � R0;nÞ if f <1 and R0;n �
RT ;nðtÞ< f R0;n if f >1. This is represented in Fig. 2 below.

Fig. 2 (a) and (b) show the trajectory of f ðtÞ for the cases where f <1 and f >1 , respectively.

Remark 4.1.1. The quantity R∞;n can be described as the expected number of secondary infection produced by a typical
infected individual as the treatment capacity goes to infinity. From the description of R0;n in Remark 3.1.1, we expect R∞;n ¼

kb p
c
Pn
k¼1

"
εk
Qk

j¼1

 
gj�1

bj

!#
< kb p

c
Pn
k¼1

"
hk
Qk

j¼1

 
rj�1

aj

!#
¼ R0;n, that is, we expect the expected number of secondary infection

produced when the treatment capacity goes to infinity to be smaller than the expected number of secondary infection

produced when no treatment is administered. This implies f <1, so that RT ;n <R0;n. This shows that as the treatment rate
increases, the expected number of infection decreases. The highest expected number of infection produced by an infected
individual in a completely susceptible population is R0;n (which is attained when t ¼ 0) while the lowest expected number of
infection is R∞;n (attained as t/∞).

4.2. Effect of dropping out of treatment

Write RT ;jð4iÞ≡RT ;j as a function of 4i for 1 � i; j � n. Using similar definition in Subsection 4.1, we define the quantities
RT ;jð4i /∞Þ and RT ;jð4i ¼ 0Þ as the expected number of secondary infection produced by a typical infected individual (in a
completely susceptible population with j � n stages of infection) as drop out treatment rate 4i goes to infinity and as no one
drops out of treatment in stage i of infection, respectively.

We obtain, after rigorous calculations

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>><>>>>>>>>>>:

RT ;jð41/∞Þ ¼ kb
p

ca1

Xj
k¼1

�ukhk þ �vkεkYk
r¼1

rs1

ðarbr þ ar4rÞ
;

�u1 ¼ 1; �v1 ¼ 0; and �uk;�vk; ks1 are defined in ð4:10Þ;8>>>>>>>>>><>>>>>>>>>>:

RT ;jð4i/∞Þ ¼ RT;i�1 þ kb
p

cai
ðui�1ri�1 þ vi�1gi�1Þ

Xj
k¼i

�ukhk þ �vkεkYk
r¼1

rsi

ðarbr þ ar4rÞ
; for 2 � i � j � n;

�ui ¼ 1;�vi ¼ 0; and �uk;�vk; ksi are defined in ð4:10Þ;

(4.8)

Fig. 2. Graphs of f ðtÞ against t for the cases where f <1 and f >1.
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>><>>>>>>>>>>:

RT;jð41 ¼ 0Þ ¼ kb
p

ca1b1

Xj
k¼1

€ukhk þ €vkεkYk
r¼1

rs1

ðarbr þ ar4rÞ
;

€u1 ¼ b1; €v1 ¼ t1; and €uk;€vk; ks1 are defined in ð4:10Þ;8>>>>>>>>>><>>>>>>>>>>:

RT;jð4i ¼ 0Þ ¼ RT ;i�1 þ kb
p

caibi

Xj
k¼i

€ukhk þ €vkεkYk
r¼1

rsi

ðarbr þ ar4rÞ
; for 2 � i � j � n;

€ui ¼ biri�1€ui�1;
€v€i ¼ tiri�1€ui�1 þ aigi�1

€v€i�1; and €uk; €v€k; ksi are defined in ð4:10Þ;

(4.9)

where ui, vi are defined in (3.7) for i ¼ 1;2;/;n, €u0 ¼ 1, €v0 ¼ 0, and

8><>:
�
�uk ¼ bkrk�1

�uk�1 þ 4kgk�1
�vk�1;

�vk ¼ tkrk�1
�uk�1 þ akgk�1

�vk�1; for k ¼ iþ 1;/;n; 1 � i � n�
€uk ¼ bkrk�1€uk�1 þ 4kgk�1€vk�1;
€vk ¼ tkrk�1€uk�1 þ akgk�1€vk�1; for ksi:

(4.10)

Furthermore,8>>>>><>>>>>:

dRT ;j
d4i

¼ aiaibi
ðaibi þ ai4iÞ2

�
RT;jð4i/∞Þ � RT;jð4i ¼ 0Þ�;

d2RT;j
d42

i

¼ � 2aia
2
i bi

ðaibi þ ai4iÞ3
�
RT ;jð4i/∞Þ � RT;jð4i ¼ 0Þ�; for 1 � i; j � n:

(4.11)

It follows from (4.11) that the derivative dRT;jð4iÞ
d4i

>0 and the graph of RT ;jð4iÞ concaves down for all 4i � 0 if and only if

RT ;jð4i /∞Þ>RT ;jð4i ¼ 0Þ; for 1 � i � j � n. Likewise, dRT;j

d4i
<0 and the graph of RT ;jð4iÞ concaves up for all 4i � 0 if and only if

RT ;jð4i /∞Þ<RT ;jð4i ¼ 0Þ; for 1 � i � j � n. By definition, we expect RT ;jð4i /∞Þ>RT ;jð4i ¼ 0Þ; for 1 � i � j � n. This shows
that in a populationwith j stages of infection, the number of secondary infection, RT ;j, produced by an infected individual in a
completely susceptible population increases as the treatment dropout rate 4i increases.

4.2.1. Case where 4i≡4 for all i ¼ 1;2;/;n
Assume 4j≡4 for j ¼ 1;2;/;n, and write RT ;n≡RT ;nð4Þ. We see that

RT;nð4Þ/R0;n; as 4/∞;

and

RT;nð4¼0Þ¼ kb
p

c

X
k¼1

n
"Y
j¼1

k
 
rj�1

aj

!
hk þ

vkQ
j¼1

k �
ajbj

�εk
#
;

where vk is defined in (3.7) for k ¼ 1;2;/;n. The vertical asymptotes of the rational function RT ;nð4Þ are the negative vertical
lines 4 ¼ � ajbj=aj, for j ¼ 1;2;/;n. Since RT ;nð4Þ is a rational function of 4whose numerator and denominator have the same
degree, it follows that RT ;nð4Þ is an increasing function of 4 if and only if RT ;nð4 ¼ 0Þ � RT ;nð4/∞Þ ¼ R0;n, for 4 � 0. By
definition, we expect RT ;nð4 ¼ 0Þ � RT ;nð4/∞Þ. This shows that as the rate of dropping out of treatment increases, the
expected number of secondary infection produced by an infected individual increases to R0;n.
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4.2.2. Numerical results verifying the effects of treatment and dropping out of treatment on the number of infections
Here, we use relevant parameters to the transmission dynamics of influenza disease in the United States for the numerical

simulations of the reproduction number as a function of the treatment and dropout rates. We set the life expectancy of the
United States population to 80 years3 and the total population to be 329;256;465 as of July 2018.4 Using the parameters
collected from the Center for Disease Control and Prevention (CDC), the time from when a person is exposed and infected
with flu to when symptoms begin is about 2 days, but can range from about 1 to 4 days5 and uncomplicated influenza signs
and symptoms typically resolve after 3e7 days for the majority of people.6 Antiviral drugs, when used for treatment, can
reduce symptoms and shorten sick time by 1 or 2 days6.

CDC7 estimates that, fromOctober 1, 2018, throughMay 4, 2019, there have been 37:4� 42:9million flu illness, 17:3� 20:1
million flu medical visits, 531� 647 thousand flu hospitalizations and 36:4� 61:2 thousand flu death. We define εj as a

reduction factor in infectiousness (in stage j of infection) due to flu treatment and it reduces the infectious period to 1
hj
< 1

jj
. For

more information about the parameter εj, we refer readers to the work of Lipsitch et al. (Liu & Zhang, 2011), Feng et al. (Feng

et al., 2011), Kretzschmar et al. (Kretzschmar et al., 2013) and CDC2. In their work, Lipsitch (Liu and Zhang, 2011) introduced a
parameter which is the reduction in hazard of infection for an individual on prophylaxis. They claimed with probability ep,
transmission is blocked and of those blocked infections, a proportion ap are only partially blocked. Using two infectious

stages, we set 1
r1

¼ 4, 1r2 ¼ 3, 1
g1

¼ 4, 1
g2

¼ 2, b ¼ 0:8, h1 ¼ 0:5, h2 ¼ 0:106, ε1 ¼ 0:2, ε2 ¼ 0:05, t1 ¼ 0:08, t2 ¼ 0:12, 41 ¼ 1= 3,

42 ¼ 1=4, j1 ¼ 1=5, j2 ¼ 1=10, h1 ¼ 1=4, h2 ¼ 1=8, d1 ¼ 1:43� 10�4, d2 ¼ 1:1� 10�4, d1 ¼ 0:925� 10�4, d2 ¼ 0:8� 10�4.

The value 20:1
329:27 for the number

Pn
j¼1

Tjð0Þ of individuals under treatment is close to the number reported by Biggerstaff et al.

(Biggerstaff, Jhung, Kamimoto, Balluz, & Finelli, 2012). According to the paper published by Tokars at al. (Tokars, Olsen, &
Reed, 2018), between 3% and 11:3% of the U.S. population gets infected and develops flu symptoms each year. The value
37:4

329:27 is approximately in this reported range. See Tables 1, 2 and 3 for parameter values and descriptions.
Fig. 3 (a) shows the graph of RT ;1≡RT ;1ðtÞ against t≡t1. Fig. 3 (b) shows the graph of RT ;2≡RT ;2ðtÞ against t≡ t1 ¼ t2. The

graphs show that with no treatment, the reproduction number is R0;n, and as more treatment is introduced into the popu-
lation the number of secondary infection RT ;n reduces until it approaches R∞;n, which is the least number of secondary
infection that can be produced by an infected individuals when introduced into susceptible population. This is explained in
Subsection 4.1.

Fig. 4 (a) shows the graph of RT ;1≡RT ;1ð4Þ against 4≡41. Fig. 4 (b) shows the graph of RT ;2≡RT ;2ð4Þ against 4≡ 41 ¼ 42. The
graphs show that the number of secondary infection RT ;n increases to R0;n as individuals drop out of treatment. This is
explained in Subsection 4.2.

Fig. 5 (a) shows the graph of RT ;1≡RT ;1ðt;4Þ against t≡t1 and 4≡41. Fig. 5 (b) shows the graph of RT ;2ðt;4Þ against t≡ t1 ¼
t2 and 4≡41 ¼ 42.

5. Existence and stability of equilibrium points

In this section, we discuss the endpoint behavior of the solution of (2.1). We give conditions under which the solution
converges on the long run to the disease-free or endemic equilibrium.

5.1. Existence and stability of disease-free equilibrium P0 in the presence of treatment

The following theorems show the condition for the local and global stability of the disease-free equilibrium, P0. We study
condition(s) under which disease elimination exists on the long run. The idea presented here is similar to thework in Otunuga
(Otunuga, 2018). To analyze the local asymptotic stability of P0, we linearize (2.1) about P0 and show that the real part of all
eigenvalues of the coefficient matrix of the linear associated system is negative.

DefineJ ¼ ð S� k E I1…In T1…Tn R Þu. The linearization of (2.1) along the disease-free equilibrium P0 is obtained as

d J¼A J dt; Jðt0Þ¼J0; (5.1)

3 https://www.cia.gov/library/publications/the-world-factbook/rankorder/2102rank.html.
4 https://www.cia.gov/library/publications/the-world-factbook/geos/us.html.
5 https://www.cdc.gov/flu/about/keyfacts.htm. Page last reviewed: August 27, 2018.
6 https://www.cdc.gov/flu/professionals/acip/clinical.htm. Page last reviewed: March 8, 2019
7 https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm. Page last reviewed: May 9, 2019
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where A ¼

0BB@
A1;1 A1;2 A1;3 A1;4
A2;1 A2;2 A2;3 A2;4
A3;1 A3;2 A3;3 A3;4
A4;1 A4;2 A4;3 A4;4

1CCA with A1;1 ¼
��m 0

0 �c

�
, A1;2 ¼ bk

��h1 �h2 … �hn
h1 h2 … hn

�
,

A1;3 ¼ bk

��ε1 �ε2 … �εn
ε1 ε2 … εn

�
, A1;4 ¼

�
0
0

�
, A2;1 ¼

�
01�1 p

0n�1�1 0n�1�1

�
, A2;2 ¼ � MI , A2;3 ¼ I 4, A2;4 ¼ A3;4 ¼ ð0n�1 Þ,

A3;1 ¼ ð0n�2 Þ, A3;2 ¼ I t, A3;3 ¼ � MT , A4;1 ¼ ð01�2 Þ, A4;2 ¼ ðj1 j2/jn Þ, A4;3 ¼ ðh1 h2/hn Þ, A4;4 ¼ � d, and MI ;MT ;

I 4;I t are defined in (3.5). We can express the characteristic polynomial of A in the form

detðA� rI 2nþ3�2nþ3Þ¼ � ðrþmÞ detðA� rI 2nþ2�2nþ2Þ; (5.2)

where A is the square matrix formed by deleting the first row and column of A in (5.1) and r is the eigenvalue of A.

Table 1
Description of variables for the epidemic model.

Variable Description

S Population of susceptible individuals
E Population of exposed individuals
Ik Population of untreated infected individuals in stage k of infection
Tk Population of treated infected individuals in stage k of infection

R Population of individuals who recovered from disease

Table 2
Description of parameters for the epidemic model.

Parameter Description

L Recruitment rate into the population
b Transmission rate of infection
hk Infectivity of untreated individuals in stage k of infection
εk Reduced infectiousness due to treatment in stage k of infection
m Natural death rate
p Infectious rate for exposed individuals
dk Death rate associated with untreated infection in stage k of infection

dk Death rate associated with treated infection in stage k of infection

tk Treatment rate of infected individuals in stage k of infection
4k Rate of dropping out of treatment in stage k
rk Transition rate from stage k to kþ 1 for untreated individuals
gk Transition rate from stage k to kþ 1 for treated individuals
jk Recovery rate for untreated individuals in stage k of infection
hk Recovery rate for treated individuals in stage k of infection

Fig. 3. Effect of treatment on the reproduction number RT ;n for n ¼ 1 and n ¼ 2.
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Theorem 5.1. The real part of all eigenvalues of A is negative if RT ;n <1. One of the eigenvalues of A is zero if RT ;n ¼ 1 and at least
one of the eigenvalues is positive real if RT ;n >1.

Proof. It suffices to show that themaximum real part of all eigenvalues of A, denoted, sðAÞ, is less than zero if RT ;n < 1. To do
this, we use relations D12 and J29 in (Plemmons, 1977) to show that the real part of each eigenvalues of the matrixB ¼ � A is
positive. The matrix can be written in the form

B ¼L U ; (5.3)

where L and U are lower and upper diagonal matrices, respectively, with positive diagonals. The matrices L ¼ ðL i;jÞ and
U ¼ ðU i;jÞ are computed rigorously as follows:

L i;j ¼
1
D j

										
B 1;1 B 1;2 … B 1;j
B 2;1 B 2;2 … B 2;j
« « … «

B j�1;1 B j�1;2 … B j�1;j
B i;1 B i;2 … B i;j

										
; for i � js1; L i;1 ¼

		B i;1
		

D 1
for i ¼ 1; 2;…;2nþ 2; and 0 elsewhere;

Fig. 4. Effect of dropping out of treatment on the reproduction number RT ;n for cases n ¼ 1 and n ¼ 2.

Fig. 5. Effect of treatment and dropping out of treatment on the reproduction number for the cases n ¼ 1 and n ¼ 2, and RT ;n <1.
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U i;j ¼
1

D i�1

								
B 1;1 … B 1;i�1 B 1;j
B 2;1 … B 2;i�1 B 2;j
« « « «

B i;1 … B i;i�1 B i;j

								; for 1si � j; U 1;j ¼ B 1;j; for j ¼ 1;2;…;2nþ 2; and 0 elsewhere;

where D 0 :¼ 1, and D j ¼

								
B 1;1 B 1;2 … B 1;j
B 2;1 B 2;2 … B 2;j
« « … «

B j;1 B j;2 … B j;j

								 for j ¼ 1;2;…;2nþ 2, and can be simplified as

a0 ¼ 1; R0;0 ¼ 0;

R0;j ¼ kb
p

c

Xj
k¼1



hk
Yk

r¼1

�
rr�1
ar

��
; j ¼ 1;2;/;nþ 1

RT ;j ¼ RT;j þ kb
p

c
ujYj

k¼1

ðakbk � tk4kÞ

Xn
k¼jþ1



hk
Yk

r¼jþ1

�
rr�1
ar

��
; j ¼ 1;2;/;n� 1

D j ¼ c
hQj�1

k¼0ak
i�
1� R0;j�1

�
; for j ¼ 1;2;/;nþ 1;

D nþ1þj ¼ c
hQj

k¼1ðakbk � tk4kÞ
i�Yn

k¼jþ1
ak
��

1� RT;j
�
; for j ¼ 1;2;/;n� 1;

D 2nþ1 ¼ c
�Qn

k¼1ðakbk � tk4kÞ
i�
1� RT ;n

�
;

D 2nþ2 ¼ c m
�Qn

k¼1ðakbk � tk4kÞ
i�
1� RT ;n

�
;

(5.4)

where j:j is the determinant operator, fak; bkg and { RT ;n;uk} are defined in (3.3) and (3.6), respectively. Since uk > uj
Qk

r¼jþ1

ðbrrr�1Þ and
Qk

r¼jþ1ðarbrÞ>
Qk

r¼jþ1ðarbr �tr4rÞ for k ¼ jþ 1; /; n, it follows that

kb p
c

ujYj
k¼1

ðakbk � tk4kÞ

Pn
k¼jþ1



hk
Qk

r¼jþ1

�
rr�1
ar

��
¼ kb p

c
Pn

k¼jþ1

266664
hkuj

Yk
r¼jþ1

ðbrrr�1Þ

Yj
r¼1

ðarbr � tr4rÞ
Yk

r¼jþ1

ðarbrÞ

377775< kb p
c
Pn

k¼jþ1

26664 hkukYk
r¼1

ðarbr � tr4rÞ

37775 and so

RT ;j <RT ;n for j ¼ 1;2;/;n� 1. Therefore, if RT ;n <1, it follows from (5.4) that R0;j�1 <RT ;n for j ¼ 1;2;/;nþ 1,D j > 0 and the

diagonal entries U j;j ¼ D j

D j�1
>0 for j ¼ 1;2; /; 2nþ 2. Since B2Z2nþ2 is a Z-matrix

ðthat is; bi;j � 0 if isj;1� i; j� 2nþ2; whereB ¼ ðbi;jÞÞ and the diagonal entries L j;j ¼ D j

D j
¼ 1 for j ¼ 1;2;…; 2nþ 2, it

follows from relations D12 and J29 in (Plemmons, 1977) that the real part of each eigenvalues of matrixB is positive, which is
in turn equivalent to sðAÞ<0. The determinant of the matrix A is D2nþ2, which is the product of all 2nþ 2-eigenvalues of A. If
RT ;n ¼ 1, then D2nþ2 ¼ 0, which means at least one of the eigenvalues of A is zero. If RT ;n >1, then D2nþ2 <0, which means at

least one of the eigenvalues of A is positive. -

Theorem 5.2. The disease-free equilibrium P0 of (2.1) is locally asymptotically stable if RT ;n <1 and unstable if RT ;n > 1.

Proof. The proof follows from (5.2) and Theorem 5.1. -
The above theorem shows that if RT ;n <1, the system ðS; E; I1;/; In; T1;/; Tn;RÞ approaches the equilibrium point P0

whenever it starts somewhere near it in T . The local stability of the disease-free equilibrium ~P0 of system (3.12) without
treatment follows immediately from Theorem 5.2 by setting tk ¼ 0 for all k ¼ 1;2;/;n. We state the theorem belowwithout
proof.

Corollary 5.3. The disease-free equilibrium ~P0 of (3.12) is locally asymptotically stable if R0;n <1 and unstable if R0;n > 1.

The following theorem gives the threshold under which disease elimination (considered independent of the initial
conditions in T ) exists.

Theorem 5.4. The disease-free equilibrium P0 of (2.1) is globally stable in the feasible region T if RT ;n � 1.

Proof. Define the Lyapunov function L : Rþ
2nþ2/Rþ by
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LðS; E; I1; I2;…; In; T1;…; TnÞ¼
�
S� S

0 � S
0
ln

S

S
0

�
þ6Eþ

Xn
k¼1

bfkIk þ
Xn
k¼1

bqkTk; (5.5)

where Rþ is the set of positive real numbers, 6, bfk and bqk satisfy

6 ¼ 1; bfnbqn
!

¼ bS
0

anbn � tn4n

 
hnbn þ tnεn

hn4n þ anεn

!
;

 bfn�kbqn�k

!
¼ 1

an�kbn�k � tn�k4n�k

" 
bn�krn�k gn�ktn�k

4n�krn�k gn�kan�k

! bfn�kþ1bqn�kþ1

!
þ bS

0
 
hn�kbn�k þ tn�kεn�k

hn�k4n�k þ an�kεn�k

!#
;

for k ¼ 1;2; 3;…;n� 1; (5.6)

and ð bf1
bq1 Þu reduces to� bf1bq1
�
¼ c
p

�
RT;n
RT;n

�
;

where

RT;n ¼ kb
p

c

Xn
k¼1

266664 hkuk þ εkvkYk
j¼1

�
ajbj � tj4j

�
377775; (5.7)

and uk and vk are recurssive sequences defined by8<:u1 ¼ 41; v1 ¼ a1;
uk ¼ bkrk�1uk�1 þ 4kgk�1vk�1;
vk ¼ tkrk�1uk�1 þ akgk�1vk�1; for k ¼ 2; 3; :::;n:

The coefficients 6, bfk and bqk satisfy bfkak � bfkþ1rk � bS
0
hk � tk

bqk ¼ 0, bqkbk � bqkþ1gk � bS
0
εk � 4k

bfk ¼ 0 for k ¼ 1;2;…;

n� 1, bfnan � tnbqn � bS
0
hn ¼ 0 and bqnbn � 4nbfn � bS

0
εn ¼ 0. It follows from (5.5) and (5.6) that the derivative of L computed

along solution of (2.1) is

dL
dt

¼LþmS
0 �LS

0



S�mS�ð1�6ÞbS
X
k¼1

n

ðhkIk þ εTkÞ� ð6c� bf1pÞE �
X
k¼1

n�1�bfkak � bfkþ1rk � bS
0
hk � tk

bqk�Ik
�
X
k¼1

n�1�bqkbk � bqkþ1gk � bS
0
εk �4k

bfk

�
Tk �

�bfnan �bS
0
hn � tnbqn�In � �bqnbn �bS

0
εn �4n

bfn

�
Tn:

If RT ;n � 1, then ð6c � bf1pÞ � 0. Thus, it follows from (5.6) and (5.7) that bfk and bqk are positive for k ¼ 1;2;/;n and

dL
dt

� �L

 
S
0

S
þ S

S
0 �2

!
� 0

using the fact that S
0 ¼ k ¼ L=m and 1 ¼

 
S
0

S
S
S
0

!1=2

� 1
2

 
S
0

S þ S
S
0

!
. If RT ;n <1, then dL=dt ¼ 0 if and only if S ¼ S

0
, E ¼ 0, Ik ¼ 0

and Tk ¼ 0 for all k ¼ 1;2;…;n. Substituting this into the equation for dR=dt in (2.1) shows that R/0 as t/∞. If RT ;n ¼ 1, then

dL=dt ¼ 0 if and only if S ¼ S
0
. The largest invariant set of (2.1) contained in fðS; E; I1;…; In; T1;…; Tn;RÞu 2T : dL =dt¼ 0g is

the set fP0g. The global stability of P0 follows from the LaSalle invariance principle (LaSalle, 1976). -
The above theorem shows that disease can be eliminated on the long run from the population if parameters are controlled

so that the elimination threshold RT ;n is at most 1. This elimination is independent of the initial number of infection. The
global stability of the disease-free equilibrium ~P1 of system (3.12) without treatment follows immediately from Theorem 5.4
by setting tk ¼ 0 for all k ¼ 1;2;/;n. We state the theorem below without proof.

Corollary 5.5. The disease-free equilibrium ~P0 of (3.12) is globally asymptotically stable in the feasible region T if R0;n � 1.
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5.1.1. Numerical results verifying global stability of disease-free equilibrium P0
Here, we use relevant parameters (given in Table 3) to the transmission dynamics of influenza disease in the United States

for the numerical simulations of the number of susceptible, untreated infected, treated infected and recovered individuals
satisfying the SEITR models (2.1) and (3.12).

Fig. 6 (a) shows the comparison of the trajectories of the number (in percentages) of exposed (En), untreated infected (I1n)
population in stage 1 of infection for model (3.12) (no treatment) with the trajectories of the number of exposed (E), untreated
infected (I1) and treated infected (T1) population in stage 1 of infection for model (2.1) (with treatment) for the case where
n ¼ 1. Fig. 6 (b) shows the comparison of the trajectories of the number of exposed (En), untreated infected (I1n) and (I2n)
population in stages 1 and 2 of infection, respectively, for model (3.12) with the trajectories of the number of exposed (E),
untreated infected (I1), (I2) and treated infected (T1), (T2) populations in stages 1 and 2 of infection, respectively, for model
(2.1) with the case n ¼ 2. It is clear from the graph that the introduction of treatment in the system reduces the number of
exposed and infected individuals (that is, E< En, I1 < I1n and I2 < I2n) after some days. The number of exposed and infected
individuals tends to zero on the long run and the number of susceptible individuals tends to 1. In this case, R01 ¼ 0:8885,
R02 ¼ 0:9971, RT1 ¼ 0:8337. and RT2 ¼ 0:9255. The graph of the solution ðSðtÞ; EðtÞ; I1ðtÞ;/; InðtÞ;RðtÞÞ of system (3.12)
converges to ~P0 as t/∞. This confirms Corollary 5.5. Likewise, the graph of the solution
ðSðtÞ; EðtÞ; I1ðtÞ;/; InðtÞ; T1ðtÞ;/; TnðtÞ;RðtÞÞ of system (2.1) converges to P0 as t/∞. This confirms Theorem 5.4.

5.2. Existence and stability of endemic equilibrium P1 in the presence of treatment

Theorem 5.6. The endemic equilibrium P1 (given in (3.14)) of (2.1) exists if and only if RT ;n >1 and does not exist if RT ;n < 1. It
becomes disease-free (that is, P1 ¼ P0) if RT ;n ¼ 1.

Proof. It follows directly from (3.14) that S
�
>0, E

�
>0, I

�
k >0, T

�
k >0 and R

�
>0 for k ¼ 1;2;…;n, if RT ;n >1. The result for the

case where RT ;n � 1 follows from (3.14). -

Table 3
Parameter values for the epidemic model: Case study Influenza.

Parameter Description Default Value References

L Recruitment rate into the population 1
80� 365

day�1 CIA3

b Transmission rate of infection Pn
j¼1

bhj ¼ 0:5 Feng et al. (2011)

hk Infectivity of untreated individuals in stage k of infection 0.5 (Feng et al., 2011; Roosa & Chowell, 2019)
εk Reduced infectiousness due to treatment in stage k of

infection
0.2

Feng et al. (2011)

p Infectious rate for exposed individuals 1
p
¼ 2 (days) CDC5

m Natural death rate L CIA3

dk Death rate associated with untreated infection 1:43� 10�4
Murphy, Xu, Kochanek, and Arias (2018)

dk Death rate associated with treated infection Assumed

tk Treatment rate of individuals in stage k of infection Pn
j¼1

tj2½0:05;0:2�

(day�1)

CDC6

4k Rate of dropping out of treatment in stage k Pn
j¼1

1
4j

¼ 7 (days)
Assumed

rk Average duration of untreated infection Pn
j¼1

1
rj
2½3; 7� (days) CDC6

gk Average duration of treated infection Pn
j¼1

1
gj
2½1; 6� (days) CDC6

jk Recovery rate for untreated individuals in stage k of infection Pn
j¼1

1
jj
2½3;15� (days) (Feng et al., 2011; Roosa & Chowell, 2019)&

Assumed

hk Recovery rate for treated individuals in stage k of infection Pn
j¼1

1
hj
2½2;14� (days) (Feng et al., 2011; Roosa & Chowell, 2019)&

Assumed

Sð0Þ Initial susceptible Population Assumed
Eð0Þ Initial Exposed Population AssumedPn
j¼1

Ijð0Þ
Initial Untreated Infected Population 37:4

329:27
CIA3, CDC7

Pn
j¼1

Tjð0Þ
Initial Treated Infected Population 20:1

329:27
CIA3, CDC7

Rð0Þ Initial Recovered Population Assumed
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The following theorem gives the threshold for persistence of endemic (considered independent of the initial number of
infection).

Theorem 5.7. The endemic equilibrium P1 of the system (2.1) is globally stable in the feasible region T if RT ;n >1 and fk >0; mk >
0; where fk and mk are given in ð5:11Þ:

Proof. The existence of the endemic equilibrium P1 follows from Theorem 5.6 if RT ;n >1. Assume RT ;n >1. Define the
Lyapunov function L : Rþ

2nþ2/Rþ by

LðS; I1;…; In; T1;…; TnÞ¼
�
S� S

� � S
�
ln

S

S
�

�
þ6�

�
E� E

� � E
�
ln

E

E
�

�
þ
Xn
k¼1

f
�
k

�
Ik � I

�
k � I

�
k ln

Ik
I
�
k

�

þ
Xn
k¼1

q
�
k

�
Tk � T

�
k � T

�
k ln

Tk
T
�
k

�
; (5.8)

where 6�, f�
k and q

�
k, k ¼ 1;2;…;n, are positive constants defined by

6� ¼ 1;0@f
�
n

q
�
n

1A ¼ bS
�

anbn � tn4n

 
hnbn þ tnεn

hn4n þ anεn

!
;

0B@f
�
n�k

q
�
n�k

1CA ¼ 1
an�kbn�k � tn�k4n�k

264 bn�krn�k gn�ktn�k

4n�krn�k gn�kan�k

!0B@f
�
n�kþ1

q
�
n�kþ1

1CAþ bS
�
 
hn�kbn�k þ tn�kεn�k

hn�k4n�k þ an�kεn�k

!375;
for k ¼ 1;2; 3;…;n� 1; (5.9)

and
�
f
�
1 q

�
1

�u
reduces to 

f
�
1

q
�
1

!
¼ S

� c
kp

�
RT;n
RT;n

�
;

where RT ;n is given in (5.7). It follows from (5.9) and (3.14) that 6�c� f
�
1p ¼ 0, f�

kak � f
�
kþ1rk � bS

�
hk � tkq

�
k ¼ 0, q

�
kbk�

q
�
kþ1gk � bS

�
εk � 4kf

�
k ¼ 0 for k ¼ 1;2;…;n� 1, f�

nan � bS
�
hn � tnq

�
n ¼ 0 and q

�
nbn � bS

�
εn � 4nf

�
n ¼ 0.

The derivative of L computed along solution of (2.1) is

Fig. 6. Graphs of comparison of deterministic trajectories of solution of system (2.1) and (3.12) for the cases where n ¼ 1 and n ¼ 2, respectively.
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dL
dt

¼ L�L
S
�

S
� mSþ mS

� � ð1�6�ÞbS
X
k¼1

n

ðhkIk þ εkTkÞ �
�
6�c� f

�
1p
�
E �

X
k¼1

n�1�
f
�
kak � f

�
kþ1rk � bS

�
hk � tkq

�
k
�
Ik

�
X
k¼1

n�1�
q
�
kbk � q

�
kþ1gk � bS

�
εk � 4kf

�
k
�
Tk �

�
f
�
nan � bS

�
hn � tnq

�
n
�
In �

�
q
�
nbn � bS

�
εn � 4nf

�
n
�
Tn � f

�
1pI

�
1
E
I1

�
X
k¼1

n �
f
�
k4kI

�
k
Tk
Ik

þ q
�
ktkT

�
k
Ik
Tk

�
�
X
k¼2

n �
f
�
krk�1I

�
k
Ik�1
Ik

þ q
�
kgk�1T

�
k
Tk�1
Tk

�
�6�bE�

X
k¼1

n �
hk

SIk
E

þ εk
STk
E

�
;

þ
X
k¼1

n �
f
�
kakI

�
k þ q

�
kbkTk

�þ6�cE�:

Define

s ¼ S

S
�; e ¼ E

E
�; ik ¼

Ik
I
�
k

; and tk ¼ Tk
T
�
k

for k ¼ 1;2;…;n;

C¼LþmS
� þ
X
k¼1

n �
f
�
kakI

�
k þ q

�
kbkTk

�þ6�cE�:

We have

dL
dt

¼ C � L

s
� mS

*
s� ð1�6*ÞbS*s

Xn
k¼1

�
hkI

*
kik þ εkT

*
ktk
�� �6*c� f

*
1p
�
E
*
e

�
Xn�1

k¼1

�
f
*
kak � f

*
kþ1rk � bS

*
hk � tkq

*
k
�
I
*
kik �

Xn�1

k¼1

�
q
*
kbk � q

*
kþ1gk � bS

*
εk � 4kf

*
k
�
T
*
ktk �

�
f
*
nan � bS

*
hn � tnq

*
n
�
I
*
nin

��q*nbn � bS
*
εn � 4nf

*
n
�
T
*
ntn � f

*
1pE

* e
i1
�
Xn
k¼1

�
f
*
k4kT

*
k
tk
ik
þ q

*
ktkI

*
k
ik
tk

�
�
Xn
k¼2

�
f
*
krk�1I

*
k�1

ik�1
ik

þ q
*
kgk�1T

*
k�1

tk�1
tk

�

�6*bS
*Xn
k¼1

�
hkI

*
k
sik
e

þ εkT
*
k
stk
e

�
;

¼ �z
�
sþ 1

s
� 2

�
�
Xn
k¼2

gk

0@1
s
þ sik

e
þ e
i1
þ
Xk
j¼2

ij�1

ij
� ðkþ 2Þ

1A� g1

�
1
s
þ si1

e
þ e
i1
� 3

�

�
Xn
k¼2

fk

0@1
s
þ stk

e
þ e
i1
þ
Xk
j¼2

ij�1

ij
þ ik
tk

� ðkþ 3Þ
1A� f1

�
1
s
þ st1

e
þ e
i1
þ i1
t1

� 4
�
�
Xn
k¼1

dk

�
ik
tk

þ tk
ik
� 2

�

�
Xn
k¼2

mk

0@1
s
þ stk

e
þ e
i1
þ
Xk
j¼2

tj�1

tj
þ i1
t1

� ðkþ 3Þ
1A;

(5.10)

where
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z ¼ mS
*
;

dk ¼ 4*
kfkT

*
k; for k ¼ 1;2; :::;n;

gk ¼ 6*bS
*
hkI

*
k; for k ¼ 1;2; :::;n;

mk ¼ q
*
kgk�1T

*
k�1 � q

*
kþ1gkT

*
k; for k ¼ 2;3;/;n� 1;

mn ¼ q
*
ngn�1T

*
n�1;

f1 ¼ 6*bS
*
ε1T

*
1;

fk ¼ q
*
ktkI

*
k � dk >0; for k ¼ 2;3;/; n;

C ¼ 2zþ
Xn
k¼1

ðð2þ kÞgk þ ð3þ kÞfk þ 2dkÞ þ
Xn
k¼2

ð3þ kÞmk:

(5.11)

hence, from (5.10)e(5.11) and the fact that the arithmetic mean of a list of non-negative real numbers is greater than or equal

to the geometric mean of the same list (Steele, 2004), it follows that 1 ¼
�
s 1s

�1
2

� 1
2

�
s þ 1

s

�
; 1 ¼

�
1
s
si1
e

e
i1

�1
3

� 1
3

�
1
s þ si1

e þ e
i1

�
;

1 ¼
�
1
s
st1
e

e
i1

i1
t1

�1
4

� 1
4

�
1
s þ st1

e þ e
i1
þ i1

t1

�
; 1 ¼

 
1
s
sik
e

e
i1

Qk
j¼2

ij�1

ij

! 1
kþ2

� 1
kþ2

 
1
s þ sik

e þ e
i1
þ Pk

j¼2

ij�1

ij

!
;

1 ¼
 

1
s
stk
e

e
i1

ik
tk

Qk
j¼2

ij�1

ij

! 1
kþ3

� 1
kþ3

 
1
s þ stk

e þ e
i1
þ ik

tk
þ Pk

j¼2

ij�1

ij

!
; 1 ¼

 
1
s
stk
e

e
i1

i1
t1

Qk
j¼2

tj�1
tj

! 1
kþ3

� 1
kþ3

 
1
s þstk

e þe
i1
þi1

t1
þPk

j¼2

tj�1
tj

!
for

k ¼ 2;…;n, and 1 ¼
�

ik
tk

tk
ik

�1
2

� 1
2

�
ik
tk
þ tk

ik

�
, for k ¼ 1;2;…;n, and

dL
dt

� 0:

Equality holds if and only if S ¼ S
�
, E=E

� ¼ Ij�1=I
�
j�1 ¼ Ij=I

�
j ¼ Tj�1=T

�
j�1 ¼ Tj=T

�
j ¼ 1 for j ¼ 2;3;…;n. Using (3.14) and the

fact that RðtÞ satisfies (2.1), it follows that RðtÞ/R
�

as t/∞. The largest invariant set of (2.1) contained in
fðS; E; I1;…; In; T1;…; Tn;RÞu 2T : dL =dt¼ 0g is the singleton fP1g. By the LaSalle’s Invariance Principle (LaSalle, 1976), it
follows that P1 is globally stable in the feasible region if RT ;n >1 . -

Fig. 7. Graphs of comparison of deterministic trajectories of solution of system (2.1) and (3.12) for the cases where n ¼ 1 and n ¼ 2, with RT ;n > 1.
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The global stability of the endemic equilibrium ~P1 of system (3.12) without treatment follows immediately from Theorem
5.7 by setting tk ¼ 0 for all k ¼ 1;2;/;n. We state the theorem below without proof.

Corollary 5.8. The endemic equilibrium ~P1 (given in (3.16)) of (3.12) is globally asymptotically stable if R0;n >1.

5.2.1. Numerical results verifying the global stability of P1 and effect of treatment
Using two infectious stages, we use the same values of parameters given in Table 3 except that we set b ¼ 0:5; h1 ¼ 1:5;

h2 ¼ 0:5; ε1 ¼ 0:5; ε2 ¼ 0:01; m ¼ 0:0125: .
Fig. 7 (a) shows the comparison of the trajectories of the number of exposed (En), untreated infected (I1n) individuals for

model (3.12) with trajectories of the number of exposed (E), untreated infected (I1) and treated infected (T1) individuals for
model (2.1) for the case where n ¼ 1 and RT ;1 >1. Fig. 7 (b) shows the comparison of the trajectories of the number of exposed
(En), untreated infected (I1n), (I2n) individuals for model (3.12) with trajectories of the number of exposed (E), untreated
infected (I1), (I2), and treated infected (T1), (T2) individuals for model (2.1) for the case where n ¼ 2 and RT ;2 > 1. It is clear
from the graph that the introduction of treatment in the system reduces the number of exposed and infected individuals (that
is, E< En, I1 < I1n and I2 < I2n) after some days. In this case, R01 ¼ 1:7397, R02 ¼ 1:9549, RT1 ¼ 1:5934. and RT2 ¼ 1:7665. The

endemic equilibrium point for system (3.12) is (S
� ¼ 0:5748;E

� ¼ 0:0104; I
�
1 ¼ 0:0112;R

� ¼ 0:1475) for the case n ¼ 1 and

(S
� ¼ 0:5115; E

� ¼ 0:0119; I
�
1 ¼ 0:0129; I

�
2 ¼ 0:0053; R

� ¼ 0:1983) for the case n ¼ 2. Likewise, the endemic equilibrium

points for system (2.1) for cases n ¼ 1 and n ¼ 2 are (S
� ¼ 0:6276;E

� ¼ 0:0091; I
�
1 ¼ 0:0087;T1 ¼ 0:0010;R

� ¼ 0:1594) and

(S
� ¼ 0:5661;E

� ¼ 0:0106;I
�
1 ¼ 0:0101;I

�
2 ¼ 0:0037;T

�
1 ¼ 0:0012;T

�
2 ¼ 0:000842;R

� ¼ 0:2240), respectively. The graph of the

solution ðSðtÞ; EðtÞ; I1ðtÞ;/; InðtÞ;RðtÞÞ of system (3.12) converges to ~P1 as t/∞. This confirms Corollary 5.8. Likewise, the
graph of the solution ðSðtÞ; EðtÞ; I1ðtÞ;/; InðtÞ; T1ðtÞ;/; TnðtÞ;RðtÞÞ of system (2.1) converges to P1 as t/∞. This confirms
Theorem 5.7.

Fig. 8 (a) shows the graph of RT ;1≡RT ;1ðt;4Þ against t≡t1 and 4≡41. Fig. 8 (b) shows the graph of RT ;2ðt;4Þ against t≡ t1 ¼
t2 and 4≡41 ¼ 42. The graphs show that for fixed 4, as more (less) treatment is introduced into the population, the number of
secondary infection RT ;n reduces (increases) until it approaches R∞;n (R0;n), which is the least (highest) number of secondary
infection that can be produced by an infected individuals when introduced into susceptible population. This is explained in
Subsection 4.1. Also, the number of secondary infection RT ;n increases to R0;n as individuals drop out of treatment. This is
explained in Subsections 4.1 and 4.2.

6. Derivation of stochastic model: effect of fluctuations and stability of disease-free equilibrium

In this section, we study the effect of noise on the transmission rates and infectivities, fbhk;bεkg; the treatment rates ftkg;
the recovery rates fjkg and fhkg in stage k of untreated and treated individuals, respectively, for k ¼ 1;2;/;n. We assume the
noise/external fluctiations in the system is caused by variability in the number of contacts between infected and susceptible
individuals and such randomvariations can be modeled by a Gaussianwhite noise (Mendez et al., 2012). We also assume that
fluctuations in the treatment rates may be caused by limited availability of drugs or effect of seasonality. This, in turn, causes

Fig. 8. Effect of treatment and dropping out of treatment on the reproduction number for the cases n ¼ 1 and n ¼ 2, with RT ;n >1.
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fluctuations in the recovery rates. By allowing these rates to fluctuate about a mean value, we introduce external fluctuations
in the model as follows:8>><>>:

b ≡ bþ b C ðtÞ;
tk ≡ tk þ tkW kðtÞ;
jk ≡ jk þ jkZ kðtÞ;
hk ≡ hk þ hkZ kðtÞ; for k ¼ 1;2;/; n;

(6.1)

whereC k;W k;Z k and Z k are independent Gaussian noise terms with zero mean, and b>0, tk >0, jk >0 and hk > 0 are the
noise intensities, a measure of the amplitude of fluctuations, for k ¼ 1;2;/; n. By substituting (6.1) into (2.1), we get a
Langevin equation. The resulting equation is a stochastic differential equation. It is important to be able to interprete and
evaluate the noise structure of this equation. The Itô approach on stochastic differential equation depends on Markovian and
Martingale properties. These properties do not obey the traditional chain rule. Whereas, the Stratonovich approach obeys the
traditional chain rule and allowswhite noise to be treated as a regular derivative of a Brownian orWiener process. It has been
suggested by several authors like West et al., Wong et al. (West et al., 1979; Wong & Zakai, 1965) that Stratonovich calculus is
appropriate for Langevin equations with both internal and external noise. For this reason, by substituting (6.1) into (2.1), we
extend the resulting equation to a Stratonovich stochastic model of the form

dS ¼
0@L� bS

Xn
j¼1

�
hjIj þ εjTj

�� mS

1Adt � S
Xn
j¼1

�
sjIj þ sjTj

�
+dCjðtÞ;

dE ¼
0@bS

Xn
j¼1

�
hjIj þ εjTj

�� ðpþ mÞE
1Aþ S

Xn
j¼1

�
sjIj þ sjTj

�
+dCjðtÞ;

dI1 ¼ ðpE � ðmþ d1 þ r1 þ t1 þ j1ÞI1 þ 41T1Þ dt � t1I1+dW1ðtÞ � j1I1+dZ1ðtÞ;
dIk ¼ ðrk�1Ik�1 � ðmþ dk þ rk þ tk þ jkÞIk þ 4kTkÞ � tkIk+dWkðtÞ � jkIk+dZkðtÞ dt; k ¼ 2;3; :::;n;

dT1 ¼ ðt1I1 � ðmþ d1 þ g1 þ 41 þ h1ÞT1Þdt þ t1I1+dW1ðtÞ � h1T1+dZ1ðtÞ;
dTk ¼ ðtkIk þ gk�1Tk�1 � ðmþ dk þ gk þ 4k þ hkÞTkÞ dt þ tkIk+dWkðtÞ � hkTk+dZkðtÞ; k ¼ 2;3; :::;n;

dR ¼
0@Xn

j¼1

�
jjIj þ hjTj

�� mR

1Adt þ
Xn
j¼1

jjIj+dZjðtÞ þ
Xn
j¼1

hjTj+dZjðtÞ;

(6.2)

where + denotes the Stratonovich integral (Arnold, 1974); CðtÞ;WiðtÞ, ZiðtÞ, ZiðtÞ, i ¼ 1;2;…;n, are standardWiener process on
a filtered probability space (U;ðF tÞt�0;P); the initial process xðt0Þ ¼ ðSðt0Þ; Eðt0Þ; I1ðt0Þ;…; Inðt0Þ; T1ðt0Þ;…; Tnðt0Þ;Rðt0ÞÞ is F t0
measurable and independent of CðtÞ� Cðt0Þ, WiðtÞ� Wiðt0Þ, ZiðtÞ � Ziðt0Þ and ZiðtÞ� Ziðt0Þ, i ¼ 1;2;…;n.

The Stratonovich dynamic model (6.2) is converted to its Itbo’s equivalent (stated below) using the Stratonovich-Itbo
conversion theorem given in Bernardi et al. (Bernardi, Madday, Blowey, Coleman,& Craig, 2001) and Kloeden et al. (Kloeden&
Platen, 1995).

Theorem 6.1. The Itô stochastic differential equation having the same solution as the 2nþ 3-dimensional Stratonovich stochastic
differential equation (6.2) is given by
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dS ¼
0@L� bS

Xn
j¼1

�
hjIj þ εTj

�� mSþ 1
2
S
Xn
j¼1

�
sjIj þ sjTj

�21Adt � S
Xn
j¼1

�
sjIj þ sjTj

�
dCjðtÞ;

dE ¼
0@bS

Xn
j¼1

�
hjIj þ εTj

�� ðpþ mÞE � 1
2
S
Xn
j¼1

�
sjIj þ sjTj

�21Aþ S
Xn
j¼1

�
sjIj þ sjTj

�
dCjðtÞ;

dI1 ¼
�
pE � a1I1 þ 41T1 þ

1
2

�
t21 þ j

2
1

�
I1

�
dt � t1I1dW1ðtÞ � j1I1dZ1ðtÞ;

dIk ¼
�
rk�1Ik�1 � akIk þ 4kTk þ

1
2

�
t2k þ j

2
k

�
Ik

�
� tkIkdWkðtÞ � jkIkdZkðtÞ dt; k ¼ 2; 3; :::;n;

dT1 ¼
�
t1I1 � b1T1 þ

1
2

�
� t21I1 þ h21T1

��
dt þ t1I1dW1ðtÞ � h1T1dZ1ðtÞ;

dTk ¼
�
tkIk þ gk�1Tk�1 � bkTk þ

1
2

�
� t2kIk þ h2kTk

��
dt þ tkIkdWkðtÞ � hkTkdZkðtÞ; k ¼ 2;3; :::;n;

dR ¼
0@Xn

j¼1

�
jjIj þ hjTj

�� mR� 1
2

Xn
j¼1

�
j
2
j Ij þ h2j Tj

�1Adt þ
Xn
j¼1

�
jjIjdZjðtÞ þ hjTjdZjðtÞ

�
:

(6.3)

Proof. The proof follows using the Stratonovich-Itbo conversion theorem given in Bernardi et al. (Bernardi et al., 2001) and
Kloeden et al. (Kloeden & Platen, 1995).

Following similar approach presented in Otunuga (Otunuga, 2018), we can show, using the functionVðt;xÞ ¼ lnðS þ E þPn
j¼1

ðIj þ TjÞ þ R þ eLÞ, that LV<V and inf
jxj>M

Vðt;xÞ/∞; as M/∞, where L is a differential operator called the L- operator

defined by

LVðt;uÞ¼ vVðt;uÞ
vt

þ vVðt;uÞ
vu

A þ 1
2
trace

"
Buv2Vðt;uÞ

vu2 B

#
(6.4)

where vVðt;uÞ
vu ¼

�
vVðt;uÞ
vu1

;…; vVðt;uÞvu2nþ3

�
and v2Vðt;uÞ

vu2 ¼
 

v2Vðt;uÞ
vuivuj

!
2nþ3�2nþ3

. It follows from Theorem 3.5 of Khasminskii (Rafail, 2012)

that there exists a solution xðtÞ ¼ ðSðtÞ; EðtÞ; I1ðtÞ;…; InðtÞ; T1ðtÞ;…; TnðtÞ;RðtÞÞ of (6.3) which is an almost surely continuous
stochastic process and is unique up to equivalence if xðt0Þ2T is independent of the processes CiðtÞ� Ciðt0Þ, WiðtÞ� Wiðt0Þ,
ZiðtÞ� Ziðt0Þ, ZiðtÞ� Ziðt0Þ, i ¼ 1;2;/;n. The solution described above can be shown to be nonnegative and in the feasible
region T using a similar idea presented in (Yang & Mao, 2013).

6.1. Equilibrium points and basic reproduction number in the presence of noise

The point P0 defined in (3.1)e(3.2) is also the disease-free equilibrium of system (6.3). We calculate an equivalent of RT,n in
(3.6), denoted byR T ;n and derive threshold under which system (6.3) becomes disease-free on the long run.We first linearize
the non-linear stochastic system about the disease-free equilibrium and study the stability of the solution of the linear
system.

Define J ¼ ð S� k E I1…In T1…Tn R Þu. The linearization of (6.3) about the disease-free equilibrium P0 results in

dJ¼A J dt þ
Xn
i¼1

�
GidCiðtÞþGidWiðtÞþHidZiðtÞþHidZiðtÞ

�
J; (6.5)

where A ¼

0BB@
A 1;1 A 1;2 A 1;3 A 1;4
A 2;1 A 2;2 A 2;3 A 2;4
A 3;1 A 3;2 A 3;3 A 3;4
A 4;1 A 4;2 A 4;3 A 4;4

1CCAwith A 1;1 ¼ A1;1, A 1;2 ¼ A1;2, A 1;3 ¼ A1;3, A 1;4 ¼ A1;4, A 2;1 ¼ A2;1, A 2;3 ¼ A2;3,

A 2;4 ¼ A2;4;A 3;1 ¼ A3;1, A 3;4 ¼ A3;4, A 4;1 ¼ A4;1 and A 4;4 ¼ A4;4 defined in (5.1),
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A 2;2 ¼ �

0BBBBBBBBBBBBBBBBBBBBBB@

a1 �
t21 þ j

2
1

2
0 0 0 … 0 0

�r1 a2 �
t22 þ j

2
2

2
0 0 … 0 0

0 �r2 a3 �
t23 þ j

2
3

2
0 … 0 0

« « « « 1 « «

0 0 … … … �rn�1 an � t2n þ j
2
n

2

1CCCCCCCCCCCCCCCCCCCCCCA

;

A 3;3 ¼ �

0BBBBBBBBBBBBBBBBBBBBBB@

b1 �
h21
2

0 0 0 … 0 0

�g1 b2 �
h22
2

0 0 … 0 0

0 �g2 b3 �
h23
2

0 … 0 0

« « « « 1 « «

0 0 … … … �gn�1 bn � h2n
2

1CCCCCCCCCCCCCCCCCCCCCCA

;

A 3;2 ¼ I t, A 4;2 ¼
�
j1 �

j
2
1
2

j2 �
j
2
2
2
/jn �

j
2
n
2

�
, A 4;3 ¼

�
h1 �

h21
2

h2 �
h22
2
/hn �

h2n
2

�
, where.

I
J

¼ diagðJ1;J2;/;JnÞ, I t ¼ diag

 
t1 � t

2
1
2 ;t2 � t

2
2
2 ;/;tn � t

2
n
2

!
, ak and bk are defined in (3.3), Gi, G

i
, Hi and H

i
are 2nþ

3� 2nþ 3 matrices with entries Gi
1;iþ2 ¼ � ksi, G

i
1;nþiþ2 ¼ � ksi, G

i
2;iþ2 ¼ ksi, G

i
2;nþiþ2 ¼ ksi, Gi

iþ2;iþ2 ¼ � ti, Gi
nþiþ2;iþ2 ¼

ti, H
i
iþ2;nþiþ2 ¼ � ji, H

i
2nþ3;iþ2 ¼ ji, Hi

nþiþ2;nþiþ2 ¼ � hi, Hi
2nþ3;nþiþ2 ¼ hi, and zero otherwise for j ¼ 1;2;/; n. Define

UðtÞ ¼ E½JðtÞ�. The function UðtÞ satisfies the differential equation

dU¼A U dt: (6.6)

The characteristic polynomial of A can be expressed as

detðA � rI 2nþ3�2nþ3Þ¼ � ðrþmÞ detðA � rI 2n�2nÞ; (6.7)

where A is the matrix obtained be deleting the first row and column of A in (6.5), and r is the eigenvalue.
Using the idea presented in Mendez et al. (Mendez et al., 2012) and in Section 3.1.1, we calculate the reproduction number

R T ;n with respect to the deterministic model (6.6) in the presence of treatment as

R T;n ¼ kbp

c

Xn
k¼1

266664 ~ukhk þ εk~vkYk
j¼1

�
~aj
~bj � ~tj4j

�
377775; (6.8)

where
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~aj ¼ aj �
t2j þ j

2
j

2
;

~bj ¼ bj �
h2j
2
;

~tj ¼ tj �
t2j
2
;

~uk ¼ ~bkrk�1~uk�1 þ 4kgk�1~vk�1;

~vk ¼ ~tkrk�1~uk�1 þ ~akgk�1~vk�1; for k ¼ 1;/;n;

with ~u0 ¼ 1, ~v0 ¼ 0. We note here that the threshold R T ;n is nonnegative provided

~tj �0; ~hj ¼ hj � h2j

.
2 � 0; ~jj ¼ jj � j

2
j

.
2 � 0: (6.9)

For the rest of this work, we assume condition (6.9) is satisfied.

Remark 6.1.1. We note here that the number R T ;n reduces to RT ;n if tj ¼ jj ¼ hj ¼ 0 for all j ¼ 1;2;/;n.

Remark 6.1.2. Condition (6.9) indicates that the noise intensities tj, jj and hj must not exceed the rates
ffiffiffiffiffiffiffi
2tj

q
,

ffiffiffiffiffiffiffiffi
2jj

q
andffiffiffiffiffiffiffi

2hj
q

, respectively, for the model to be well defined.

6.2. Effect of noise in the treatment, and recovery rates

In this section, we study the effect of fluctuations in the treatment and recovery rates.

6.2.1. Effect of noise in the treatment rates
Assuming condition (6.9) is satisfied, and hj ¼ jj ¼ 0 for j ¼ 1;2;/; n, we wish to study how the number of infection

changes due to changes in the treatment intensity rates ftjg. Define RT ;n≡RT ;nðtiÞ (given in (3.6)) andR T ;n≡R T ;nðtiÞ. It is easy
to show that RT ;jðti � t2i =2Þ ¼ R T ;jðtiÞ. As discussed in Subsection 4.1, the derivative dRT ;j

dti
� 0 if and only if RT ;jðti /∞Þ �

RT ;jðti ¼ 0Þ; for 1 � i � j � n, that is, RT ;jðtiÞ is a decreasing function of ti if and only if RT ;jðti /∞� RT ;jðti ¼ 0Þ;
for 1� i� j� n. It follows that RT ;jðtiÞ � R T ;jðtiÞ provided RT ;jðti /∞Þ � RT ;jðti ¼ 0Þ; for 1 � i � j � n. The same result

follows for the casewhere ti≡t for all i ¼ 1;2;/;n, that is, RT ;nðtÞ � RT ;n

�
t�t

2

2

�
¼ R T ;nðtÞ provided R∞;n <R0;n. An increase in

the noise intensity in the treatment rate increases the number of secondary infection cases produced by a typical infective
individual.

6.2.2. Effect of noise in the recovery rates of untreated infected individual
Assuming condition (6.9) is satisfied, and tj ¼ hj ¼ 0 for j ¼ 1;2;/; n. We wish to study how the number of infection

changes due to changes in the untreated recovery intensity rates fjjg of infected individual. WriteR T ;n≡R T ;nðj1;/;jnÞ as a
function of fjgnj¼1. Since the functions ~gjðtÞ ¼ 1

ðaj�t2=2Þbj�tj4j
and gjðtÞ ¼ aj�t2=2

ðaj�t2=2Þbj�tj4j
are increasing function of t for j ¼ 1;2;/;

n, and R T ;nðj1;/;jnÞ can be expressed in terms of ~gjðjjÞ and gjðjjÞ, it follows from the increasing property of gjðjjÞ that
R T ;n≡R T ;nðj1;/;jnÞ � R T ;nð0;0;/;0Þ ¼ RT ;n. The higher the noise intensity in the untreated infected recovery rates, the
higher the number of secondary infection cases produced by a typical infective individual.

6.2.3. Effect of noise in the recovery rates of treated infected individual
Assuming condition (6.9) is satisfied and tj ¼ jj ¼ 0 for j ¼ 1;2;/; n. By writing R T ;n≡R T ;nðh1;/; hnÞ as a function of

fhgnj¼1, wewish to show thatR T ;n >R T ;nð0;/;0Þ ¼ RT ;n. Since the functions 1

~aj

 
bj�

h2j
2

!
�~tj4j

and

 
bi�

h
2
j
2

!
 

~aj

 
bj�

h2j
2

!
�~tj4j

! are increasing

function of hj for j ¼ 1;2;/;n, it follows thatR T ;n≡R T ;nðh1;/;hnÞ � R T ;nð0;/;0Þ ¼ RT ;n, that is, as the noise intensity in the
recovery rate hj of treated infected individuals increases, the number of secondary infection cases produced by a typical
infective individual increases.

O.M. Otunuga, M.O. Ogunsolu / Infectious Disease Modelling 5 (2020) 61e90 85



6.2.4. Numerical analysis
We use the parameters presented in Table 3 to verify the results claimed in Subsubsections 6.2.1-6.2.3.
Fig. 9 (a), (b) and (c) show the graphs of R T ;2≡R T ;2ð~tÞ, R T ;2≡R T ;2ð~jÞ and R T ;2≡R T ;2ð~hÞ against ~t (fixing ~j ¼ ~h ¼ 0Þ), ~j

(fixing ~t ¼ ~h ¼ 0Þ) and ~h (fixing ~t ¼ ~j ¼ 0Þ), respectively. Fig. 9 (d) shows the graph of R T ;2≡R T ;2ð~t; ~jÞ against ~t and ~j. The
trajectories of these graphs suggest that the higher the intensity of noise in the treatment rate, recovery rates of untreated and
treated infected individuals, the higher the number of secondary infections produced by an infected individuals when
introduced into a susceptible population.

Fig. 10 (a) and (b) show the graphs ofR T ;2≡R T ;2ð~t; ~hÞ against ~t and ~h andR T ;2≡R T ;2ð~j; ~hÞ against ~j and ~h. The trajectories
of these graphs suggests that the higher the intensity of noise in the treatment rate, recovery rates of untreated and treated
infected individuals, the higher the number of secondary infections produced by an infected individuals when introduced into
a susceptible population.

6.3. Stability of infection-free equilibrium P0 of (6.3)

In this section, we discuss conditions for stability of the infection-free equilibrium P0 of (6.3) in the presence of noise. We
study the conditions for stochastic stability of the disease-free equilibrium P0 of the linear associated system (6.5) and later
use Theorem A.2 in (Tornatore et al., 2005) to extend the result to that of the nonlinear system (6.3).

Theorem 6.2. Assume condition (6.9) is satisfied. The real part of all eigenvalues of A is negative if R T ;n <1.

Fig. 9. Effect of noise on treatment rates and recovery rates of untreated and treated infected individuals for the case n ¼ 2.
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Proof. The proof follows from (6.9) and Theorem 5.1 by setting aj≡aj � t
2
j þj

2

j

2 , bj≡bj � h2
j

2 , tj≡tj �
t
2
j

2 , jj≡jj �
j
2

j

2 , and hj≡ hj�
h2
j

2
into matrix A in (5.1). -

Writing the system of non-linear stochastic differential equation (6.3) in terms of J reduces to

dJ1 ¼
0@�bðJ1þkÞ

Xn
j¼1

�
hjJjþ2þ εjJnþjþ2

��m J1þ
1
2
ðJ1þkÞ

Xn
j¼1

�
sjJjþ2þsjJnþjþ2

�21A dt

�ðJ1þkÞ
Xn
j¼1

�
sjJjþ2þsjJnþjþ2

�
dCjðtÞ;

dJ2 ¼
0@bðJ1þkÞ

Xn
j¼1

�
hjJjþ2þεjJnþjþ2

�� c J2�
1
2
ðJ1þkÞ

Xn
j¼1

�
sjJjþ2þsjJnþjþ2

�21A
þðJ1þkÞ

Xn
j¼1

�
sjJjþ2þsjJnþjþ2

�
dCjðtÞ;

dJ3 ¼
�
sEJ2�a1J3þJ1Jnþ3þ

1
2

�
t21þj

2
1

�
J3

�
dt�t1J3dW1ðtÞ�j1J3dZ1ðtÞ;

dJkþ2 ¼
�
rk�1Jkþ1�akJkþ2þJkJnþkþ2þ

1
2

�
t2k þj

2
k

�
Jkþ2

�
dt�tkJkþ2dWkðtÞ�jkJkþ2dZkðtÞ; for;

dJnþ3 ¼
�
t1J3�b1Jnþ3þ

1
2

�
�t21J3þh21Jnþ3

�
dtþt1J3dW1

�
t
�
�h1Jnþ3dZ1

�
t
�

dJnþkþ2 ¼
�
tkJkþ2þgk�1Jnþkþ1�bkJnþkþ2þ

1
2

�
�t2kJkþ2þh2kJnþkþ2

�
dtþtkJkþ2dW1

�
t
�

�hkJnþkþ2dZk

�
t
�
; for;

dJ2nþ3 ¼
0@Xn

j¼1

�
jjJjþ2þhjJnþjþ2

��mJ2nþ3�
1
2

Xn
j¼1

�
j
2
j Jjþ2þh2j Jnþjþ2

�1A dtþ

Pn
j¼1

�
jjJjþ2dZjðtÞþhjJnþjþ2dZjðtÞ

�
;

(6.10)

for k ¼ 2;/;n, where ak and bk are defined in (3.3).

Fig. 10. Effect of noise on treatment rates and recovery rates of untreated and treated infected individuals for the case n ¼ 2.
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Let F and G be the drift and diffusion coefficients of the linear system (6.5), respectively, and f and g the drift and diffusion
coefficients of the non-linear system (6.10), respectively. We give a theorem concerning the global stability of the disease-free
equilibrium point P0 by showing that Theorems A.1 and A.2 of Tornatore et al., (2005) is satisfied with respect to systems (6.5)
and (6.10).

Theorem 6.3. The disease-free equilibrium P0 of the system (6.3) is globally asymptotically stable in the feasible region T if
R T ;n <1.

To prove this, we first show that if R T ;n <1, the trivial solution J ¼ 0 of the linear stochastic differential equation (6.5) is
assymptotically stable and later show that the drift and diffusion coefficients f ðt;JÞ and gðt;JÞ, respectively, of the nonlinear
system (6.10) satisfy the inequality

kf ðt;JÞ � Fðt;JÞk þ kgðt;JÞ � G ðt;JÞk< x kJk (6.11)

in a sufficiently small neighbourhood of J ¼ 0, with a sufficiently small constant x.
Proof. If R T ;n <1, it follows from Theorem 6.2 that the real part of all eigenvalues of A is negative. Hence, there exist a

diagonal matrix Y (with positive diagonal entries, say, r1; r2;/; r2nþ3 ) and a real number bz >0 such that suðYA þA uYÞs ��bzsus for every nonzero vector s2R2nþ3 (see relation I25 of (Plemmons, 1977)) . Let J ¼ ðJ1;J2;…;J2nþ3Þu be a vector
satisfying the linear system (6.5) and define V : ½0; T � � R2nþ3/Rþ by

Vðt;JÞ¼J
T
YJ:

Let bs ¼ max
1�j�n

fs2j ; s2j ; tj;jj; hjg such that r1 ¼ r2 ¼ bz
10k2bs, rjþ2 ¼ rnþjþ2 ¼ r2nþ3 ¼ bz

10bs, for j ¼ 1;2;/; n. Using (6.4), the

L-operator defined in (6.4) satisfies

LVðt;JÞ ¼ J
uðYA þ A uYÞJþJ

uX
i¼1

n �
GiuYGi þ Gi

u
YGi þ HiuYHi þ Hi

u
YHi

�
J

� �bzJu
JþJ

uX
i¼1

n �
GiuYGi þ Gi

u
YGi þ HiuYHi þ Hi

u
YHi

�
J

¼ �bz X2nþ3

j¼1

J
2
j þ

Xn
j¼1

�
ðr1 þ r2Þk2s2j þ

�
rjþ2 þ rnþjþ2

�
t2j þ r2nþ3j

2
j

�
J

2
jþ2

þ
X
j¼1

n �
ðr1 þ r2Þk2s2j þ rjþ2j

2
j þ

�
r2nþ3 þ rnþjþ2

�
h2j

�
J

2
nþjþ2

� �bzX
j¼1

2nþ3
J

2
j þ

z
2

X
j¼1

n

J
2
jþ2 þ

bz
2

X
j¼1

n

J
2
nþjþ2 ¼ �zJ

2
1 � zJ

2
2 �

z
2

X
j¼1

n

J
2
jþ2 �

bz
2

X
j¼1

n

J
2
nþjþ2 < � bz

2
J

u
J:

Let rl and ru be minfr1;…; r2nþ3g and maxfr1;…; r2nþ3g, respectively. Then rlkJk2 � Vðt;JÞ � rukJk2. It follows from
Theorem A.1 of Tornatore et al., (2005) that the trivial solution J ¼ 0 of (6.5) is asymptotically stable. We deduce from this
result that if the initial condition (in T ) of system (6.5) is near 0, then the solution ðSðtÞ; EðtÞ; I1ðtÞ;/; InðtÞ; T1ðtÞ;/; TnðtÞ;RðtÞÞ
approaches P0 on the long run if R T ;n <1. To prove the global stability of the solution J ¼ 0 of (6.10) (equivalent to the

disease-free equilibrium P0 of (6.3)), we choose x>0 sufficiently small in a neighbourhood of J ¼ 0 so that jJj< x and
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where h ¼ x
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)
The global stability result follows from The-

orem A.2 of (Tornatore et al., Vetro).

6.4. Numerical verification of global stability of infection-free equilibrium points for the stochastic model

Fig. 11 (a) shows the trajectories of E, I1 and T1 satisfying model (6.3) for the case where n ¼ 1 and R T ;1 <1. Fig. 11 (b)
shows the trajectory of E, I1, I2, T1, T2 satisfying model (6.3) for the case where n ¼ 2 and R T ;2 <1. In this case, R T1 ¼ 0:8056
and R T2 ¼ 0:8908.
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