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stages of infection and treatment and explore the effects of treatments and external
fluctuations in the transmission, treatment and recovery rates. We assume external fluc-
tuations are caused by variability in the number of contacts between infected and sus-
ceptible individuals. It is shown that the expected number of secondary infections
produced (in the absence of noise) reduces as treatment is introduced into the population.

I;z)sl?:;rggle By defining Ry, and %7 as the basic deterministic and stochastic reproduction numbers,
Infection respectively, in stage n of infection and treatment, we show mathematically that as the
Treatment intensity of the noise in the transmission, treatment and recovery rates increases, the
Recovery number of secondary cases of infection increases. The global stability of the disease-free
Stochastic epidemic model and endemic equilibrium for the deterministic and stochastic SEITR models is also pre-
Stability sented. The work presented is demonstrated using parameter values relevant to the
Reproduction number transmission dynamics of Influenza in the United States from October 1, 2018 through May

4, 2019 influenza seasons.
© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerous mathematical models have been developed to study the transmission dynamics of emerging and re-emerging
diseases (Diekmann, Heesterbeek, & Metz, 1990; Driessche & Watmough, 2002; Etbaigha, Willms, & Poljak, 2018; Feng,
Towers, & Yang, 2011; Hollingsworth, Anderson, & Fraser, 2008; Huo, Chen, & Wang, 2016; Korobeinikov, 2009; LaSalle,
1976; Li, Xiao, Zhang, & Yang, 2012; Melesse & Gumel, 2010; Mendez, Campos, & Horsthemke, 2012; Tornatore,
Buccellato, & Vetro, 2005; Otunuga, 2017; Otunuga, 2018; West, Bulsara, Lindenberg, Seshadri, & Shuler, 1979; Yang &
Mao, 2013, Mummert & Otunuga, 2019).Without treatment of such diseases, infection advances in stages and infected in-
dividuals typically die within certain years. Several authors (Birrell, Presanis, & De Angelis, 2012; Hollingsworth et al., 2008;
Korobeinikov, 2009; Melesse & Gumel, 2010; Otunuga, 2018) have studied extensively epidemic models with various stages of
infection. Influenza has various stages of infection ranging from the contagious stage before any symptoms appear (period
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when the flu virus is entering and multiplying in only a few cells in the respiratory tract) to the stage when the flu virus has
proliferated enough for the immune system to notice. The general incubation period for Influenza (typically known as the flu)
varies for different individuals, usually between one to four days with average incubation period of about two days. This
suggests that it is important to study the different stages of flu infection while studying transmission of infectious diseases.

Although it might be impossible to avoid certain infectious diseases, there are different strategies available that protect
individuals from infection and treat disease once it has developed. It is of high importance to study how such disease reacts to
treatments, and the analysis of treatment stages and treatment effects on infected individuals should be included in models
describing the transmission dynamics of treatable diseases. Several programs such as the Biomedical Advanced Research and
Development Authority have been developed by the U.S. Department of Health and Human Services to provide an integrated,
systematic approach to the development and purchase of vaccines, drugs, therapies, and diagnostic tools necessary for public
health medical emergencies.!

According to the work of Hu et al. (Hu, Nigmatulina, & Eckhoff, 2013), contact rates and patterns among individuals in a
geographic area drive transmission of directly-transmitted pathogens, making it essential to understand and estimate contacts
for simulation of disease dynamics. In their work, Grassly et al. (Grassly & Fraser, 2006) explains different causes of seasonality
in infectious diseases of humans. They give different representations of the transmission rate based on the causes of seasonality
in the infectious diseases. In this work, we study the global dynamics of a deterministic and stochastic SEITR epidemic model
with multiple stages of infection and treatments. We assume the population is completely susceptible at the beginning of the
epidemics and derive the measure of the power of an infectious disease to attack a completely susceptible population using the
deterministic model. In the absence of noise, we compare mathematically the expected number of secondary cases of infection
in the presence and absence of treatments and show that the number decreases as the treatment rate increases. We study the
case where the transmission, treatments and recovery rates are assumed to be influenced by external fluctuations caused by
variability in the number of contacts between infected and susceptible individuals due to weather patterns, school terms, etc.
We assume fluctuations in the treatment rates may be caused by limited availability of drugs or effect of seasonality and this
may result in fluctuations in the recovery rates. Such random variations can be modeled by a Gaussian white noise process
causing the rate to fluctuate around a mean value. The external noise is able to modify the dynamical behavior of the model by
transforming the deterministic SEITR epidemic model to a stochastic epidemic model. We derive the basic reproduction
number in the presence of noise and analyze how the presence of noise in the transmission, treatments and recovery rates
affects the number of infections produced by an infected individual. The paper is organized as follows. In Section 2, we
formulate the deterministic model describing the transmission and spread of certain diseases, as well as its treatments and
recovery. In Section 3, the existence of equilibrium points, and derivation of reproduction number using next generation
method in the presence and absence of treatments are analyzed. Analysis of the effect of treatments and effect of dropping out of
treatment on the number of infection produced by an infected individual are investigated analytically and numerically in
Section 4. The local and global stability of the disease-free and endemic equilibriums are discussed in Section 5. By introducing
noise in the transmission, treatment and recovery rates, we formulate and derive a stochastic model analogous to the deter-
ministic model in Section 6. The effects of noise on the transmission, treatment and recovery rates, together with the existence
and stability of the disease-free equilibrium point in the presence of noise are investigated analytically and numerically.

2. Deterministic model formulation

By assuming the human population is completely susceptible at the beginning of an epidemics and sub-dividing the total
population, N(t), into susceptible humans S(t), exposed humans E(t), infected untreated /;(t) humans in stage j of infection,
infected humans under treatment and in stage j of infection T;(t), and the recovered population R(t), at time ¢, we investigate
the transmission and treatment of certain infectious diseases. We assume the total human population N(t) satisfies N(t) =

n

S(t) + E(t) + > (;(t) +T;(t)) + R(t) and humans are recruited into the susceptible population at a rate A. The general popu-
j=1

lation is reduced by natural death at a rate u. The population of susceptible humans is reduced by infection due to contact with

n
infectious (untreated or treated) individual at a full rate 8 - h;l;. It is well known (Godoy et al., 2018) that influenza vacci-
j=1
nation may not prevent infection but reduces the severity of the disease. The Center for Disease and Control ? claimed that in
randomized clinical trials, there was evidence that some influenza viruses developed resistance or reduced susceptibility to
one or more influenza antiviral CDC recommended FDA-approved drugs like oseltamivir (Tamiflu), zanamivir (Relenza),

peramivir (Rapivab), and baloxavir (Xofluza) drugsz. Several authors (Feng et al., 2011; Gani et al., 2005; Kretzschmar, Schim
van der Loeff, Birrell, Angelis, & Coutinho, 2013; Liu and Zhang, 2011; Otunuga, 2018; Qiu & Feng, 2010) have considered
introducing parameter that accounts for the reduction in infectiousness due to treatments among individuals in their model.

n
In our model, we let ¢; be the reduced infectiousness due to treatment in stage j of infection and include the reduced rate § )
j=1

1 Prevention and treatment, https://www.ncbi.nlm.nih.gov/books/NBK209704/, accessed 5.12.2019.
2 https://www.cdc.gov/flu/treatment/baloxavir-marboxil.htm. Page last reviewed: November 18, 2019.
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¢;T; due to treatment. Infected (but not yet infectious) individuals become untreated infectious individuals in stage 1 of
infection at a rate 7. Untreated infected individuals in stage k of infection migrate into stage k + 1 of untreated infection at a
rate p, and die of infection at a rate ;. These individuals receive treatment (and migrate to stage k of treated infected
compartment) at a rate 7. Treated infected individuals in stage k of infection migrate to stage k + 1 of treated infection at a
rate v, and die of infection at a rate §;. Individuals that stop receiving treatment migrate to stage k of untreated infected
compartment at a rate ¢,. Untreated and treated infected individuals in stage k of infection recover and migrate to the
recovered compartment at a rate of y;, and 7, respectively. The schematics describing the transmission described above is
given in Fig. 1.
The deterministic model governing S, E, I, T, R for k = 1,2,...,n, is described as follows:

n
ds = (A—BSY (hyl+eTy) - uS)de, S(to) = So,
=
n
dE = (552 hil; +&T;) — (4 + m)E )dt, E(to) = Eo,
j=1
dly, = (7E—(u+01+p1 +71+¥)h +o1T1) dt, Li(to) = Ior, 2.0
diy = (pre1le—1 — (0 + O + pie + T+ ¥l + 0 Ty) dt, I(to) = lok, k=2,3,....n '
dTy = (mily — (R + 061 + 71 + o1 + 1) T1)dt, Ti(to) = Tor,
di = (mle+ 11T — (4 O + 7 + ok + M) Tie) dt, Ti(to) = Tor, k=2,3,....n
n
21 (Wil +mT;) _#R)dﬁ R(to) = Ro,
j=
'0
v vy
: d’Z l/,:" %4 (!/” M
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Fig. 1. Schematic diagram for the SEITR model. The circle compartments represent group of individuals.
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where the parameters in the model are described in Table 2, with y,, = p,, = 0. Since the limit tlim supN(t) < A/u, we consider
the solution of the model (2.1) in the feasible region e

n
A
T = {(5,5,11, codn, T T T € RZY3 2 0<SHE+ S (I+T)) +R:N§ﬁ}, (2.2)
j=1
where R, denotes set of nonnegative real numbers. For the rest of this work, we define ¥ = A/pu. It can be shown that .7 is
positively invariant with respect to (2.1). We set the sizes of S, E, I, Ty, R, for k = 1,2, ..., n as percentages by setting A = u.

3. Existence of equilibrium points in the presence and absence of treatments

We discuss the existence and stability of the equilibrium points of (2.1) in the presence and absence of treatment. Under
certain conditions (which are discussed in (3.14) and Section 5), system (2.1) has two unique equilibrium points namely, the
disease-free (denoted Py) and endemic (denoted P;) equilibrium points described as

R=( @ 21 R )
P-s ET LT ..T ). '
The equilibrium points Py and P; are derived in Subsections 3.1 and 3.2, respectively.
3.1. Disease-free equilibrium Py
The disease-free equilibrium Py of (2.1) has entries
-z E°=0, ’=0, T"=0, R°=0, j=1.2,....n. (3.2)

In the following, we derive the measure of the power of an infectious disease to attack a completely susceptible popu-
lation. It is the expected number of secondary cases produced, in a completely susceptible population, by a typical infective
individual. This number, called the basic reproduction number and denoted by Rr, is calculated explicitly considering n
stages of infection and treatment. The endemic equilibrium, Py, is expressed in terms of Ry ,. We also discuss a case where no
treatment is received in the population and denote the corresponding reproduction number by R ,. We show that in order for
the number of infection to diminish to zero on the long run, appropriate parameters in the model must be controlled so that
the number Ry , is at most one. That is, as long as the number of secondary infection produced by an infected individual is not
more than one, the number of infections diminish to zero on the long run. Above the number Ry, = 1, disease endemic
presist.

3.1.1. Elimination threshold quantity, Rt , in the presence of treatments

Define
A = W+ O+ pr+ Tk + Y
by = w0k +vK+ oK+ M (3.3)
c = p+m,
K = A/u.

In the presence of treatments, we write (2.1) in the form
dx= (7 (X)— 7°(x)) dt, (34)

using the next-generation matrix (Driessche & Watmough, 2002), where.
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cE
(111-1 — (plT] —7E
axl; —pily — @2 Th
E :
h n anly, — I._1—o,T
: 85> (hylj +iT;) i1 ol
I =
X= TZ LT = 0 7= b2T2*72.12*71T1
Tn 0 bnTn — 7nln — vp1Tn 1
R 0 M+3x1 R n | .
S MR =D (Vi + ;)
=

n
BS> (hil; + &T;) + uS — A
j=1

The derivatives D .7 (Py) = <%> = ( Fn 02’”“2) and D 7'(Py) = (%%1) = <V" 02"““) of & and 7,

O2x2n11 O2x2 % J3 Ja
0 h] 2 ... hn €1 €2 ... é&n
respectively, are evaluated at Py and partitioned so that F, = @k 8 0 O O 0 O 0 ,
00 0 .. 0 0 0 ... 0/ 1x2m41
c len 01><n
_ g _ T _ (0 =Y Y o =Yy -m M .
Vn = ( o M syl o= (-7 0 .. 0)pa J= (0 Bchy Bxh, ... (khy BRer PRe, ... BRen )’
Onx1 —7+ My
0
142(8 M).and
aq 0O 0 O 0 by 0o 0 O 0
-pp a 0 O 0 -v1 by 0 O 0
0 - az 0 0 0o - b; O 0
M = : 1:02 :3 . g .| Mr= : ?{2 :3 (3.5)
0 0 .. 0 —pyq @ 0 0 ... 0 —yyuq bn
Sy = diagler, 02, 0n), Sr=diag(ry, 72, Tn).

The spectral radius of the matrix FnV;1 is given by

AT uhy + gy
Rrp :Kﬁz Z [kkk#} (3.6)
k=1 H]

-1 (abj — 7j05)
where u, and v, satisfy

Uy = bypy_1Ui_1 + orYk-1Vk-1, (37)
Vg = TkPr—1Uk—1 + QYi—1vk—1, fork=1,2,....n,

and pg = vg = 1; ug = 1; yg = 0. We note here that ajbj—rj<pj:ajbj+rj51>0 forj =1,2,...,n

Remark 3.1.1. The reproduction number (3.6) can be re-written in matrix form as

by ox\(p-1 O Ug_1
(hy 8/<)< k ‘)( ;
Y g T, a 0 _ Vi
RT‘n:KBEZ kG Vk-1 k-1
=1

e , (38)
11

I\T Y

where u;_; and v,_; are defined in (3.7) and the matrices (?k (g"> and <p k0*1 0 > are coefficient matrices of the
differential equation ko Yk-1
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d(’k) _ (—ak b )(Ik) i (pk—] 0 >(Ik—1 )
Ty e b J\ Tk ]0 Vi1 ) \Te-1
2 ey e )
Te G )|\ Tk G Ty 0 pe1)\Tkr )’

governing [, and Ty in (2.1) for k = 2,3,---,n.
Remark 3.1.2. Description of the derivation of Ry,

For a model with one stage of infection, ifi,j = 1, 2, 3 represent compartments E, I; and Ty, respectively, then the (i,j) entry
of the inverse V{l of the matrix V; defined in (3.5), and obtained as

1/c 0 0
; ™ by by 1
Vi'=| cayby — 1191 a1by — 7191 a1by — 71191 | (3.9)
™ T1 T1 aq
c ajby — 7191 a1by — 1109 a1by — 7194

is the average time an individual introduced into compartment j spent in compartment i. It follows directly from (3.9) that the
average time an individual introduced into the exposed compartment spent in the untreated infected compartment I; is

o j
T mbfflmm = al] %];O (% ‘g—:) , while the average time an individual introduced into the exposed compartment spent in the
. . ) ] ]_1 . . .. .
treated infected compartment Ty is  op-H—- = Iy (%) (ﬁ—:) . An infected individual in the untreated and treated
j=1

infected compartments I; and T; produces new infection in the exposed compartment E at a rate $h; and (e;, respectively. Thus,

the number Rr; = fkh;Z (Il,)llii‘rl% + Breq T albff‘mh is the expected number of secondary cases produced, in a completely

susceptible population, by a typical infective individual in compartment 1. In general, the average time an individual intro-

duced into the exposed compartment spent in the untreated infected compartment I, is £ k# while the average

[1(ajb; — 70

Jj=1
time an individual introduced into the exposed compartment spent in the treated infected compartment T is

n
— Uhy+
T Y% Hence Rpp = fRT Y | —ctase |

k
k=1
(a5bj — 7i9)) | [T @by — 750
=1

j=1

J
Remark 3.1.3. Reproduction number Ry, in the absence of treatment

Define
{gk = M+ék+pk+‘pk? (310)
by = p+ o+ v+ mye

In the absence of treatment (thatis, 7, = 0fork =1,2,...,n,) we have u;, = H]’»‘:l (bipji_1),vg =0fork =1,2,...,n, and the
reproduction number Ry, simplifies to the treatment free reproduction number R, given by

Ron :Rﬂ% ; |:th]"<1 <p]a—;lﬂ 3.11)

This is the reproduction number associated with the model without treatment
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n
s = (A 85> ( uS)dt,
j=1
n
dE = (ﬁsz 7r+u))dt
=1 (3.12)
dly = (7E—(u+01+p;+y¥ph)dt,
dly = (pg1lk—1 — (B + 0 + px +¥i)l) dt, k=2,3,.

dR — (é yjl — uR)d.

In a completely susceptible population receiving no treatment, we describe the quantity Ry, as the expected number of
secondary infection produced by a typical untreated infected individual in a completely susceptible population.
The disease-free equilibrium point of (3.12) reduces to

~ ~ ~ N N ~ T
Po=(8 B 1 . 1R) . (3.13)

3.2. Endemic equilibrium point, Py, in the presence of treatment

The endemic equilibrium Py = (S* E* 1; ... I, T; .. T, R*)T of system (2.1) described in (3.1) is obtained as
= K
S = —
RT,n
— A 1
£ - 20w,
I, = 7_r A g (1 _ L)’
c k Rrn
(a;bj — 7jj)
j=1
(3.14)
T, = T Au 1-- ) k=12 .n
c k RT,n
(aib; — i)
j=1
oo AT zn: Uk + Vi (1 _L)
wc k=1 k RT’” 7
[1(ab; — 7o)
j=1
provided Rt , > 1, where u;, and v are defined in (3.7).
Remark 3.2.1. Endemic equilibrium in the absence of treatment.
In the absence of treatment, the endemic equilibrium P; reduces to
P=(S E I, .. T. R), (3.15)

where P; is derived from (3.14) by setting 7, = 0 and obtained as
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(3.16)

provided Ry, > 1.
4. Effect of treatment and dropping out treatment in the system

In this section, we study how receiving treatment and dropping out of treatment affect the system.
4.1. Effect of treatment of infection in the system

Consider the reproduction number Ry corresponding to model (2.1) with j stage(s) of infection (derived by setting n = j in
(3.6)). Write Ry j(t;)=Rr; as a function of r; for 1 <i,j < n. We define the quantities Ry ;(7; —>oo)ET,1ijﬂwRTj(Ti) and Ry, = 0)=
Ry j(1i)|5,—0 as the expected number of secondary infection produced by a typical infected individual (in a completely sus-
ceptible population with j < n stages of infection) as treatment capacity 7; goes to infinity and as no treatment is administered
in stage i of infection, respectively.

We can show, after rigorous calculations, that

™ ﬁkhk + ﬁksk

J
RTJ‘(T]—>OO) = kﬂTZ—k y
Cb] k=1 _ —
H (arby + by1r)
r=1
r#1
i = 0, 77=1, and uy,v;, k+1 are defined in (4.3)

(4.1)

j ~ ~
¢ uhy +ve
Rrj(ri—eo) = Rri +Kﬁ5(ui4m4 +vis17i-1) Z ,kk;kk

K

! k=i H (arbr + BrTr)

r=1

, for 2<i<j<n,

r#i

uU; = 0, 7;=1, and Uy, 7, k+iare defined in (4.3)
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TN gy + e
Rrj(r11=0) = Kﬂaz B E— Kk Tk )
k=1 H (arbr + ETTT)
r=1
r#1
Uy = 1, 11 =0, and i, k=1 are defined in (4.3) (42)
; ] ] .
_ uih .
Rj(ri=0) = Rrjq+ifp > AT for 2<i<j<n
ibi 7= _ —
k=i H (arbr + brTr)
r=1
r#i
U = bipiqUi1 +@iviivict, Vi = GYioqviog, and g, vy, k=i are defined in (4.3),

where u;, v; are defined in (3.7) fori = 1,2,---,n, Uy = 1,79 = 0, and

{ Ug = bpr 1 Uk-1 + @kVk-1Vk-1,

U = Tpg_q U1 + QeYg 1Vk-1, fork=i+1,--n 1<i<n (4.3)
Uy = bypr_1Uk—1 + PkYk-1Vk-1
Vk = TkPp—1Ug—1 + AQYk_1Vk-1, fork#i.

Furthermore,
dRy aibb;
— =———~(Ryi(Tj— ) — Ry i(1; =0)),
dT,' (ﬁ,-b,'+b,-7,-)2( TJ( i °°) T.]( i ))
Y (4.4)
dRrj _ 2a;b; by

dTl.z (aibi +Ei1—i)3 (RTJ'(TI‘—H)O) — RTJ(Ti = O))7 for 1< l,] <n.

It follows from (4.4) that the derivative dR;#'TST"kO and the graph of Ry j(r;) concaves up for all 7; >0 if and only if
Ry j(ti = o0) <Rpj(r; =0),for 1 <i <j < n.Likewise, ddLTT';f >0 and the graph of Ry j(7;) concaves down for all 7; > 0 if and only if
Ry j(ti = o0)>Ryj(t; = 0),for 1 <i<j < n.By definition, we expect Ry j(1; = o) <Rrj(7; = 0),for 1 <i,j <n.This shows that
in a population with j stages of infection, the number of secondary infection, Ry, produced by an infected individual in a
completely susceptible population decreases as the treatment rate 7; increases.

4.1.1. Case where 7;=7 foralli =1,2,---n
Define

Run =675 {gk . <bejl>} , (4.5)

k=1

where Ej is defined in (3.10). For fixed 7; = 7,j = 1,2,---,n, we write Ry =Ry (1) (defined in (3.6)) as a function of 7. The
number of secondary infection, Rr,(7), has the property:

Rrpn — Reon as 7T— 0.

The function

Rra(7)
Fr) ==, (46)
0,n
is a rational function of 7 referred to as the relative elimination threshold. The graph of the function has y-intercept f(0) = 1
(following directly from Remark 3.1.1) and negative zeros. The vertical asymptotes are the negative vertical lines7 = — ’%—b",
i

forj=1,2,---,n. Define
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(4.7)

el oy 0
P Z{ J - (” ﬂ - {thC)}b])

The function f(7)—f as 7— . The value f is the horizontal asymptote of f(7). It measures the infection transmission
potential when treatment capacity goes to infinity relative to the transmission potential when no treatment is administered.
It follows from property of rational functions that f Ry, <Rr.(7) < Ron (thatis,Ren <Rrn<Rop) if f<1 and Ron <
Rrn(7) <f Ry if f > 1. This is represented in Fig. 2 below.

Fig. 2 (a) and (b) show the trajectory of f(7) for the cases where f <1 and f> 1, respectively.

Remark 4.1.1. The quantity R, can be described as the expected number of secondary infection produced by a typical
infected individual as the treatment capacity goes to infinity. From the description of Ry , in Remark 3.1.1, we expect R n =

kBT Z [ek]_[ <Y’ ‘)} <KkBZ Z [thJ 1 <p’ ‘)] = Ro, that is, we expect the expected number of secondary infection

produced when the treatment capacity goes to infinity to be smaller than the expected number of secondary infection
produced when no treatment is administered. This implies f <1, so that Ry, <Rg . This shows that as the treatment rate
increases, the expected number of infection decreases. The highest expected number of infection produced by an infected
individual in a completely susceptible population is Ry , (which is attained when 7 = 0) while the lowest expected number of
infection is R, » (attained as 7— oo).

4.2. Effect of dropping out of treatment

Write Ry j(9;)=Rr; as a function of ¢; for 1 <1i,j < n. Using similar definition in Subsection 4.1, we define the quantities
Ry (@i — o) and Ry j(p; = 0) as the expected number of secondary infection produced by a typical infected individual (in a
completely susceptible population with j < n stages of infection) as drop out treatment rate ¢; goes to infinity and as no one
drops out of treatment in stage i of infection, respectively.

We obtain, after rigorous calculations

ZJ tychy + viex
13
i - _
= I | (arbr + @ro;)

r=1

RT,;(‘P] —o0) = Kﬁa

)

r+1

U; =1, 1, =0, and 1,1y, k+1 are defined in (4.10), (48)
j ’ ’ :
_, T ughy + vie
Rrj(pi—o0) =Rrj 1+ Kﬂa Ui 1pio1 +vi1Yie1) Y ,kk—kk
1

K

k=i H (arEr +arop)

r=1

for 2 <i<j<n,

r#i

U;=1,0,=0, and t,v,k=iare defined in (4.10),

f@ (@ f(@) (b)

1 2 3 1 2 3

Fig. 2. Graphs of f(r) against 7 for the cases where f <1 and f> 1.
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L, Ughy, + e
Rrj(pr = 0) = Rf—= > — Kk

ca b1 _ S — _ ’
k=1 H (arbr + @ro;)
r=1

r#1

iy = by, ¥ =71, and i, iy, k+1 are defined in (4.10),

) (4.9)
] . .
Rrjlpi = 0) = Rry ¢ +R6—— 3 — WM T por 5 jcjon,
caib,- k=i k _ _
H (arbr + aror)
r=1
r#i
iy = bip; 101, vi=7ip; 101 +av; qvi_1, and iy, vy, k=i are defined in (4.10),
where u;, v; are defined in (3.7) fori =1,2,---,n,ig = 1,99 = 0, and
{l:‘k = bip-1U—1 + QkYVk-1Vk-15 ' ‘
Ve = TkPk1lkr T OYg-1Vk-1, fork=i+1,n, 1<i<n (4.10)
{}lk = brp a1l + PkYVk-1Yk-1 ]
Uk = TrPk-1Up-1 + O Yk-1ik—1, fork=#i.
Furthermore,
dRy; aiG;b;
t=—————— (Rrj(¢pj— ) — Rrj(p; = 0)),
d(Pi (aibi-i-ﬁl-(p,-)z( TJ( i ) TJ( i ))
) i (4.11)
d’Ry; 2a;a7b; .
= Rrj(pi—o0) — Rpj(p; = 0)), for 1<ij<n.
dg? (a;b; + ;)

It follows from (4.11) that the derivative M%(;:’“’B 0 and the graph of Ry j(¢;) concaves down for all ¢; > 0 if and only if

Rrj(pj = 00)>Ryj(p; = 0), for 1 <i <j < n.Likewise, ‘%J< 0 and the graph of Ry j(¢;) concaves up for all ¢; > 0 if and only if

Rrj(p; = 0) <Rrj(p; =0), for 1 <i<j < n.By definition, we expect Ry j(¢; — o) >Ry j(p; =0), for 1 <i <j < n.This shows
that in a population with j stages of infection, the number of secondary infection, Rrj, produced by an infected individual in a
completely susceptible population increases as the treatment dropout rate ¢; increases.

4.2.1. Case where ¢p;=¢ foralli =1,2,---,n
Assume ¢;j=¢ for j = 1,2,---,n, and write Ry ,=Rr »(¢). We see that

Rru(@) = Ropn, as ¢— oo,

and

where v is defined in (3.7) for k = 1, 2,---,n. The vertical asymptotes of the rational function Ry, (¢) are the negative vertical
linesgp = — ajEj/Ej, forj =1,2,---,n.Since Rr ,(¢) is a rational function of ¢ whose numerator and denominator have the same
degree, it follows that Ry ,(¢) is an increasing function of ¢ if and only if Ry, (¢ = 0) < Rr (¢ — ) = Roy, for ¢ > 0. By
definition, we expect Ry (¢ = 0) < Rr,(¢ — o). This shows that as the rate of dropping out of treatment increases, the
expected number of secondary infection produced by an infected individual increases to Rg .
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4.2.2. Numerical results verifying the effects of treatment and dropping out of treatment on the number of infections

Here, we use relevant parameters to the transmission dynamics of influenza disease in the United States for the numerical
simulations of the reproduction number as a function of the treatment and dropout rates. We set the life expectancy of the
United States population to 80 years®> and the total population to be 329,256,465 as of July 2018.* Using the parameters
collected from the Center for Disease Control and Prevention (CDC), the time from when a person is exposed and infected
with flu to when symptoms begin is about 2 days, but can range from about 1 to 4 days® and uncomplicated influenza signs
and symptoms typically resolve after 3—7 days for the majority of people.® Antiviral drugs, when used for treatment, can
reduce symptoms and shorten sick time by 1 or 2 dayss.

CDC’ estimates that, from October 1, 2018, through May 4, 2019, there have been 37.4 — 42.9 million flu illness, 17.3— 20.1
million flu medical visits, 531 — 647 thousand flu hospitalizations and 36.4 — 61.2 thousand flu death. We define ¢; as a

reduction factor in infectiousness (in stage j of infection) due to flu treatment and it reduces the infectious period to %]. < %j. For
more information about the parameter ;, we refer readers to the work of Lipsitch et al. (Liu & Zhang, 2011), Feng et al. (Feng

et al, 2011), Kretzschmar et al. (Kretzschmar et al., 2013) and CDC?. In their work, Lipsitch (Liu and Zhang, 2011) introduced a
parameter which is the reduction in hazard of infection for an individual on prophylaxis. They claimed with probability e,
transmission is blocked and of those blocked infections, a proportion a, are only partially blocked. Using two infectious

stages.wesetpl1 :4,/}72 :3'“/17 :4,%2 =2,6=0.8,h; =0.5h; =0.106,¢; =0.2,e; =0.05,7; =0.08,7, = 0.12,¢97 = 1/3,

0y =1/4,4; =1/54, =1/10,m; =1/4, 1, =1/8,6; =143 x 1046, =1.1x 104,86, =0.925x 104,35, = 0.8x 104

The value % for the number an T;(0) of individuals under treatment is close to the number reported by Biggerstaff et al.
j=1

(Biggerstaff, Jhung, Kamimoto, Balluz, & Finelli, 2012). According to the paper published by Tokars at al. (Tokars, Olsen, &

Reed, 2018), between 3% and 11.3% of the U.S. population gets infected and develops flu symptoms each year. The value

3%:‘2‘7 is approximately in this reported range. See Tables 1, 2 and 3 for parameter values and descriptions.

Fig. 3 (a) shows the graph of Ry ;=Rr 1 (7) against 7=7y. Fig. 3 (b) shows the graph of Ry ;=Rr,(7) against 7= 7; = 7,. The
graphs show that with no treatment, the reproduction number is Ry ,, and as more treatment is introduced into the popu-
lation the number of secondary infection Rr, reduces until it approaches R, which is the least number of secondary
infection that can be produced by an infected individuals when introduced into susceptible population. This is explained in
Subsection 4.1.

Fig. 4 (a) shows the graph of Rr 1=Ry 1 (¢) against p=¢;. Fig. 4 (b) shows the graph of Rr,=Rr »(¢) against o= ¢; = ¢;. The
graphs show that the number of secondary infection Ry, increases to Ry, as individuals drop out of treatment. This is
explained in Subsection 4.2.

Fig. 5 (a) shows the graph of Ry 1=Rr 1 (7, ¢) against 7=71 and p=¢;. Fig. 5 (b) shows the graph of Ry 5(7, ¢) against 7= 71 =
73 and ¢=¢1 = 3.

5. Existence and stability of equilibrium points

In this section, we discuss the endpoint behavior of the solution of (2.1). We give conditions under which the solution
converges on the long run to the disease-free or endemic equilibrium.

5.1. Existence and stability of disease-free equilibrium Py in the presence of treatment

The following theorems show the condition for the local and global stability of the disease-free equilibrium, Py. We study
condition(s) under which disease elimination exists on the long run. The idea presented here is similar to the work in Otunuga
(Otunuga, 2018). To analyze the local asymptotic stability of Py, we linearize (2.1) about Py and show that the real part of all
eigenvalues of the coefficient matrix of the linear associated system is negative.

DefineW =(S—% E I..I, Ty..T, R)T.Thelinearization of (2.1)along the disease-free equilibrium Py is obtained as

dWU=AWdt, U(ty) = Uy, (5.1)

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2102rank.html.
https://www.cia.gov/library/publications/the-world-factbook/geos/us.html.
https://www.cdc.gov/flu/about/keyfacts.htm. Page last reviewed: August 27, 2018.
https://www.cdc.gov/flu/professionals/acip/clinical.htm. Page last reviewed: March 8, 2019
https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm. Page last reviewed: May 9, 2019
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Table 1
Description of variables for the epidemic model.
Variable Description
S Population of susceptible individuals
E Population of exposed individuals
I Population of untreated infected individuals in stage k of infection
Ty Population of treated infected individuals in stage k of infection
R Population of individuals who recovered from disease
Table 2
Description of parameters for the epidemic model.
Parameter Description
A Recruitment rate into the population
I Transmission rate of infection
hy, Infectivity of untreated individuals in stage k of infection
e Reduced infectiousness due to treatment in stage k of infection
u Natural death rate
™ Infectious rate for exposed individuals
O Death rate associated with untreated infection in stage k of infection
Ok Death rate associated with treated infection in stage k of infection
Tk Treatment rate of infected individuals in stage k of infection
oK Rate of dropping out of treatment in stage k
Pk Transition rate from stage k to k + 1 for untreated individuals
Y Transition rate from stage k to k + 1 for treated individuals
Y Recovery rate for untreated individuals in stage k of infection
i Recovery rate for treated individuals in stage k of infection
Plot of Reproduction number RT 1(7-) against 7 Plot of Reproduction number R.I. 2('r) against 7
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Az1 =(0nx2),A32 = 71, A33 = —Mr, Ag1 = (01x2),Aa2 = (Y1 Yo ¥n ) Agz = (M M2y ), Aga = — d, and M, Mr,

7,7 ¢ are defined in (3.5). We can express the characteristic polynomial of A in the form
det(A—r1.7 yn,3,0n43) = — (r+4) det(A—1.7 3 2.0n:2); (5.2)

where A is the square matrix formed by deleting the first row and column of A in (5.1) and r is the eigenvalue of A.
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. Plot of Reproduction number Rr;(p) against ¢ ; Plot of Reproduction number Rr»(y) against ¢
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Fig. 4. Effect of dropping out of treatment on the reproduction number R, for casesn=1and n = 2.

Plot of reproduction number Ry (7, ) against 7 and ¢

Plot of reproduction number Rrs(7, ) against 7 and ¢

Fig. 5. Effect of treatment and dropping out of treatment on the reproduction number for the casesn =1 and n = 2, and Ry, < 1.

Theorem 5.1. The real part of all eigenvalues of A is negative if Ry , < 1. One of the eigenvalues of A is zero if R, = 1 and at least
one of the eigenvalues is positive real if Ry , > 1.

Proof. It suffices to show that the maximum real part of all eigenvalues of A, denoted, s(A), is less than zero if Ry , < 1.To do
this, we use relations D1, and Jog in (Plemmons, 1977) to show that the real part of each eigenvalues of the matrix % = — A is
positive. The matrix can be written in the form

B=TU, (5.3)

where " and 7 are lower and upper diagonal matrices, respectively, with positive diagonals. The matrices & = (<) and
% = (#j) are computed rigorously as follows:

5@1,] ‘%1,2 P e@‘lil
By1  Bos . By ,
g L|TH T P tor iz et 2 =17l i 12 an42. ando elsewh
A : . cfor i>j#1, 7y =220 fori=12,...2n+2, and0 elsewhere,
] %_]:—1,1 3?_,:_12 %j_u‘ <1
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«%1,1 ‘%Li*l Jf”
Wij= o 21 : 2;"1 :2‘1 , for 1=#i<j, #1j= % for j=1,2,...,.2n+2, and 0 elsewhere,
:,’17 - . B . /.
'%i,l '%i«,i—] %,]
P11 Pra . B
& [ (720N
where g := 1, and 7; = eﬂ:z’l '/)):2'2 '1{24 forj =1,2,...,2n+ 2, and can be simplified as
do = 1, Ryp=0,
k Pr—
Roj = Kﬁ*Z[thrﬂ( ;rlﬂ j=12,n+1
k=1

= LT uj & k Pr_1 :
Rrj = Ry+mss———— % [thr:jHur  j=12n-1

] G
11 (abr — mxon)

177 - [HJ Oak] (1-Roj_q), for j=1,2,--n+1,

Dty = C{Hj];:](akbk - Tk¢k)] (szjﬂak) (1-Ryy), for j=1,2,--n-1,
Ioms1 = C[[Tk=r (axby — Tk(ﬂk)] (1—Rrp),

Doz = Cu[[Tker(agby — 7 k‘l’k)] (1=Ryp),

where || is the determinant operator, {ay, by} and { R, 1} are defined in (3.3) and (3.6), respectively. Since uj, > u]-]_[’r‘:j+1

(brpy_1)  and  TT%q(arbr) > T (arbr —7r9y)  for k= j+ 1, - n it follows  that
k
n n hyu; H (brpr—l) n
wr ot % [l (%)] -wez & Sn <®E 3 |—mu | and so
k=j+1 k=j+ k=j+1
] (axbi — mrer) " I H(arbr mror) | (arbr) I H (arbr — re;)
k=1 r=1 r=j+1 =1

ﬁTJ <Rrnforj =1,2,---,n— 1. Therefore, if Ry , < 1, it follows from (5.4) that ﬁo_j_] <Rrpforj =1,2,--,;n+ 1, 7;> 0 and the

diagonal  entries ;= ,/411> 0 for j= 1,2, -+, 2n+ 2  Since %’EZZ’”Z is a Z-matrix
(thatis, b;;<0ifi=j,1<1i,j<2n+2, where %= (b;;)) and the diagonal entries j; =7/ =1forj = 1,2,...,2n+ 2, it
follows from relations D15 and J5g in (Plemmons, 1977) that the real part of each elgenvalues of matrix .% is positive, which is
in turn equivalent to s(A) < 0. The determinant of the matrix A is Do,,_», which is the product of all 2n + 2-eigenvalues of A. If
Ry, = 1,then Dy,., = 0, which means at least one of the eigenvalues of A is zero. If Ry ;, > 1, then D, <0, which means at
least one of the eigenvalues of A is positive.

Theorem 5.2. The disease-free equilibrium Py of (2.1) is locally asymptotically stable if Ry , <1 and unstable if Rp , > 1.

Proof. The proof follows from (5.2) and Theorem 5.1. W

The above theorem shows that if RTn <1, the system (S,E, Iy, -+, In, Ty, -, Tn, R) approaches the equilibrium point Py
whenever it starts somewhere near it in .7. The local stability of the disease-free equilibrium P, of system (3.12) without
treatment follows immediately from Theonem 5.2 by setting 7, = O forall k = 1,2,---,n. We state the theorem below without
proof.

Corollary 5.3. The disease-free equilibrium Py of (3.12) is locally asymptotically stable if Ron <1 and unstable if Ry , > 1.

The following theorem gives the threshold under which disease elimination (considered independent of the initial
conditions in .77) exists.

Theorem 5.4. The disease-free equilibrium Py of (2.1) is globally stable in the feasible region .7 if Rt < 1.

Proof. Define the Lyapunov function L : R} ., —R™* by

2n+2
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0 = S no_. no..
L(S,E,Il,Iz,...,In,T1,...,Tn):(S—SO—SO ln$>+wE+ S o+ > 0Ty (5.5)
S k=1 k=1

where R* is the set of positive real numbers, @, ¢ and 9,( satisfy

w = 1,
¢n _ 5§0 hnbn + Tnen
9n anbn — Thop hnon + anen 7
( ﬁAbnk) _ 1 |:< by kPn-k  Yn-kTn-k ) ( $n—k+1 > . ﬂgo ( hy_kbn_k + Th_ken—k >:|
an—k An kb = Tn_kPn-k Pn—kPn—k Yn—kdn—k En—kﬂ hn_k@n_i + Gn_ken_ 7
for k=1,2,3,...,n—-1, (5.6)

and (g, ¢,)" reduces to

(5)-= )

where
L hty, + 9
RTn:Kﬁ Z kkkikk ’ (5.7)
= [1(ab; — 7je)
j=1

and 1, and v, are recurssive sequences defined by

up =91, 1=, ~
Uy = bypr1Ui-1 + Y r-1Vk-1
Uk = TkPk—1Uk-1 + Yk 101, for k=2.3,...n
The coefficients @, ¢ and O satisfy $ray — 19k — B hy — Tl = 0, Bhy — 17k — B ex — o = O fork = 1,2,....,

n—1, gpn — Tnn — 65°h, = 0 and Bnby — Pnbn — 5%, — 0.1t follows from (5.5) and (5.6) that the derivative of L computed
along solution of (2.1) is

n n-1

dL 0 0 ~ 9 ~
G- ATHS —AS /S*HS*U —@)BSY (Ml +eTy) — (e — g1 m)E — Z<¢kak*¢k+ll)k*ﬁ5 hk*Tk@k)Ik
k=1 k=1
n-1
- ~ <0 ~ ~ <0 ~ - <0 ~
<'9kbk - ‘9k+1“/k - ﬁS €k — €0k¢k) Tk - (¢nan - ﬁs hn —Tnen)ln - (‘ann —ﬁs €n — <Pn¢n)Tn
k=1

If Ry, < 1, then (wc — ¢qm) > 0. Thus, it follows from (5.6) and (5.7) that ¢, and Ek are positive for k =1,2,---,n and

<0
dL N

172
— -0 0
using the fact that 3° = % — A/pand1 = (% g%) <3 <% +§%>.IfRTAn <1,thendL/dt = 0ifand only if S = °E—o, I,=0

and T, = Oforallk =1,2,...,n. Substituting this into the equation for dR/dt in (2.1) shows that R—0ast— co.If Ry, = 1, then

dL/dt = 0ifand only if S = 5°. The largest invariant set of (2.1) contained in {(S,E, I1,...,In, Ty, ...,Ta,R) T €.7 : dL/dt=0}is
the set {Py}. The global stability of Py follows from the LaSalle invariance principle (LaSalle, 1976).

The above theorem shows that disease can be eliminated on the long run from the population if parameters are controlled
so that the elimination threshold Rr, is at most 1. This elimination is independent of the initial number of infection. The
global stability of the disease-free equilibrium P; of system (3.12) without treatment follows immediately from Theorem 5.4
by setting 7, = 0 for all k = 1,2, ---,n. We state the theorem below without proof.

Corollary 5.5. The disease-free equilibrium Py of (3.12) is globally asymptotically stable in the feasible region .7 ifRon < 1.
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Table 3
Parameter values for the epidemic model: Case study Influenza.
Parameter Description Default Value References
A Recruitment rate into the population 1 day! CIA3
80 x 365
Transmission rate of infection n
f ! S Bhj =05 Feng et al. (2011)
j=1
hy Infectivity of untreated individuals in stage k of infection 0.5 (Feng et al., 2011; Roosa & Chowell, 2019)
; R infecti i k of .2
£ A eduged infectiousness due to treatment in stage k o 0 Feng et al. (2011)
infection
R R s
m Infectious rate for exposed individuals % — 2 (days) cDC
N Natural death rate A CIA3
Death i ith infecti —4
Ok eath rate associated with untreated infection 143 x 10 Murphy, Xu, Kochanek, and Arias (2018)
O Death rate associated with treated infection Assumed
) . . . . n 6
Tk Treatment rate of individuals in stage k of infection 3 7,€[0.05,0.2] cDC
Jj=1
(day™")
i i n
o Rate of dropping out of treatment in stage k - 1 — 7 (days) Assumed
=19
. . . n 6
Pk Average duration of untreated infection 5 1 <[3,7) (days) cDC
=1h
i i i n 6
Yk Average duration of treated infection S 1 (1,6 (days) cDC
=17
Vi Recovery rate for untreated individuals in stage k of infection 5 le (3,15] (days) (Feng et al., 2011; Roosa & Chowell, 2019)&
f=a" Assumed
Mk Recovery rate for treated individuals in stage k of infection > l.E (2,14] (days) (Feng et al., 2011; Roosa & Chowell, 2019)&
S Assumed
S(0) Initial susceptible Population Assumed
E(0) Initial Exposed Population Assumed
n 1:(0) Initial Untreated Infected Population 374 CIA3, cpc?
El j 32027
n 7.0 Initial Treated Infected Population 20.1 cIA3, cpc?
j; 3(0) 32927
R(0) Initial Recovered Population Assumed

5.1.1. Numerical results verifying global stability of disease-free equilibrium Py

Here, we use relevant parameters (given in Table 3) to the transmission dynamics of influenza disease in the United States
for the numerical simulations of the number of susceptible, untreated infected, treated infected and recovered individuals
satisfying the SEITR models (2.1) and (3.12).

Fig. 6 (a) shows the comparison of the trajectories of the number (in percentages) of exposed (En), untreated infected (I1n)
population in stage 1 of infection for model (3.12) (no treatment) with the trajectories of the number of exposed (E), untreated
infected (I;) and treated infected (T;) population in stage 1 of infection for model (2.1) (with treatment) for the case where
n = 1. Fig. 6 (b) shows the comparison of the trajectories of the number of exposed (En), untreated infected (Iyn) and (I,n)
population in stages 1 and 2 of infection, respectively, for model (3.12) with the trajectories of the number of exposed (E),
untreated infected (I1), (I) and treated infected (T;), (T,) populations in stages 1 and 2 of infection, respectively, for model
(2.1) with the case n = 2. It is clear from the graph that the introduction of treatment in the system reduces the number of
exposed and infected individuals (that is, E<En, I <I;n and I, < I,n) after some days. The number of exposed and infected
individuals tends to zero on the long run and the number of susceptible individuals tends to 1. In this case, Rg; = 0.8885,
Rgz = 0.9971, Rrq = 0.8337. and Ry = 0.9255. The graph of the solution (S(t),E(t),I{(t),---,In(t),R(t)) of system (3.12)
converges to Py as t—oo. This confirms Corollary 5.5. Likewise, the graph of the solution
(S(t),E(t),I1 (), -, In(t), T1 (), ---, Tu(t), R(t)) of system (2.1) converges to Py as t— oo. This confirms Theorem 5.4.

5.2. Existence and stability of endemic equilibrium Py in the presence of treatment

Theorem 5.6. The endemic equilibrium Py (given in (3.14)) of (2.1) exists if and only if Rt , > 1 and does not exist if Ry, < 1.1t
becomes disease-free (that is, Py = Py) if Rt = 1.

Proof. It follows directly from (3.14) thatS" > 0,E" >0,1;,>0, Ty >0and R* >0 for k = 1,2,....n, if Ry, > 1. The result for the
case where Ry, < 1 follows from (3.14). &
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Fig. 6. Graphs of comparison of deterministic trajectories of solution of system (2.1) and (3.12) for the cases where n = 1 and n = 2, respectively.

The following theorem gives the threshold for persistence of endemic (considered independent of the initial number of
infection).

Theorem 5.7. The endemic equilibrium Py of the system (2.1) is globally stable in the feasible region .7 if Rt , > 1 and fi, >0, m;, >
0, where f;, and my, are given in (5.11).

Proof. The existence of the endemic equilibrium P; follows from Theorem 5.6 if Ry, >1. Assume Rr,> 1. Define the
Lyapunov function L : Rj, ., —R" by

n
LS, 0y, ... I, Ty, .., Ty) = (S—E* -s 11%) +@ (E—E* -F lnE—Ii) + Z%E(Ik—i;—ﬁ ln;i;>
k=1 k

1 % K K T
+Zek(rkfrk4k lnf’j), (5.8)
k=1 Tk
where &*, ¢;, and 9;;, k =1,2,...,n, are positive constants defined by
oM = 1,
bn gs' ( hnbn + Then >
E; nbn — Tngn hnepn + anen 7
Pn_k 1 < bn kPnk  Yn-kTnk ) Pn—k1 L5 ( hy kbn k + Tn_kenk )
[ n-ibnic = Tn-ion-k PnkPik  Ynk@n-k/ \ O, 4.4 hy_k@n_i + Gn_ken_i
for k=1,2,3,....,.n—1, (5.9)

and (g; @) reduces to

#1\ o (Rm>
L 1=S=5 ,
01 KT RT,n
where Ry, is given in (5.7). It follows from (5.9) and (3.14) that @*c— ¢;m = 0, pa — bpo1px — BS hi— Tify = O, Oy —

17k — BS e — ordx =0 for k =1,2,....n— 1, §ran — BS hy — a0, = 0 and G,by — 65 en — 0ndhy = O.
The derivative of L computed along solution of (2.1) is
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S E Iy Ty

n k= —*
t: A+ ,LLE* + Z(ﬁaljz + 0kkak) + w'CcE .
k=1

We have
di —= A —=* __* —* n =*, =* %k —* =*
G=C- 5 mSs-(1-v )8S s> " (hylyiy + exTyty) — (@ ¢ — ¢y m)E e
k=1
n-1 . n-1 . o s
(Butic — By 10k — BS hy — 70T — > Bibre — a1 Vi — 5 e — o) Ttk — (Bntn — 65 hn — Tally)Tyin
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Si *St
~w 65 Z(hklk Xt g Ty k)»

k=1

ki 1 si
(s+——2> Zg (—+Sl" Z%—(I<+2)) —g1<§+%1+.3—3)
J

j=2

_ 1, st b1 b Cp(tiste g\ oshg (e e
ka(+ +— +§ +tk k+3)) f1(s+e+i1+t] ) > dy bt 2

lj

=

k :
St , € g i
72 mk(+ ky +E ]tj+t1(k+3))7

(5.10)

where
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z=u§*,
dy = a;qka,t, for k=1,2,...n,
& :5*6§*h,jz, for k=1,2,...n,
My = Oye1To g — 9;:“7,{7;, for k=23, ,n—-1,
My :9;711717;—17 (5.11)
fi=a65 uiTy,
fo=8end, —dp>0,for k=2,3,n,

n n
C=2z+) (2+kgc+ B+ kfi+2d) + > 3+ kmy.
k=1 k=2

hence, from (5.10)—(5.11) and the fact that the arithmetic mean of a list of non-negative real numbers is greater than or equal

1 1
to the geometric mean of the same list (Steele, 2004), it follows that 1 = (s})z <3 <s + %) 1= (% siy ﬁ) < 1 (} +5h 4 f) ;

1 T k
. 4 . . : . .
_ 1st e iy 1(1 sty e ir). — 1sig ek _ B 1_(1 Siy e ja).
1= (se,-]tl) §4(S+ e+ it n>' 1= (Seilnjz i,) §k+2<5+ R Zi]),

j=2

1 st Pk i ki3 ) ; . . k ; 1t Pkt k3 ; - ) k.,

— [ 1Sk e Lyyr . La 1 Sty e L3 i1 ). — (1S ey L1 1 (1, e B b
1= s ek H]:2 ij Sk+3 st et i + [ + j¥2 [N 1= s et 1_[J:2 G §k+3 ste Jr1'1 +f1 +j¥2 [ for

g%(‘—k +f—£> fork =1,2,...,n, and

Equality holds if and only if S =5", E/E" = Ij,1/7j*_1 = Ij/if = Tj,l/Tj*_l = Tj/T; =1forj =2,3,...,n Using (3.14) and the
fact that R(t) satisfies (2.1), it follows that R(t)—R as t—oco. The largest invariant set of (2.1) contained in
{S,E,l,....In,Ty,....,Ty,R)T €.7 : dL/dt= 0} is the singleton {P;}. By the LaSalle’s Invariance Principle (LaSalle, 1976), it
follows that P; is globally stable in the feasible region if Rr,>1. B

Plot of E, I1, T1: Case RT1>1

Plot of E, I1, 'z’ T1, T2: Case R1'2>1

0.14 . 0.12 . ;
(a) (b) —

S 1

§ o012 £

5 2

=
o

g’ 0.1 n&

D:_ -

= =

- 0.08 %

g =

3 el

P 1)

-]

S 0.06 2

€ kil

o £

g 004 =

2 =

o Q

o a

g ooz 8
]

0 =
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Time Time

Fig. 7. Graphs of comparison of deterministic trajectories of solution of system (2.1) and (3.12) for the cases where n =1 and n = 2, with Ry, > 1.
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The global stability of the endemic equilibrium P; of system (3.12) without treatment follows immediately from Theorem
5.7 by setting 7, = 0 for all k = 1,2,---,n. We state the theorem below without proof.

Corollary 5.8. The endemic equilibrium P; (given in (3.16)) of (3.12) is globally asymptotically stable if Ron>1.

5.2.1. Numerical results verifying the global stability of P; and effect of treatment

Using two infectious stages, we use the same values of parameters given in Table 3 except that we set § = 0.5, h; = 1.5,
hy =05, e = 0.5, &3 = 0.01, p = 0.0125..

Fig. 7 (a) shows the comparison of the trajectories of the number of exposed (En), untreated infected (I;n) individuals for
model (3.12) with trajectories of the number of exposed (E), untreated infected (I;) and treated infected (T ) individuals for
model (2.1) for the case where n = 1 and Rr; > 1. Fig. 7 (b) shows the comparison of the trajectories of the number of exposed
(En), untreated infected (I1n), (I;n) individuals for model (3.12) with trajectories of the number of exposed (E), untreated
infected (I;), (I2), and treated infected (T), (T) individuals for model (2.1) for the case where n = 2 and Rr, > 1. It is clear
from the graph that the introduction of treatment in the system reduces the number of exposed and infected individuals (that
is, E<En, Iy <I1n and I, < Irn) after some days. In this case, Rg; = 1.7397, Rg; = 1.9549, Rr; = 1.5934. and R, = 1.7665. The
endemic equilibrium point for system (3.12) is (S° = 0.5748,E" = 0.0104,I; = 0.0112,R" = 0.1475) for the case n = 1 and
(S = 0.5115,E° = 0.0119,I; = 0.0129,1, = 0.0053,R" = 0.1983) for the case n = 2. Likewise, the endemic equilibrium
points for system (2.1) for casesn =1 and n =2 are (S = 0.6276,E" = 0.0091,I; = 0.0087,T; = 0.0010,R" = 0.1594) and
(S =0.5661,E° =0.0106,I; =0.0101,I, =0.0037,T; =0.0012,T; =0.000842,R" = 0.2240), respectively. The graph of the
solution (S(t), E(t),I; (t), -, In(t), R(t)) of system (3.12) converges to P; as t— co. This confirms Corollary 5.8. Likewise, the
graph of the solution (S(t),E(t),I1(t), -, In(t), T1(t),---, Tn(t),R(t)) of system (2.1) converges to P; as t— co. This confirms
Theorem 5.7.

Fig. 8 (a) shows the graph of Ry 1=Ry 1 (7, ¢) against 7=7¢ and ¢=¢;. Fig. 8 (b) shows the graph of Ry (7, ¢) against 7= 11 =
T2 and ¢=¢1 = ¢,. The graphs show that for fixed ¢, as more (less) treatment is introduced into the population, the number of
secondary infection Ry , reduces (increases) until it approaches R n (Rg ), which is the least (highest) number of secondary
infection that can be produced by an infected individuals when introduced into susceptible population. This is explained in
Subsection 4.1. Also, the number of secondary infection Ry, increases to Ry, as individuals drop out of treatment. This is
explained in Subsections 4.1 and 4.2.

6. Derivation of stochastic model: effect of fluctuations and stability of disease-free equilibrium

In this section, we study the effect of noise on the transmission rates and infectivities, {#hy, B¢ }; the treatment rates {7, };
the recovery rates {,} and {#,} in stage k of untreated and treated individuals, respectively, for k = 1,2,---,n. We assume the
noise/external fluctiations in the system is caused by variability in the number of contacts between infected and susceptible
individuals and such random variations can be modeled by a Gaussian white noise (Mendez et al., 2012). We also assume that
fluctuations in the treatment rates may be caused by limited availability of drugs or effect of seasonality. This, in turn, causes

Plot of reproduction number Ry (7,¢) against 7 and ¢ Plot of reproduction number Rr»(7,¢) against 7 and ¢
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Fig. 8. Effect of treatment and dropping out of treatment on the reproduction number for the cases n =1 and n = 2, with Ry, > 1.


mailto:Image of Fig. 8|tif

82 0.M. Otunuga, M.O. Ogunsolu / Infectious Disease Modelling 5 (2020) 61-90

fluctuations in the recovery rates. By allowing these rates to fluctuate about a mean value, we introduce external fluctuations
in the model as follows:

p = 8+8 7(0),

Tk = Tk + ﬁ( Z/k(t)v (61)
Y = W+ Z (0,

M = nk+ﬁkzk(t)7 for k:]727"'7n7

where @, 7'k, Z and Z, are independent Gaussian noise terms with zero mean, and §> 0, 7 > 0, ¥, >0 and 7, > 0 are the
noise intensities, a measure of the amplitude of fluctuations, for k = 1,2, ---, n. By substituting (6.1) into (2.1), we get a
Langevin equation. The resulting equation is a stochastic differential equation. It is important to be able to interprete and
evaluate the noise structure of this equation. The Ito approach on stochastic differential equation depends on Markovian and
Martingale properties. These properties do not obey the traditional chain rule. Whereas, the Stratonovich approach obeys the
traditional chain rule and allows white noise to be treated as a regular derivative of a Brownian or Wiener process. It has been
suggested by several authors like West et al., Wong et al. (West et al., 1979; Wong & Zakai, 1965) that Stratonovich calculus is
appropriate for Langevin equations with both internal and external noise. For this reason, by substituting (6.1) into (2.1), we
extend the resulting equation to a Stratonovich stochastic model of the form
n n
dS = | 4—BS> (hil; +&T;) — uS | dt — S (ajl; + 7;T;) ° dGj(t),
j=1 j=1
n n
dE = | BS> (hlj+&T;) — (w+ wE | +S> (0l +7;T;) = dGi(1),
j=1 j=1
dly = (nE — (u+ 01+ py + 71 +¥1)l + @1 T1) dt —T1lyodWy(t) — @1}1 odZ (t), (6.2)
dle = (Pr-1lk-1 = (& + 0k + pre + T + Wik + 91Tie) — Tl o dWie(6) — Yyl o dZy () dt, k=2,3,....m,
dTy = (1l = (i + 01+ 71 + @1 + 1) T0)de + Trly o dWy (£) = 71Ty 0 dZy (),
dTy = (Tl + Y1 Tie1 — (0 + Ok + Vi + ok + M) Ti) dE + Tl o dWi () — T o dZy (1), k=2,3,...n,

n n__ n _
dR = Z(Wﬁ’?ﬂj)—#R>df+z¢ﬂj°dzj(t>+Z’71Tj°dzj(f)»
)2 2

j=1 j=1
where o denotes the Stratonovich integral (Arnold, 1974); C(t),W;(t), Z;(t), Z;(t), i = 1,2,...,n, are standard Wiener process on
a filtered probability space (Q,(.7 t);~q.P); the initial process x(ty) = (S(to), E(t), 11 (to), ..., In(to), T1 (to), - .-, Tu(to), R(tp)) is -7 ¢,
measurable and independent of C(t) — C(to), W;(t) — Wi(to), Zi(t) — Zi(to) and Z;(t) — Z;(to),i = 1,2,...,n.

The Stratonovich dynamic model (6.2) is converted to its Ito’s equivalent (stated below) using the Stratonovich-Ito
conversion theorem given in Bernardi et al. (Bernardi, Madday, Blowey, Coleman, & Craig, 2001) and Kloeden et al. (Kloeden &
Platen, 1995).

Theorem 6.1. The Ito0 stochastic differential equation having the same solution as the 2n + 3-dimensional Stratonovich stochastic
differential equation (6.2) is given by
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Jj=1

= (Aﬁsi:(hjljﬂr) 1S + 5 SZ ail; + 7T, ))dtSZ ail; + 7;T;)dCi(t),
j=1

n -l n
(552 (il +€T;) = (m + WE— 55> (o3l + 75T;) >+SZ ail; + 9;T;)dCi(t),
j=1

Jj=1 J j=1

1,5 —2 _ —
_ (nE—aﬂ] +ouTy +§<r% +1//])I1> dt — 7L dW; (8) — Yy 1 dZ (0),

1 —2 _ —
<Pk -1 = @i + o T + 5 (Tﬁ + ‘//k>1k> = T dWie(t) — Yl dZy (t) dt, k=2,3,...n,
(T]I] — b]T] += (*?%I] +ﬁ%T]))dt+7111dW] (l’) —ﬁlTle (t),

1, . . B o
dTy, = (Tklk FY-1Teo1 = bl +5 ( — Tl + nﬁTk)) dt + 7l dWi (t) — M Tk dZy (£), k=2,3,....n,

=

dR —(Z(x/lej+an) KR — 1

j=1 J

(¢11+n ))dt—i-z Vilidz;(t) + TidZi(t)).

Proof. The proof follows using the Stratonovich-Ito conversion theorem given in Bernardi et al. (Bernardi et al., 2001) and
Kloeden et al. (Kloeden & Platen, 1995).

Following similar approach presented in Otunuga (Otunuga, 2018), we can show, using the functionV(t,x) = In(S + E +
Z(I +Tj) + R+ e®), that LV <V and ‘ 1‘nf V(t,x)— o0, as M— oo, where L is a differential operator called the L- operator
j=1 x| >M

defined by

aV(t,u) oV(t,u 1 8%V(t,u
LV(t,u) = E’)t )+ éﬁ )A—&-Etrace{BT%B} (6.4)

. It follows from Theorem 3.5 of Khasminskii (Rafail, 2012)

Uy 0t Dlanes ou;0U;

where YV(te) _ <av<r w aV(t.u)) and az\gl(ltz,u) _ (a?va,m)

2n+3x2n+3
that there exists a solution x(t) = (S(¢t), E(t),I1(t), ..., In(t), T1 (£), ..., Ta(t), R(¢)) of (6.3) which is an almost surely continuous
stochastic process and is unique up to equivalence if x(ty) €.7 is independent of the processes C;(t) — C;(to), W;(t) — W;j(tp),
Zi(t) — Zi(to), Zi(t) — Z;i(tp), i = 1,2,---,n. The solution described above can be shown to be nonnegative and in the feasible
region .7 using a similar idea presented in (Yang & Mao, 2013).

6.1. Equilibrium points and basic reproduction number in the presence of noise

The point Py defined in (3.1)—(3.2) is also the disease-free equilibrium of system (6.3). We calculate an equivalent of Rt in
(3.6), denoted by %t ,, and derive threshold under which system (6.3) becomes disease-free on the long run. We first linearize
the non-linear stochastic system about the disease-free equilibrium and study the stability of the solution of the linear
system.

DefineW = (S—% E I..Iy T;..T, R)T.The linearization of (6.3) about the disease-free equilibrium Py results in

n —_— . _— J—
AU = Udt+ Z(GidC,-(t) +GldW;(t) + HidZ;(t) +HidZ,»(t))IIf, (6.5)
i=1

1 12 13 14
an A2 23 A4
731 A3z 33 34
a1 A42 Aa3 S44
AQ/ZA = A2>4,<W31] = A3'1, JV\?,A = A3,4' A4 = A4,1 and &/4,4 = A4y4 defined in (51 ),

where &/ = with .o/ 1 =A11, Y12 =A12, %13 =A13, Y14 =A14, ¥21 =Az1, Y23 = A3,
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2y
a ,% 0 0 0o .. 0 0
o 72
—py a 772;7‘*2 0 0 .. 0 0
@/22 = - T I ’
0 —py a 73 ;‘//3 0 0 0
=2
0 0 ppy - Y
2
ﬁz
by -2 0 0 0 0 0
2
ﬁ2
—y; by _72 0 0 .. 0 0
33 = — 3 ’
' 0 -Y2 b3 *7723 0 0 0
=2
0 0 e £ bn*njn
) -2 -2 —2 ) —=2 22 =2
A3y =I5 Aag = (% 7‘#271 ¥y *%"'% ,%) A 43 = (171 7%1 Ny ,1772.,.,7“ ,77241) where.

=2

Sy =diag(¥1, ¥, Wp),./7 =diag| 1 — ?Tz —F,Tn — %z , ai and by, are defined in (3.3), G/, G Hiand H are 2n+
3 x 2n + 3 matrices with entries Gy ;5 = ~ K0y, Gy pyjp = — k03, Gfj.p =K04, Gy piin =03, Gliyajyn = — T Gy =
i Hiniivo = — Vi Hopysiio = Vi Hinyivonyiva = — Wi Hionysnyis2 = T and zero otherwise for j = 1,2, -, n. Define
Q(t) = E[W(t)]. The function Q(t) satisfies the differential equation

dQ =7 Q dt. (6.6)

The characteristic polynomial of .«/ can be expressed as
det(/ —T.7 ony3xans3) = — (F+p) det(/ —T7 ap.n), (6.7)

where .7 is the matrix obtained be deleting the first row and column of .7 in (6.5), and 7 is the eigenvalue.
Using the idea presented in Mendez et al. (Mendez et al., 2012) and in Section 3.1.1, we calculate the reproduction number
7 with respect to the deterministic model (6.6) in the presence of treatment as

p Ko 1 l:l] hk + el
g = BT | Whectede | 68)
k=1 L
[T (@6; — 7o)
=1

where
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Uy = Brpk-1Uk-1 + PkYVk-17k-1
Uk = TkP—1Uk-1 + QYg 101, for k=1,--n,

with &ig = 1, 79 = 0. We note here that the threshold .%#7 , is nonnegative provided

_ _ _ - —2
7;>0, 77j=77j*"712/2207 V’jzlﬁj*l//j/zzo- (6.9)

For the rest of this work, we assume condition (6.9) is satisfied.
Remark 6.1.1. We note here that the number %t reduces to Ry, if 7; = % =7;=0forallj =1,2,---,n.

Remark 6.1.2. Condition (6.9) indicates that the noise intensities 7, %‘ and 7; must not exceed the rates , /27;, ,/2y; and
\/2mj, respectively, for the model to be well defined.

6.2. Effect of noise in the treatment, and recovery rates
In this section, we study the effect of fluctuations in the treatment and recovery rates.

6.2.1. Effect of noise in the treatment rates 7

Assuming condition (6.9) is satisfied, and 7; = y; = 0 for j = 1,2, ---,n, we wish to study how the number of infection
changes due to changes in the treatment intensity rates {7;}. Define Ry ,=Rr »(7;) (given in (3.6)) and .#1 , =%t n(1;). It is easy
to show that Ry ;(t; — ?1-2 /2) = Z#7j(7;). As discussed in Subsection 4.1, the derivative % < 0 if and only if Ry j(1; > o0) <
Rrj(ri= 0), for 1<i<j<n, that is, Rpj(r;) is a decreasing function of 7; if and only if Ryj(r; >co < Rrj(1; = 0),
for 1<i<j<n. It follows that Rrj(r;) < %7 j(1;) provided Rrj(1; —>eo) < Rpj(r; = 0), for 1 <i<j<n. The same result

follows for the case where 7;=7 foralli =1,2,---,n, thatis, Ry (1) < Rr (T 7;) = %1 n(7) provided Ry, n < Rg ». An increase in

the noise intensity in the treatment rate increases the number of secondary infection cases produced by a typical infective
individual.

6.2.2. Effect of noise in the recovery rates of untreated infected individual
Assuming condition (6.9) is satisfied, and 7; =7; =0 for j = 1,2, ---,n. We wish to study how the number of infection
changes due to changes in the untreated recovery intensity rates {Jj} of infected individual. Write %1 ,=%1 n(Y1, -, V) asa

a—t?/2

function of {E}JL. Since the functions g;(t) = @=2/2b 19

and g;(t) are increasing function of t forj = 1,2,--,

n, and #7 (Y1, ¥,) can be expressed in terms of g;(y;) and g;(¥;), it follows from the increasing property of g;(y;) that
%T,nE%T‘n(wla ) > #1n(0,0,--+,0) = Rrp. The higher the noise intensity in the untreated infected recovery rates, the
higher the number of secondary infection cases produced by a typical infective individual.

6.2.3. Effect of noise in the recovery rates of treated infected individual
Assuming condition (6.9) is satisfied and 7; = y; = 0 for j = 1,2, ---,n. By writing #1 ,=%1,(71, -, M) as a function of

7
J
bi—x

{ﬁ}F:1, we wish to show that %7, >. %71 ,(0,---,0) = Ry . Since the functions 1 and are increasing

_ AN _ AN
& (bj% —Ti®; @\ b= | ~Tio;

function of i forj = 1,2,---,n, it follows that #1 =21, (M1, M) > #1.(0,--,0) = Ry p, that is, as the noise intensity in the
recovery rate 7; of treated infected individuals increases, the number of secondary infection cases produced by a typical
infective individual increases.




86 0.M. Otunuga, M.O. Ogunsolu / Infectious Disease Modelling 5 (2020) 61-90

6.2.4. Numerical analysis

We use the parameters presented in Table 3 to verify the results claimed in Subsubsections 6.2.1-6.2.3.

Fig. 9 (), (b) and (c) show the graphs of %1 ,=%1,(7), #12=%12(V) and #1,=%7,(7) against 7 (fixing Y = 7 = 0)), ¥
(fixing 7 = ) = 0)) and 7 (fixing 7 = y = 0)), respectively. Fig. 9 (d) shows the graph of %1 =7 (7,¥) against 7 and y. The
trajectories of these graphs suggest that the higher the intensity of noise in the treatment rate, recovery rates of untreated and
treated infected individuals, the higher the number of secondary infections produced by an infected individuals when
introduced into a susceptible population.

Fig.10 (a) and (b) show the graphs of .77 ;=271 (7, %) against 7 and # and %Tsz%T,z((p, #) against ¥ and 4. The trajectories
of these graphs suggests that the higher the intensity of noise in the treatment rate, recovery rates of untreated and treated
infected individuals, the higher the number of secondary infections produced by an infected individuals when introduced into
a susceptible population.

6.3. Stability of infection-free equilibrium Py of (6.3)

In this section, we discuss conditions for stability of the infection-free equilibrium P; of (6.3) in the presence of noise. We
study the conditions for stochastic stability of the disease-free equilibrium Py of the linear associated system (6.5) and later
use Theorem A.2 in (Tornatore et al., 2005) to extend the result to that of the nonlinear system (6.3).

Theorem 6.2. Assume condition (6.9) is satisfied. The real part of all eigenvalues of .« is negative if %1, <1.
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Fig. 9. Effect of noise on treatment rates and recovery rates of untreated and treated infected individuals for the case n = 2.
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Fig. 10. Effect of noise on treatment rates and recovery rates of untreated and treated infected individuals for the case n = 2.
2
Proof. The proof follows from (6.9) and Theorem 5.1 by setting a;=a; — ~5- b =b; - 2, T]_Tj 2 1//] Vi — and nj= n]— -+

into matrix A in (5.1). W o
Writing the system of non-linear stochastic differential equation (6.3) in terms of W reduces to

n n
173 2
d’lfl_( B(W; +K) E (hi¥2+&¥niji2) — ,u’l’1+ (W1 +K) E (0% 12+ 0% j.2) ) dt
= =

n
(W1 +%) Z 0j ]+2+U] n+]+2) ac(t),
1

—.

o n o 1 o n 5
d¥, = ( T +0))_ (P2 +e¥nji2) - ¥y —5(Wi+K) > (%2 +5%n12) )
j=1 j=1

n
+W 480> (%2 + 0% j12) dG(L),
=1

—.

___ — — — 1/ IO\ — e R
avs = (0511’2 W3+ VW3 ) (7'1 +‘h)‘pz) dt —71W3dW, (t) — 1 W3dZy (1),

_ _ - L o o o (6.10)
d¥y = (pk—lqlkﬂ 0P+ Vi niki2 5 (Tk +l//k>'1’k+z) dt =T W2 dWi(8) = ¥ W spdZy (t), for,

_ _ — 1/ e L o
d¥y,3= (711113 —b1¥ny3 +§( SiLE +ﬂ%’1’n+3)df+71q’3dw1 (f) ~M¥ni3dZy (f)

_ _ _ _ 1 - o -
AV k2= (Tklpk+2 FYk-1Vniks1 = DWW k2 + 5 ( - Tﬁ Yo + 77% ’pn+k+2) dt+7 Wy HdWy (t)

—ﬁkwnﬂwzdzk (t) , for,

o n o -l n
d¥r,.3= (Z ‘//; j+2 0 n+j+2) w2043 — 3 Z( i+ 7I] n+j+2)> dt+
j=1 J=1

no__ — _
Z; (%"Pjﬂdzj(t) +ﬁjlpn+j+2dzj(t)) )
j=

for k = 2,---,n, where a; and b, are defined in (3.3).
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Let Fand # be the drift and diffusion coefficients of the linear system (6.5), respectively, and fand g the drift and diffusion
coefficients of the non-linear system (6.10), respectively. We give a theorem concerning the global stability of the disease-free
equilibrium point Py by showing that Theorems A.1 and A.2 of Tornatore et al., (2005) is satisfied with respect to systems (6.5)
and (6.10).

Theorem 6.3. The disease-free equilibrium Py of the system (6.3) is globally asymptotically stable in the feasible region .7 if
»%T.n <1

To prove this, we first show that if %1 , < 1, the trivial solution ¥ = 0 of the linear stochastic differential equation (6.5) is

assymptotically stable and later show that the drift and diffusion coefficients f(t, W) and g(t, W), respectively, of the nonlinear
system (6.10) satisfy the inequality

IF(£,W) — F(&, )| + llg(t, W) — Z(t, W)|| <& | 7] (6.11)

in a sufficiently small neighbourhood of W' = 0, with a sufficiently small constant &.

Proof. If %1, <1, it follows from Theorem 6.2 that the real part of all eigenvalues of .o/ is negative. Hence, there exist a
diagonal matrix Y (with positive diagonal entries, say, rq, 15, -+, 2,3 ) and a real number Z > 0 such thatsT (Y.o/ +./ T Y')s < —
ZsTs for every nonzero vector s€R?"+3 (see relation Is of (Plemmons, 1977)) . Let ¥ = (W, W,, ..., W,,.3)" be a vector
satisfying the linear system (6.5) and define V : [0, T] x R*"*3 - R* by

Let 5§ = 1max{ a TJ,IPJ,'I]]} such that ry =y = 10*2“’ Tiy2 = Tniji2 = Tony3 = % forj = 1,2, ---, n. Using (6.4), the

L-operator defined in (6.4) satisfies

n [ . L — T e\ —
V(W) =W (re+ o TW Y (GG + G YG +HTYH + H‘TYH')‘I‘
=1

n

— . . =T = . LT T\ —
< TILUFIHTZ(G’WG’JFGI YG + HITYH + Hi rH’)IIr
i=1
2n+3 n 2
= Z Z( r )R ‘7 + (112 +rn+]+2)7 + r2n+3‘//]) 2
=1 =1
- 2-2 72 2\ g2
+Z ((rl + 1)K o + rj+2‘//j + (r2n+3 + rn+j+2)ﬁj )mn+j+2
=

2n+3 7T

< ZX:]‘I'f +ZZ +2+221pﬂ+]+2_ ZII'I]*ZIIJZ ZZ j+2 — 2Zmn+1+2< ZIII W

Let r; and r, be min{ry, ..., 7903} and max{ry, ..., Ton,3}, respectively. Then r;||¥|? < V(t, ¥) < ry||P| 2. It follows from

Theorem A.1 of Tornatore et al., (2005) that the trivial solution ¥ = 0 of (6.5) is asymptotically stable. We deduce from this
result that if the initial condition (in .7") of system (6.5) is near 0, then the solution (S(t), E(t), I; (t), ---,In(t), T (t), ---, Tn(t), R(t))

approaches Py on the long run if %t , <1. To prove the global stability of the solution W =0 of (6.10) (equivalent to the
disease-free equilibrium Py of (6.3)), we choose ¢ >0 sufficiently small in a neighbourhood of ¥ = 0 so that [¥|<¢ and
If (6, W) —F(t, )| + |g(t, W) — Z(t, ¥)| reduces to

_.n o o n 2 n 2
Jz(ﬁ‘l’lZ(hﬂFﬁz +eWnijia) — Wl +80)Y (07 %2 + TP ) \quﬁ (Z W2 + 7 n+j+2))

j=1 j=1 j=1

<A (T (35007 1)+ (7)) o360 35 (1 ah) G003 (B o) |

j=1
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Fig. 11. Graphs of stochastic trajectories of solution of system (6.3) for the cases where n =1 and n = 2, respectively, and %7, <1.
< hj¥|,

where h = £&v/2max {%Z}Lﬁ(h% + 912) + (0.2 + 5-2)76 +1,E+K)aj, (E+K)7; } The global stability result follows from The-
1<j<n J ]

orem A.2 of (Tornatore et al., Vetro).

6.4. Numerical verification of global stability of infection-free equilibrium points for the stochastic model

Fig. 11 (a) shows the trajectories of E, I and T; satisfying model (6.3) for the case where n =1 and .%#1; <1. Fig. 11 (b)
shows the trajectory of E, I, I, Ty, T, satisfying model (6.3) for the case where n = 2 and .7, < 1. In this case, .%#1; = 0.8056
and H15 = 0.8908.
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