About Laura H. Lewis

Magnetic materials are ubiquitous in society, providing functionality to advanced devices, sensors and motors of every kind. As the magnetic force maintains strength over large distances, it allows for communication between components that are physically separated. This unique property permits the conversion of electrical to mechanical energy, assists microwave devices in telecommunications, transmits and distributes electric power and provides the basis for data storage systems. Magnetic materials are increasingly employed in medical applications, not only in NMR diagnostic equipment but also in specialized targeted cancer treatments and drug delivery protocols. It is anticipated that specialized engineering of magnetic materials and careful tailoring of their properties will enable a new generation of stronger and more responsive materials and devices that can significantly impact the way we use and store energy.
Current research is devoted to understanding magnetostructural transitions, which comprise simultaneous magnetic and structural phase changes. These transitions are attracting new attention due to the recognition that they underlie an assortment of “extreme” phenomena with important technological implications, such as Colossal Magnetoresistance (CMR) of interest for magnetic sensors in the recording industry; the giant Magnetocaloric Effect (MCE) under intense development for CFC-free magnetic refrigeration, and exceptional magnetomechanical behavior for actuators. Magnetostructural transitions may be driven by multitude of physical inputs (magnetic field, temperature, pressure, electric field), implying they may be manipulated to yield a tailored functional response. Our research employs advanced materials probes and techniques (magnetic measurement, advanced electron microscopy and specialized synchrotron scattering and spectroscopic techniques) that are available both at Northeastern University and at the Brookhaven National Laboratory in Long Island, New York.

Positions

Present Chair, Department of Chemical Engineering, Northeastern University
to
Present Cabot Professor, Department of Chemical Engineering, Northeastern University
to

Disciplines

None

Research Interests

Nanomagnetism


Contact Information

342 Snell Engineering
Northeastern University
360 Huntington Avenue
Boston, MA 02115-5000
617.373.3419

Email:


This author has not uploaded works yet.